
International Mathematical Forum, Vol. 13, 2018, no. 2, 79 - 90
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/imf.2018.712102

Numerical Solutions for 2D Depth-averaged

Shallow Water Equations

Huda Altaie and Pierre Dreyfuss
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Abstract

This paper focuses on the development and evaluation of numer-
ical methods for the 2D depth-averaged shallow water equations by
proposing new techniques using an explicit centered finite difference
and Leap-Frog schemes with Robert- Asselin filter. First, an explicit
finite difference and leapfrog schemes are introduced which are effective
for modelling in oceanic. Secondly, a new algorithm is proposed for 2D
shallow water equations using structured grids. In order to make the
model efficient and stable, a new approach is proposed for the stability
analysis of structured numerical schemes for shallow water equations.

Open boundary conditions were applied at the boundaries and im-
plement numerical simulation is conducted by computer programming
using Matlab and Fortran. The performance of the proposed a new
technique was tested on a number of numerical examples and applied
in tsunami model. The numerical results show that the model more
accurately by using these techniques.

Keywords: Explicit finite difference method, Leapfrog method, 2D Shal-
low water equations, Nnumerical fluid dynamics

1 Introduction

The shallow water equations (SWEs) describes the development of a hydro-
static homogeneous with constant density for an incompressible fluid in re-
sponse to gravitational and rotational accelerations and they are derived from
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the principles of conservation of mass and conservation of momentum. This
model is one of the simplest forms of the motion equations that can be used
to describe the horizontal structure of an atmosphere and ocean that model
the propagation of disturbances in fluids. This model is typically used to
model river and lake hydrodynamics, tidal flows, tsunami propagation as well
as coastal circulation [6],[1],[10],[2].

The shallow water equations are used when the horizontal scale of the flow
is much smaller than the depth of the fluid. The main simplification that
underlies the shallow water equations that hydrostatic balance between the
gravity and pressure gradient in vertical direction implying that the vertical
acceleration is negligible therefore horizontal flow is independent of height.
However, the vertical velocity is not necessarily zero vertically integrating .
Vertical velocity is allowed to be removed from the equations [5],[12].

Numerical methods have become well established as tools for solving shal-
low water equations . There have been various numerical methods to simulate
the SWEs such as the finite difference scheme [3].

In fluid dynamics, fluid flow is known as the Navier-Stocks equation. The
2D shallow water models are a good approximation of the fluid motion equa-
tion when fluid density is homogeneous and depth is small in comparison to
characteristic horizontal distance.

Also, shallow water equations is very commonly used for the numerical
simulation of various geophysical shallow-water flows such as rivers, lakes or
coastal areas, rainfall runoff from agricultural fields or even atmosphere or
avalanches when completed with appropriate source terms. A numerical study
of hydrodynamic surface wave propagation is a very difficult problem through
the phenomena that represent (giant waves, Tsunamis, ..etc).

This paper is organized as follows: The mathematical description of the 2D
depth-averaged shallow water equations are introduced in Section 2 . A new
algorithm for the implementation of 2D depth-averaged shallow water equa-
tions using center finite difference and leapfrog schemes with Robert-Asselin
filter has been constructed in section 3.

In section 4, Some of the numerical test are presented using the center finite
difference in space and leapfrog schemes in time with Robert-Asselin filter ,
summary, and conclusion are given in section 5.

2 Model Description

2.1 Governing equation ( Shallow water equations )

Consider the 2D depth-averaged (sometimes called depth-integrated) shallow
water equations in Cartesian coordinate are obtained by integration the 3D
Navier-Stokes equations over the flow depth which consists of the continuity
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equation and momentum conservation equations as follows:[4]

∂η

∂t
+
∂Hu

∂x
+
∂Hv

∂y
= 0 (1)

∂Hu

∂t
+
∂Hu2

∂x
+
∂Huv

∂y
= −gH ∂η

∂x
+ ν

[
∂

∂x
(H

∂u

∂x
) +

∂

∂y
(H

∂u

∂y
)

]
+ fHv +

τwu
ρ0
− τ bu
ρ0

(2)

∂Hv

∂t
+
∂Hvu

∂y
+
∂Hv2

∂y
= −gH ∂η

∂y
+ ν

[
∂

∂x
(H

∂v

∂x
) +

∂

∂y
(H

∂v

∂y
)

]
− fHu+

τwv
ρ0
− τ bv
ρ0
(3)

Here x, y are the horizontal coordinates, t is the time, u = u(x, y,t) is
the depth-integrated velocity in the x direction. v = v (x, y,t) is the depth-
integrated velocity in the y direction. H = H(x, y,t) is the depth from the
surface level to the bottom .ν is the horizontal turbulent viscosity , g stains for
the gravity acceleration , f = 1.01 × 10−4rad/s is the Coriolis frequency at
42◦ of latitude, ρ0 = 1033kg/m3 is the water mean density , η is the water
level relative to rest( water surface elevation ) , τwu is the bottom stress zonal
component and τ bu is the wind stress zonal component. The above equations
have the following conditions:

1. Water is incompressible.
2. Density variations are important only for buoyancy forces and considered

uniform in the vertical direction.
3. Vertical accelerations can be neglected.
4. Eddy viscosity is considered to be zero.
5. Turbulent diffusion can be described by turbulent exchange coefficients.
6. Flow is quasi-hydrostatic.
The bottom stress is represents[9]:

τ bu = ρ0CDub
2

√
u2b + v2b

where CD is the bottom drag coefficient and ub and vb are the zonal and
meridional velocity bottom velocity components. The bottom drag coefficient
is represents:

CD = (k/ln(
zD + z0
z0

))

where zD is the distance to the bottom , z0 = 0.002m is a typical roughness
length and the Von Karman constant is set to k = 0.4.

Also the wind stress is represents[9]:

τwu = ρaCaub
2

√
u2b + v2b

where ρa = 1.25kg/m3 is the air density , Ca is an air drag coefficient and
u10 and v10 is the air speed at 10m above the water surface .
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3 Computational algorithm

In this section, we propose a new algorithm for solving the 2D depth-averaged
shallow water equations as follows:

1. Input model data and set initial data.The values un−1
i,j ,vn−1

i,j and ηn−1
i,j are

known .At time t = n∆t = 0 (that is n = 0, and t = n4 t also u0i,j = v0i,j =
0, H0

i,j = hi,j) on the open boundary H0
i,j = hi,j + η0i,j

2. Update model time to level (n + 1), so t = (n + 1) 4 t. Solve the
continuity equation to find ηn+1 using uni,j, v

n
i,j and Hn+1.

3. Update model time to level (n + 1). Solve the momentum equations
forun+1 and vn+1 using Hn+1 .

4.Apply Robert-Asselien filter for u,v andη for each time step.

5. Return to step 2 and continue until the period of the simulation is
completed.

3.1 Accuracy and stability(The CFL Condition)

The Courant number CFL condition for depth-averaged 2D shallow
water equations is defined as follows:[7]
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Using the stability condition CFL< 1 in above equation .The following
stability criterion is obtained for the optimal time step

4t ≤ 4x4 y(√
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- Where c =
√
gH is the magnitude of the velocity (whose dimension is

length/time).

- ∆t is the time step (whose dimension is time).

- ∆x is the length interval (whose dimension is length).

4 Results examples

In this section, we discuss the results of some examples for the 2D depth-
averaged non-linear shallow water equations using an explicit finite difference
and leapfrog schemes with Robert-Asselin filtering in time at different cases.
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4.1 Example 1

In this example, we use an explicit center finite difference scheme in space
and leapfrog scheme in time with Roberts - Asselin filtering to approximate a
reduced gravity 2D depth-averaged nonlinear equations (1-3) in a rectangular
domain Ω which has no bottom stress, wind stress, f=0 and viscosity horizontal
in x-axis and y-axis =0 by using a Cartesian coordinate system,Ω reads Ω =
[0, Lx]× [0, Ly]

Initial condition:

Initially, the water is at rest with a water drop of 10 and a zero flow
everywhere. i.e no slip boundary conditions: u = v = 0 on ∂Ω and

η(i, j) = 10 ∗ exp((−5((x)2 + (y)2))

u(x, y, t = 0) = 0, v(x, y, t = 0) = 0

Boundary condition:

Here, Reflexive boundary conditions were implemented at the boundaries
with CFL condition 0.13

Numerical parameters:

The computational domain is discretized by a grid whosesize is regular.
Numerical values of the parameters are chosen as follows: Lx = Ly = 200,
dx=0.10 , dy=0.10 (grid length) and the time steps 4t=0.01 sec at time
t=50,100,200,...,1000 hours .This model is discretized on an Arakawa C grid
, the water height η being located at the center of the cells and the velocity
components at the center of the cell edges.

Results and discussion:

First of all, we tested the computational stability and accuracy of this
system of equations.The time integrations were performed for 10000 hours,
both with an explicite center finite difference and leap-frog schemes (4t =
0.01sec). The calculations were stable

The following figures show the approximate solution , the global relative
error and compare the solution for the free surface, u-velocity and v-velocity
for the 2D nonlinear shallow water equations.
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Figure 1: Approximate solution for the 2D shallow water equations

Figure 2: Global relative error for the free surface in nonlinear SWEs

Figure 3: Solution for the free surface ,u velocity and v velocity in nonlinear
SWEs at 100 days

4.2 Example 2 :

In this example, we use an explicit center finite difference scheme in space
and leapfrog scheme in time with Asselin-Roberts filtering to approximate a
reduced gravity 2D depth-averaged linear equations in a rectangular domain
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Ω, which has the terms ∂u2

∂x
= 0 ∂v2
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= 0 , ∂uv
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= 0, ∂u2

∂y
= 0 ∂v2

∂x
= 0

and f=0, using a Cartesian coordinate system,Ω reads Ω = [0, Lx]× [0, Ly]

Initial condition:

Initially the water is at rest with a water drop of 1.6 and a zero flow
everywhere.

η(i, j) = 10 ∗ exp((−((i− i0)2 + (j − j0)2))/(k2))

Where i0=15, j0=15 and k=6

Boundary condition:

Here,Dirchelet boundary conditions were implemented at the boundaries
with CFL condition 0.13

Numerical parameters:

The computational domain is discretized by a grid whose size is regular.
Numerical values of the parameters are chosen as follows: Lx = Ly = 200,
dx=0.10 , dy=0.10 (grid length) and the time steps 4t = 0.01s at time
t=100,200...hours..

Results and discussion:

First of all,we tested the computational stability and accuracy of this sys-
tem of equations.The time integrations were performed for 1000 hours, both
with an explicite center finite difference and leap-frog schemes (4t = 0.01sec).
The calculations were stable

The following figures show the solution for free surface , global relative
error and compare the approximate solution for free surface,u-velocity and
v-velocity in 2D linear shallow water equations

Figure 4: Global relative error for the free surface in linear SWEs
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Figure 5: Compare the approximate solution for free surface in linear SWEs
at 100 days

Figure 6: Approximate solution in linear SWEs

4.3 Application for the 2D depth-averaged non - linear
shallow water equations

In this section, we introduce some applications for the 2D depth-averaged non-
linear shallow water equations obtained by considerning the Reynolds averaged
3D Navier-Stokes equations for incompressible fluid neglecting viscosity , wind
stresses and the coriolis force f terms using center finite difference scheme in
space and leapfrog scheme in time with Robert- Assielin filter to approximate
this system .
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Initial condition:

Initially, it is assumed that the motion in the domain is observed from an
initial state of rest, so u(x, y, 0) = v(x, y, 0) = 0 and at the begining of a
simulation start, this initial water surface displacement is intrpolated into all
sub-level grids([11],[8]).

Boundary condition:

Here, radaition open boundary conditions were implemented at the bound-
aries with CFL condition 0.7.

Example 1 :

In this example, we use system of 2D depth- averged linear shallow water
equations( we can called system of 2D reduced gravity ) with wind stress= 0
and non-rotated f=0 at time t= 1000, 2000,..., 5000 min and the numerical
values of the parameters are chosen as follows: Lx = Ly = 200, nx=120,
ny=120, dx=9, dy=9 (grid length size), and time steps t = 2.5e−2, wave
lenght .5m and water depth 10m.

First of all,we tested the computational stability and accuracy of this sys-
tem of equations.The time integrations were performed for 5000 min both with
an explicit center finite difference and leap-frog schemes (4t = 2.5e−2). The
calculations were stable

The first figure compares the approximate solution for the free surface,u-
velocity and v-velocity and the second figure shows relative error l2 in 2D linear
shallow water equations .

Figure 7: Compare the approximate solution between free surface , u-velocity
and v-velocity in linear SWEs
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Figure 8: Compare the relative errorl2 for the free surface,u-velocity and v-
velocity in linear SWEs

Example 2:

In this example, we introduce some application for the 2D depth-averaged
nonlinear shallow water equations obtained by considering the Reynolds aver-
aged Navier-Stokes equations for incompressible fluid neglecting viscosity, wind
stresses, and the Coriolis force f terms. For this example, we use the center
finite difference scheme in space and leapfrog scheme in time with Robert-
Asselin filtering to approximate this system.

Initial condition:

Initially, it is assumed that the motion in the domain is observed from
an initial state of rest, so u(x, y, 0) = v(x, y, 0) = 0 and at the begining of
a simulationstart, this initial water surface displacement is intrpolated into
all sub-level grids.A full description of initial, boundary condition and model
configuration can be found in ([11],[8]).

Boundary condition:

Here, radaition open boundary conditions were implemented at the bound-
aries with CFL condition 0.7. In this example, we use system of 2D depth-
averged nonlinear shallow water equations (ν = 0, wind stress =0, non-rotated
f=0) at time t= 1000, 2000,...,5000 min and the numerical values of the param-
eters are chosen as follows: nx=120, ny=120, dx=9, dy=9 (grid length size),
and time steps t = 2.5e−2, wave lenght .5m and water depth 10m.

The first figure compares the approximate solution for the free surface,u-
velocity and v-velocity and the second figure shows the relative errorl2 in 2D
nonlinear shallow water equations.
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Figure 9: Compare approximate solution between free surface , u-velocity and
v-velocity in nonlinear SWEs

Figure 10: Compare the relative error l2 between free surface , u-velocity and
v-velocity in nonlinear SWEs

4.4 Sumary and conclusion

In our work, we assessed the performance of a new technique for 2D shallow
water equation, and we have implemented a new algorithm using center fi-
nite difference and Leapfrog scheme with Asselin-Robert filtering by using the
Dirichlet open boundary conditions.

The performance of the model has tested some examples of the tsunami
model and results generated were of high accuracy, with the global relative
errorl2 . The results demonstrate the applicability and benefits of this tech-
nique.



90 Huda Altaie and Pierre Dreyfuss

References

[1] P.C. Sinha U.C. Mohnaty A.D. Rao B. Johns, S.K. Dube, The simulation
of a continuously deforming lateral boundary in problems involving the
shallow water equations, Comput. Fluids, 10 (1982), no. 2, 105-116.
https://doi.org/10.1016/0045-7930(82)90002-0

[2] Prasada Rao, A moving domain formulation for modeling two dimensional
open channel transient flows, Appl. Math. Comput., 154 (2004), 769-781.
https://doi.org/10.1016/s0096-3003(03)00749-5

[3] V. Casulli Semi implicit finite difference methods for the two -dimensional
shallow water equation, Journal of Computational Physics, 86 (1990), 56-
74. https://doi.org/10.1016/0021-9991(90)90091-e

[4] B. Cushman-Roisin, Inroduction to Geophysical Fluid Dynamics, Oxford,
Elsevier, 2011.

[5] J.M. Beckers and B. Cushman-Roisin, Introduction to geophysical fluid
dynamics, Chapter in Geostrophic Flows and Vorticity Dynamics, Aca-
demic Press Elsevier, 2009.

[6] B. Johns, Numerical integration of the shallow water equations over a
sloping shelf, Int. J. Numer. Methods Fluids, 2 (1982), 253-261.
https://doi.org/10.1002/fld.1650020304

[7] Carol Anne Clayson, Lakshmi H. Kantha, Numerical Models of Oceans
and Oceanic Processe Acadmic Press, 2000.

[8] S-B. Woo, P. L.-F. Liu and Y-S Cho, Computer programs for tsunami
propagation and inundation, 1998.

[9] Jakobson J. B.-Burchard H. Jacob Vested H. Pietrzak, J. and Pe- tersen
O. A three-dimensional hydrostatic model for coastal and ocean modelling
using a generalised topography following co-ordinate system, Ocean Mod-
elling, 4 (2002), no. 2, 173-205.
https://doi.org/10.1016/s1463-5003(01)00016-6

[10] M.H. Choudhary T. Molls, Depth averaged open channel flow model, J.
Hydraul. Eng., 121 (1995), no. 6, 453-465.
https://doi.org/10.1061/(asce)0733-9429(1995)121:6(453)

[11] X. Wang, Manual of Comcot., Cornell University, 2007.

[12] W.Y. Tan, Shallow Water Hydrodynamics, Elsevier: New York, 1992.

Received: December 29, 2017; Published: January 22, 2018


