Composite Numbers IV with Applications to
the Normal Order of an Arithmetical Function,
the Kernel Function and the ABC Conjecture

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina

Copyright © 2018 Rafael Jakimczuk. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We prove a theorem on the distribution of certain sets of composite numbers. The proof use as main lemma a result of the author on the distribution of certain sets of quadratfrei numbers. After, we define the arithmetical function $a(n)$, where $a(n)$ is the number of primes with multiplicity (or exponent) 1 in the prime factorization of n and prove using the previous results on composite numbers that its normal order is $\log \log n$. Also, using the previous results on composite numbers, we obtain a theorem on the kernel function and as corollary we obtain that the ABC conjecture holds for almost all C.

Mathematics Subject Classification: 11A99, 11B99

Keywords: Subsets of composite numbers, density, squarefree numbers, squareful numbers, normal order

1 Introduction and Preliminary Notes

A quadratfrei number or squarefree number is a product of distinct primes, that is, a number such that its prime factorization is of the form $q_1 \cdots q_s$ where the q_i ($i = 1, \ldots, s$) are the distinct primes in the prime factorization. The set of the squarefree numbers will be denoted C_0. Let $Q_0(x)$ be the number
of squarefree not exceeding \(x \). It is well-known (see [1, Chapter XVIII]) these numbers have positive density \(\rho_0 = \frac{6}{\pi^2} \). That is,

\[
Q_0(x) = \rho_0 x + o(x) = \frac{6}{\pi^2} x + o(x)
\] (1)

Let us consider the set of squarefree relatively prime to the squarefree fixed \(q_1 \cdots q_s \). The number of these squarefree not exceeding \(x \) will be denoted \(Q_{q_1, \ldots, q_s}(x) \). It is well-known (see [2]) that

\[
Q_{q_1, \ldots, q_s}(x) = \frac{6}{\pi^2} \frac{q_1 \cdots q_s}{(q_1 + 1) \cdots (q_s + 1)} x + o(x)
\] (2)

A number such that all primes in its prime factorization has multiplicity (exponent) greater than 1 is called squareful or powerful number. It is well-known that the series of the reciprocal of the squareful numbers converges.

In this article we study the numbers such that their prime factorization is of the form \(q_1 \cdots q_t q_{t+1}^{r_{t+1}} \cdots q_{t+s}^{r_{t+s}} \) where \(q_1, \ldots, q_{t+s} \) are the distinct primes in the prime factorization, \(t \geq 1 \) is variable, \(s \geq 1 \) is fixed and the \(s \) variable exponents \(r_{t+1}, \ldots, r_{t+s} \) are greater than 1. Therefore, these numbers have a variable squarefree part \(q = q_1 \cdots q_t \) and a variable powerful part \(q_{t+1}^{r_{t+1}} \cdots q_{t+s}^{r_{t+s}} \) with a number fixed \(s \) of distinct primes We shall denote this variable powerful part in the form \(q_1^{r_1} \cdots q_s^{r_s} \). Consequently we shall denote these numbers \(q_1 \cdots q_t q_{t+1}^{r_{t+1}} \cdots q_{t+s}^{r_{t+s}} \) in the compact form \(q q_1^{r_1} \cdots q_s^{r_s} \) where \(q \) is the squarefree part and \(q_1^{r_1} \cdots q_s^{r_s} \) is the powerful part. The set of these numbers will be denoted \(C_s \). The number of these numbers not exceeding \(x \) will be denoted \(Q_s(x) \). We shall prove that these numbers have positive density \(\rho_s \).

The following well-known formula will be used (see [1, Chapter XXII])

\[
\sum_{p \leq x} \frac{1}{p} = \log \log x + M + o(1)
\] (3)

where \(M \) is called Mertens’s constant and \(p \) denotes a positive prime.

2 Main Results

Theorem 2.1 Let \(s \) be an arbitrary but fixed positive integer. The following formula holds

\[
Q_s(x) = \rho_s x + o(x)
\] (4)

where

\[
\rho_s = \frac{6}{\pi^2} \sum_{q_1 \cdots q_s} \frac{1}{(q_1^2 - 1) \cdots (q_s^2 - 1)}
\] (5)

The notation \(\sum_{q_1 \cdots q_s} \) mean that the sum run on all squarefree numbers \(q_1 \cdots q_s \) with exactly \(s \) distinct prime factors.
Proof. We put
\[\rho_s = \frac{6}{\pi^2} \sum_{q_1^{r_1} \ldots q_s^{r_s}} \frac{q_1 \ldots q_s}{(q_1 + 1) \ldots (q_s + 1) q_1^{r_1} \ldots q_s^{r_s}} \tag{6} \]
where \(\sum_{q_1^{r_1} \ldots q_s^{r_s}} \) mean that the sum run on all powerful numbers \(q_1^{r_1} \ldots q_s^{r_s} \) with exactly \(s \) distinct prime factors. Note that the series converges, since the series of the reciprocal of the powerful numbers converges (see the introduction).

Let \(\epsilon > 0 \). We choose the powerful number \(A \) with exactly \(s \) distinct prime factors such that
\[\sum_{q_1^{r_1} \ldots q_s^{r_s} > A} \frac{1}{q_1^{r_1} \ldots q_s^{r_s}} < \epsilon \tag{7} \]
\[\sum_{q_1^{r_1} \ldots q_s^{r_s} > A} \frac{q_1 \ldots q_s}{(q_1 + 1) \ldots (q_s + 1) q_1^{r_1} \ldots q_s^{r_s}} < \frac{\epsilon^2}{6} \tag{8} \]

Let us consider a fixed powerful number \(q_1^{r_1} \ldots q_s^{r_s} \). The number of numbers of the form \(qq_1^{r_1} \ldots q_s^{r_s} \) (see the introduction) not exceeding \(x \) will be denoted \(Q_{qq_1^{r_1} \ldots q_s^{r_s}}(x) \) and consequently (see (2)) we have
\[Q_{qq_1^{r_1} \ldots q_s^{r_s}}(x) = \frac{6}{\pi^2} \frac{q_1 \ldots q_s}{(q_1 + 1) \ldots (q_s + 1) q_1^{r_1} \ldots q_s^{r_s}} \frac{x}{q_1^{r_1} \ldots q_s^{r_s}} + o(x) \tag{9} \]

Therefore (see (9) and (6))
\[Q_s(x) = \sum_{q_1^{r_1} \ldots q_s^{r_s} \leq A} Q_{qq_1^{r_1} \ldots q_s^{r_s}}(x) + P(x) \]
\[= \sum_{q_1^{r_1} \ldots q_s^{r_s} \leq A} \frac{6}{\pi^2} \frac{q_1 \ldots q_s}{(q_1 + 1) \ldots (q_s + 1) q_1^{r_1} \ldots q_s^{r_s}} \frac{x}{q_1^{r_1} \ldots q_s^{r_s}} + o(x) + P(x) \]
\[= \rho_s x - \left(\frac{6}{\pi^2} \sum_{q_1^{r_1} \ldots q_s^{r_s} > A} \frac{q_1 \ldots q_s}{(q_1 + 1) \ldots (q_s + 1) q_1^{r_1} \ldots q_s^{r_s}} \frac{1}{q_1^{r_1} \ldots q_s^{r_s}} \right) x + o(x) + P(x) \tag{10} \]

Equation (10) gives
\[\frac{Q_s(x)}{x} - \rho_s \]
\[= - \left(\frac{6}{\pi^2} \sum_{q_1^{r_1} \ldots q_s^{r_s} > A} \frac{q_1 \ldots q_s}{(q_1 + 1) \ldots (q_s + 1) q_1^{r_1} \ldots q_s^{r_s}} \frac{1}{q_1^{r_1} \ldots q_s^{r_s}} \right) x + o(1) + \frac{P(x)}{x} \tag{11} \]
Now, we have (see (7))
\[0 \leq P(x) \leq \sum_{q_1^{r_1} \cdots q_s^{r_s} > A} \frac{x}{q_1^{r_1} \cdots q_s^{r_s}} \leq x \sum_{q_1^{r_1} \cdots q_s^{r_s} > A} \frac{1}{q_1^{r_1} \cdots q_s^{r_s}} < \varepsilon x \]
(12)

since \(\lfloor \frac{x}{a} \rfloor \) is the number of multiples of \(a \) not exceeding \(x \).

Equations (11), (8) and (2) give
\[\left| \frac{Q_s(x)}{x} - \rho_s \right| < 3\varepsilon \quad (x \geq x_\varepsilon) \]
(13)

and, since \(\varepsilon \) can be arbitrarily small, equation (13) gives equation (4).

If the distinct primes \(q_1, \ldots, q_s \) are fixed we have
\[\sum \frac{q_1 \cdots q_s}{(q_1 + 1) \cdots (q_s + 1) q_1^{r_1} \cdots q_s^{r_s}} \frac{1}{q_1^{r_1} \cdots q_s^{r_s}} = \frac{q_1 \cdots q_s}{(q_1 + 1) \cdots (q_s + 1)} \left(\frac{1}{q_1^2} + \frac{1}{q_1^3} + \cdots \right) \cdots \left(\frac{1}{q_s^2} + \frac{1}{q_s^3} + \cdots \right) = \frac{1}{(q_1^2 - 1) \cdots (q_s^2 - 1)} \]
(14)

Hence, equations (14) and (6) give equation (5). The theorem is proved.

Note that if (see the introduction) \(s_1 \neq s_2 \) then \(C_{s_1} \cap C_{s_2} \) is empty. On the other
hand \(\bigcup_{s=0}^\infty C_s = N - P \) where \(N \) denotes the set of the positive integers and \(P \) denotes
the set of powerful numbers. Consequently the \(C_s \) are a partition of the set \(N - P \). The density of the
set \(N - P \) is 1, since it is well-known that the density of the set of powerful numbers is zero. In the following theorem
we prove that the density 1 of the union \(\bigcup_{s=0}^\infty C_s \) is the sum of the densities of the sets \(C_s \).

Theorem 2.2 We have
\[\sum_{s=0}^\infty \rho_s = 1 \]
(15)

Proof. We have (see (5) and (1))
\[\sum_{s=0}^\infty \rho_s = \frac{6}{\pi^2} \prod_p \left(1 + \frac{1}{p^2 - 1} \right) = \frac{6}{\pi^2} \prod_p \frac{1}{1 - 1/p^2} = 1 \]

The theorem is proved.

Let us consider the prime factorization of an positive integer \(n \). The number
of distinct primes in the prime factorization we denote $\omega(n)$ (see [1, Chapter XXII]), the number of primes in the prime factorization we denote $\Omega(n)$ (see [1, Chapter XXII]) and the number of primes with multiplicity (exponent) 1 we denote $a(n)$. The following formulae are well-known (see [1, Chapter XXII] and (3))

$$\sum_{n \leq x} \omega(n) = x \log \log x + Mx + o(x)$$

$$\sum_{n \leq x} \Omega(n) = x \log \log x + Bx + o(x)$$

where $B = M + \sum_p \frac{1}{p(p-1)}$. We also have

$$\sum_{n \leq x} a(n) = x \log \log x + Ax + o(x)$$

where $A = M - \sum_p \frac{1}{p^2}$. The proof is very simple, by equation (3) we have

$$\sum_{n \leq x} a(n) = \sum_{p \leq x} \left(\left\lfloor \frac{x}{p} \right\rfloor - \frac{x}{p^2} \right) = x \sum_{p \leq x} \frac{1}{p} - x \sum_{p \leq x} \frac{1}{p^2} + o(x)$$

$$= x \left(\log \log x + M + o(1) \right) - x \left(\sum_p \frac{1}{p^2} + o(1) \right) + o(x)$$

$$= x \log \log x + Ax + o(x)$$

Hence, the average order of the three functions $a(n)$, $\omega(n)$ and $\Omega(n)$ is log log n.

We say (see [1, Chapter XXII]) the normal order of $f(n)$ is $F(n)$ if and only if for all $\epsilon > 0$ there exists a set S_ϵ (depending of ϵ) with density 1 such that

$$(1 - \epsilon) F(n) < f(n) < (1 + \epsilon) F(n) \quad (n \in S_\epsilon)$$

It is well-known (see [1, Chapter XXII]) that the normal order of $\omega(n)$ is log log n and the normal order of $\Omega(n)$ is log log n. In the following theorem we prove that the normal order of $a(n)$ is also log log n.

Theorem 2.3 The normal order of $a(n)$ is log log n.

Proof. Let $\epsilon > 0$. There exists a set A_ϵ of density 1 such that

$$(1 - \epsilon) \log \log n < \omega(n) < (1 + \epsilon) \log \log n \quad (n \in A_\epsilon)$$

(16)

since the normal order of $\omega(n)$ is log log n. Hence $\omega(n) \to \infty$ on the set A_ϵ.
Let us consider the subset $C_\epsilon \subseteq A_\epsilon$ such that

$$1 - \epsilon \leq \frac{a(n)}{\omega(n)} \leq 1$$ \hspace{1cm} (17)

Now, let us consider the set $C_s (s \geq 0)$ with density $\rho_s > 0$ (Theorem 2.1 and equation (1)). The set $C_s \cap A_\epsilon$ also has density ρ_s. Besides, we have $a(n) = \omega(n) - s$, hence

$$\frac{a(n)}{\omega(n)} = \frac{\omega(n) - s}{\omega(n)} \rightarrow 1 \quad (n \in (C_s \cap A_\epsilon))$$

since $\omega(n) \rightarrow \infty$. Consequently, except by a finite set $B_s \subseteq (C_s \cap A_\epsilon)$ with n_s elements we have

$$1 - \epsilon \leq \frac{a(n)}{\omega(n)} \leq 1 \quad (n \in ((C_s \cap A_\epsilon) - B_s))$$

Let $\epsilon' > 0$. There exists r such that (Theorem 2.2)

$$\sum_{s=0}^{r} \rho_s \geq 1 - \frac{\epsilon'}{2}$$ \hspace{1cm} (18)

Let $\alpha(N)$ be the number of elements in the set C_ϵ not exceeding N and let $\beta_s(N)$ be the number of elements in the set $(C_s \cap A_\epsilon) - B_s$ not exceeding N, hence $\beta_s(N) = \rho_s N + o(N) - n_s$.

Now, we have

$$\frac{\alpha(N)}{N} \leq \frac{N}{N} = 1$$ \hspace{1cm} (19)

and (see (18))

$$\frac{\alpha(N)}{N} \geq \frac{\sum_{s=0}^{r} \beta_s(N)}{N} = \frac{\sum_{s=0}^{r} (\rho_s N + o(N) - n_s)}{N} = \left(\sum_{s=0}^{r} \rho_s\right) + o(1)$$

$$\geq 1 - \frac{\epsilon'}{2} - \frac{\epsilon'}{2} = 1 - \epsilon' \quad (N \geq N_{\epsilon'})$$ \hspace{1cm} (20)

Equations (19) and (20) give

$$\frac{\alpha(N)}{N} \rightarrow 1$$

since ϵ' can be arbitrarily small. That is, the subset C_ϵ has density 1. Now, in the subset C_ϵ we have (see (17) and (16))

$$(1 - 3\epsilon) \log \log n < (1 - \epsilon)^2 \log \log n < (1 - \epsilon)\omega(n) \leq a(n)$$

$$\leq \omega(n) < (1 + \epsilon) \log \log n < (1 + 3\epsilon) \log \log n$$
The theorem is proved.

Let \(b(n) \) be the number of primes in the prime factorization of \(n \) with multiplicity (or exponent) greater than 1. We have

\[
\sum_{n \leq x} b(n) = \sum_{p \leq x} \left\lfloor \frac{x}{p^2} \right\rfloor = Cx + o(x)
\]

where \(C = \sum_p \frac{1}{p^2} \).

Note that the intersection of a finite number of sets of density 1 is again a set of density 1 (the proof is very simple using the inclusion-exclusion principle and mathematical induction). Therefore in Theorem 2.3 we can take \(A_\epsilon \) of density 1 where the following two inequalities hold

\[
(1 - \epsilon) \log \log n < \omega(n) < (1 + \epsilon) \log \log n
\]

and consequently in the set \(C_\epsilon \) of density 1 (see the proof of theorem 2.3) hold (22), (23) and

\[
(1 - 3\epsilon) \log \log n < a(n) < (1 + 3\epsilon) \log \log n
\]

Note that

\[
a(n) + b(n) = \omega(n)
\]

Equations (25), (17) and (22) give us in the set \(C_\epsilon \) the inequality

\[
0 \leq b(n) < 2\epsilon \log \log n
\]

Consequently in the set \(C_\epsilon \) of density 1 hold (22), (23), (24) and (26).

Theorem 2.4 Let \(\epsilon > 0 \) an arbitrary but fixed real number. Let \(A_\epsilon(x) \) the number of positive integers \(c \) not exceeding \(x \) such that

\[
c < u(c)^{1+\epsilon}
\]

Then \(\lim_{x \to \infty} \frac{A_\epsilon(x)}{x} = 1 \). That is, the set of numbers \(c \) that satisfy inequality (27) has density 1.

Proof. From the definition of \(A_\epsilon(x) \) we have the trivial inequality

\[
\frac{A_\epsilon(x)}{x} \leq 1
\]
On the other hand, we have (see (9))

\[
Q_{qq_1^{r_1}...q_s^{r_s}}(x) = \frac{6}{\pi^2} \frac{q_1 \cdot \cdots \cdot q_s}{(q_1 + 1) \cdots (q_s + 1)} x^{r_1} \cdots q_s^{r_s} + o(x) = \rho_{q_1^{r_1}...q_s^{r_s}} x + o(x) \quad (29)
\]

The inequality

\[
c = qq_1^{r_1} \cdots q_s^{r_s} < u(c)^{1+\epsilon} = (qq_1 \cdots q_s)^{1+\epsilon}
\]
is equivalent to the inequality

\[
\frac{q_1^{r_1} \cdots q_s^{r_s}}{(q_1 \cdots q_s)^{1+\epsilon}} < q^\epsilon
\]

and since the squarefrees \(q \to \infty \) this inequality holds for all \(q \) except for a finite number \(n_1^{r_1} \cdots n_s^{r_s} \) of \(q \).

We have (see (15))

\[
\frac{6}{\pi^2} + \sum_{q_1^{r_1} \cdots q_s^{r_s}} \rho_{q_1^{r_1} \cdots q_s^{r_s}} = 1
\]

Therefore if \(\alpha > 0 \) there exists \(B \) such that

\[
\frac{6}{\pi^2} + \sum_{q_1^{r_1} \cdots q_s^{r_s} < B} \rho_{q_1^{r_1} \cdots q_s^{r_s}} \geq 1 - \alpha \quad (30)
\]

Consequently, we have (see (1), (29) and (30))

\[
A_r(x) \geq \frac{6}{\pi^2} x + o(x) + \sum_{q_1^{r_1} \cdots q_s^{r_s} < B} \left(\rho_{q_1^{r_1} \cdots q_s^{r_s}} x + o(x) - n_{q_1^{r_1} \cdots q_s^{r_s}} \right) = \left(\frac{6}{\pi^2} + \sum_{q_1^{r_1} \cdots q_s^{r_s} < B} \rho_{q_1^{r_1} \cdots q_s^{r_s}} \right) x + o(x) \geq (1 - \alpha) x + o(x)
\]

\[
\geq (1 - 2\alpha)x \quad (31)
\]

Equations (28) and (31) give

\[
1 - 2\alpha \leq \frac{A_r(x)}{x} \leq 1 \quad (x \geq x_\alpha)
\]

and equation (32) gives the limit \(\lim_{x \to \infty} \frac{A_r(x)}{x} = 1 \), since \(\alpha \) can be arbitrarily small. The theorem is proved.

The abc conjecture establish that if \(a, b \) and \(c \) are positive and relatively prime integers which satisfy the equation \(a + b = c \) then for any \(\epsilon > 0 \), with finitely many exceptions, we have that

\[
c < (u(abc))^{1+\epsilon}
\]

Theorem 2.4 implies the following corollary
Corollary 2.5 The set of numbers c such that the abc conjecture holds has density 1.

Proof. Inequality (27) implies inequality (33). The corollary is proved.

Acknowledgements. The author is very grateful to Universidad Nacional de Luján.

References

Received: February 19, 2018; Published: March 7, 2018