A Note on ∗-Derivations of Prime ∗-Rings

Kyung Ho Kim
Department of Mathematics
Korea National University of Transportation
Chungju 380-702, Korea

Yong Hoon Lee
Department of Mathematics, Dankook University
Cheonan 330-714, Korea

Abstract
The aim of the present paper is to establish some results involving ∗-derivations in ∗-rings and investigate the commutativity of prime ∗-rings admitting ∗-derivations of R satisfying certain identities and some related results have also been discussed.

Mathematics Subject Classification: Primary 16Y30

Keywords: ∗-ring, ∗-derivation, prime, 2-torsion free, commutative

1 Introduction
Over the last few decades, several authors have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R. The first result in this direction is due to E. C. Posner [8] who proved that if a ring R admits a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R is commutative. This result was subsequently, refined and extended by a number of authors. In [7], Bresar and Vuckman showed that a prime ring must be commutative if it admits a nonzero left derivation. Recently, many authors have obtained commutativity theorems for prime and
semiprime rings admitting derivation, generalized derivation. Furthermore, Bresar and Vukman [5] studied the notions of a \(\ast \)-derivation and a Jordan \(\ast \)-derivation of \(R \). The aim of the present paper is to establish some results involving \(\ast \)-derivations in \(\ast \)-rings and investigate the commutativity of prime \(\ast \)-rings admitting \(\ast \)-derivations of \(R \) satisfying certain identities and some related results have also been discussed.

2 Preliminaries

Throughout \(R \) will represent an associative ring with center \(Z(R) \). For all \(x, y \in R \), as a usual commutator, we shall write \([x, y] = xy - yx \), and \(x \circ y = xy + yx \). Also, we make use of the following two basic identities without any specific mention:

\[
\begin{align*}
 x \circ (yz) &= (x \circ y)z - y[x, z] = y(x \circ z) + [x, y]z \\
 (xy) \circ z &= x(y \circ z) - [x, z]y = (x \circ z)y + x[y, z] \\
 [xy, z] &= x[y, z] + [x, z]y, \quad [x, yz] = y[x, z] + [x, y]z.
\end{align*}
\]

Let \(R \) is a ring. Then \(R \) is prime if \(aRb = \{0\} \) implies \(a = 0 \) or \(b = 0 \). An additive mapping \(d : R \to R \) is called a derivation if \(d(xy) = d(x)y + xd(y) \) holds for all \(x, y \in R \). An additive mapping \(x \to x^\ast \) of \(R \) into itself is called an involution if the following conditions are satisfied (i) \((xy)^\ast = y^\ast x^\ast \) (ii) \((x^\ast)^\ast = x \) for all \(x, y \in R \). A ring equipped with an involution is called an \(\ast \)-ring or ring with involution. Let \(R \) be a \(\ast \)-ring. An additive mapping \(d : R \to R \) is called an \(\ast \)-derivation if \(d(xy) = d(x)y^\ast + xd(y) \) holds for all \(x, y \in R \). An additive mapping \(d : R \to R \) is called a reverse \(\ast \)-derivation if \(d(xy) = d(y)x^\ast + xd(x) \) holds for all \(x, y \in R \). An additive mapping \(F : R \to R \) is called a generalized derivation if there exists a derivation \(d \) such that \(F(xy) = F(x)y + xd(y) \) for all \(x, y \in R \). Let \(R \) be an \(\ast \)-ring. An additive mapping \(F : R \to R \) is called a generalized \(\ast \)-derivation if there exists an \(\ast \)-derivation such that \(F(xy) = F(x)y^\ast + xd(y) \) for all \(x, y \in R \).

3 \(\ast \)-derivations of prime \(\ast \)-rings

Theorem 3.1 Let \(R \) be a semiprime \(\ast \)-ring. If \(R \) admits an \(\ast \)-derivation \(d \) of \(R \), then \(d \) maps from \(R \) to \(Z(R) \).

Proof. By hypothesis, we have

\[
d(xy) = d(x)y^\ast + xd(y), \quad \forall \ x, y \in R,
\]
Replacing y by yz in (1), we have
\[d(xyz) = d(x)z^*y^* + xd(y)z^* + xyd(z), \quad \forall \ x, y, z \in R. \quad (2) \]

On the other hand,
\[d(xyz) = d(xy(z)) = d(x)y^*z^* + xd(y)z^* + xyd(z), \quad \forall \ x, y, z \in R. \quad (3) \]

Combining (2) with (3), we have $d(x)[y^*, z^*] = 0$ for all $x, y, z \in R$. Substituting y^* for y and z^* for z in this relation, we have $d(x)[y, z] = 0$ for all $x, y, z \in R$. Taking $yd(x)$ instead of y in the last relation, we have
\[d(x)y[d(x), z] = 0, \quad \forall \ x, y, z \in R. \quad (4) \]

Multiplying the left side of (4) by $zd(x)$, we have
\[zd(x)d(x)y[d(x), z] = 0, \quad \forall \ x, y, z \in R. \quad (5) \]

Again, multiplying the left side of (4) by $d(x)z$, we have
\[d(x)zd(x)y[d(x), z] = 0, \quad \forall \ x, y, z \in R. \quad (6) \]

Subtracting (6) from (5), we have $[d(x), z]d(x)y[d(x), z] = 0$, Hence
\[[d(x), z]R[d(x), z] = \{0\} \]

for all $x, z \in R$. Since R is semiprime, we have $[d(x), z] = 0$ for all $x, z \in R$. Therefore, d is a mapping from R into $Z(R)$.

Theorem 3.2 Let R be a semiprime $*$-ring. If $T : R \to R$ is an additive mapping such that $T(xy) = T(x)y^*$ for all $x, y \in R$, then T maps from R to $Z(R)$.

Proof. By hypothesis, we have
\[T(xy) = T(x)y^*, \quad \forall \ x, y \in R. \quad (7) \]

Now
\[T(xyz) = T(x(zy)) = T(x)(zy)^* = T(x)y^*z^*, \quad \forall \ x, y, z \in R. \quad (8) \]

On the other hand, we have
\[T(xzy) = T((xz)y) = T(xz)y^* = T(x)z^*y^*, \quad \forall \ x, y, z \in R. \quad (9) \]

Combining (8) with (9), we get
\[T(x)[z^*, y^*] = 0, \quad \forall \ x, y, z \in R. \quad (10) \]
Replacing z by z^* and y by y^* in (10), we have

$$T(x)[z, y] = 0, \quad \forall \ x, y, z \in R. \quad (11)$$

Taking $zT(x)$ instead of z in (11), we have

$$T(x)z[T(x), y] = 0, \quad \forall \ x, y, z \in R. \quad (12)$$

Multiplying the left side by $yT(x)$ in (12), we obtain

$$yT(x)T(x)z[T(x), y] = 0, \quad \forall \ x, y, z \in R. \quad (13)$$

Multiplying the left side by $T(x)y$ in (12), we obtain

$$T(x)yT(x)z[T(x), y] = 0, \quad \forall \ x, y, z \in R. \quad (14)$$

Subtracting (14) from (13), we have $[T(x), y]T(x)z[T(x), y] = 0$, which implies that $[T(x), y]R[T(x), y] = \{0\}$ for all $x, y \in R$. Since R is semiprime, we have $[T(x), y] = 0$ for all $x, y \in R$. Therefore, T is a mapping from R into $Z(R)$.

Theorem 3.3 Let R be a prime $*$-ring. If R admits an $*$-derivation d of R such that $d(x) \neq x$ and $d(xy) = d(x)d(y)$ for all $x, y \in R$, then $d = 0$.

Proof. By hypothesis, we have

$$d(xy) = d(x)y^* + xd(y) = d(x)d(y), \quad \forall \ x, y \in R. \quad (15)$$

Replacing x by xz in (15), we have

$$d(x)d(z)y^* + xzd(y) = d(x)d(z)d(y) = d(x)d(zy) = d(x)(d(z)y^* + zd(y)),$$

which implies that $(x - d(x))zd(y) = 0$ for all $x, y, z \in R$. Hence we have $(x - d(x))Rd(y) = \{0\}$ for all $x, y \in R$. Since R is prime, we have $x - d(x) = 0$ or $d(y) = 0$ for all $x, y \in R$. But $d(x) \neq x$, and so $d(y) = 0$ for all $y \in R$, that is, $d = 0$.

Theorem 3.4 Let R be a prime $*$-ring. If R admits a $*$-derivation d of R such that $d(x) \neq x^*$ for all $x \in R$ and $d(xy) = d(y)d(x)$ for all $x, y \in R$, then $d = 0$.

Proof. By hypothesis, we have

$$d(xy) = d(x)y^* + xd(y) = d(y)d(x), \quad \forall \ x, y \in R. \quad (16)$$

Replacing y by xy in (16), we have

$$d(xy)x^* + xd(y)d(x) = d(xy)d(x) = (d(xy)y^* + xd(y))d(x),$$

which implies that $d(xy)^* - d(x))^* = 0$ for all $x, y \in R$. Hence we have $d(xy)^* - d(x))^* = \{0\}$ for all $x \in R$. Since R is prime, we have $x^* - d(x) = 0$ or $d(x) = 0$ for all $x \in R$. But $d(x) \neq x^*$, and so $d(x) = 0$ for all $x \in R$, that is, $d = 0$.
Theorem 3.5 Let R be a prime $*$-ring and $a \in R$. If R admits an $*$-derivation d of R and $[d(x), a] = 0$, then $d(a) = 0$ or $a \in Z(R)$.

Proof. By hypothesis, we have

$$[d(xy), a] = 0, \ \forall \ x, y \in R,$$

which implies that $[d(x)y^* + xd(y), a] = 0$ for all $x, y \in R$. That is,

$$d(x)[y^*, a] + [x, a]d(y) = 0, \ \forall \ x, y^* \in R. \quad (18)$$

Replacing x by a in (18), we have $d(a)[y^*, a] = 0$ for all $y \in R$. Substituting y^* for y in this relation, we have $d(a)[y, a] = 0$ for all $y \in R$. Again, taking yx instead of y in the last relation, we obtain

$$d(a)y[x, a] = 0, \ \forall \ x, y \in R. \quad (19)$$

This implies that $d(a)R[x, a] = \{0\}$ for all $x \in R$. Since R is prime, we have $d(a) = 0$ or $a \in Z(R)$.

Theorem 3.6 Let R be a semiprime $*$-ring. If R admits an reverse $*$-derivation d of R, then $[d(x), z] = 0$ for all $x, z \in R$.

Proof. By hypothesis, we have

$$d(xy) = d(y)x^* + yd(x), \ \forall \ x, y \in R. \quad (20)$$

Replacing x by xz in (20), we have

$$d((xz)y) = d(y)(xz)^* + yd(xz)$$

$$= d(y)z^*x^* + y(d(z)x^* + zd(x))$$

$$= d(y)z^*x^* + yd(z)x^* + yzd(x) \quad (21)$$

for every $x, y, z \in R$. On the other hand, we have

$$d(x(zy)) = d(zy)x^* + zyd(x)$$

$$= (d(y)z^* + yd(z))x^* + zyd(x)$$

$$= d(y)z^*x^* + yd(z)x^* + zyd(x) \quad (22)$$

for every $x, y, z \in R$. Comparing (21) and (22), we get $[y, z]d(x) = 0$ for all $x, y, z \in R$. Substituting $d(x)y$ for y in this relation, we obtain

$$[d(x), z]yd(x) = 0, \ \forall \ x, y, z \in R. \quad (23)$$
Multiplying the right side of (23) by \(zd(x) \), we have
\[
[d(x), z]yd(x)zd(x) = 0, \quad \forall \ x, y, z \in R.
\] (24)

Multiplying the right side of (23) by \(d(x)z \), we have
\[
[d(x), z]yd(x)d(x)z = 0, \quad \forall \ x, y, z \in R.
\] (25)

Subtracting (25) from (24), we have
\[
[d(x), z]yd(x)d(x)z = 0, \quad \forall \ x, y, z \in R.
\]

This implies that \([d(x), z] = 0\) for all \(x, z \in R \).

Theorem 3.7 Let \(R \) be a prime \(*\)-ring. If \(R \) admits an \(*\)-derivation \(d \) of \(R \) such that \(d([x, y]) = 0 \) for all \(x, y \in R \), then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have
\[
d([x, y]) = 0, \quad \forall \ x, y \in R.
\] (26)

Replacing \(x \) by \(xy \) in (26), we have
\[
d([x, y]y) = d([x, y])y^* + [x, y]d(y) = 0
\] for all \(x, y \in R \). By the relation (26), we have \([x, y]d(y) = 0\) for all \(x, y \in R \).

Substituting \(sx \) for \(x \) in this relation, we have \([s, y]d(y) = 0\) for all \(s, y \in R \). This implies that \([s, y] = 0\) for all \(s, y \in R \).

Theorem 3.8 Let \(R \) be a prime \(*\)-ring. If \(R \) admits an \(*\)-derivation \(d \) of \(R \) such that \(d(x \circ y) = 0 \) for all \(x, y \in R \), then \(d = 0 \) or \(R \) is commutative.

Proof. By hypothesis, we have
\[
d(x \circ y) = 0, \quad \forall \ x, y \in R.
\] (27)

Replacing \(x \) by \(xy \) in (27), we have
\[
d((x \circ y)y) = d(x \circ y)y^* + (x \circ y)d(y) = 0
\] for all \(x, y \in R \). By the relation (27), we have \((x \circ y)d(y) = 0\) for all \(x, y \in R \).

Substituting \(sy \) for \(x \) in this relation, we have \((s \circ y)yd(y) = 0\) for all \(y, s \in R \).

This implies that \((s \circ y)Rd(y) = \{0\}\) for all \(s, y \in R \). Since \(R \) is prime, we
have \((s \circ y) = 0\) or \(d(y) = 0\) for all \(s, y \in R\). Let \(K = \{y \in R | d(y) = 0\}\) and
\(L = \{y \in R | s \circ y = 0, \forall s \in R\}\). Then \(K\) and \(L\) are both additive subgroups and \(K \cup L = R\), but \((R, +)\) is not union of two its proper subgroups, which implies that either \(K = R\) or \(L = R\). In the former case, we have \(d = 0\). On the other hand, if \(L = R\), then we have \(s \circ y = 0\) for all \(s, y \in R\). Replacing \(s\) by \(sz\) in the last relation, we obtain \(s[z, y] = 0\) for all \(s, y, z \in R\). That is, \(R[z, y] = \{0\}\). This implies that \(xR[z, y] = \{0\}\) for \(0 \neq x \in R\). Since \(R\) is prime, we have \([z, y] = \{0\}\) for all \(y, z \in R\), which means that \(R\) is commutative.

Theorem 3.9 Let \(R\) be a prime \(*\)-ring. If \(R\) admits an \(*\)-derivation \(d\) of \(R\) such that \(d(x) \circ y = 0\) for all \(x, y \in R\), then \(d = 0\) or \(R\) is commutative.

Proof. By hypothesis, we have
\[
d(x) \circ y = 0, \forall x, y \in R.
\]
Replacing \(x\) by \(xz\) in (28), we have
\[
(d(x) \circ y)z^* + d(x)[z^*, y] + x(d(z) \circ y) - [x, y]d(z) = 0
\]
for all \(x, y, z \in R\). By using the relation (28), we obtain \(d(x)[z^*, y] - [x, y]d(z) = 0\) for all \(x, y, z \in R\). Substituting \(x\) for \(y\) in this relation, we get \(d(x)[z^*, x] = 0\) for all \(x, z \in R\). Again, replacing \(z\) by \(z^*\) in the last relation, we have \(d(x)[z, x] = 0\) for all \(x, y \in R\).

Using the arguments of the last part in proof of Theorem 3.7, we get the required result.

Theorem 3.10 Let \(R\) be a prime \(*\)-ring. If \(R\) admits an \(*\)-derivation \(d\) of \(R\) such that \([d(x), y] = [x, y]\) for all \(x, y \in R\), then \(d = 0\) or \(R\) is commutative.

Proof. By hypothesis, we have
\[
[d(x), y] = [x, y], \forall x, y \in R.
\]
Replacing \(x\) by \(xz\) in (29), we have \([d(xz), y] = [xz, y]\) for all \(x, y, z \in R\), which implies that \([d(x)z^*, y] + [zd(z), y] = x[z, y] + [x, y]z\) for all \(x, y, z \in R\). That is, \(d(x)[z^*, y] + [d(x), y]z^* + x[d(z), y] + [x, y]d(z) = x[z, y] + [x, y]z\) for all \(x, y, z \in R\). Substituting \(y\) for \(x\) in the above relation and using (29), we have
\[
d(x)[z^*, y] = 0 \forall x, y, z \in R.
\]
Again, replacing \(y\) by \(yx\) in (30), we have \(d(x)y[z^*, x] = 0\) for all \(x, y, z \in R\). Hence \(d(x)R[z^*, x] = \{0\}\) for all \(x, z \in R\). Since \(R\) is prime, we have \(d(x) = 0\) or \([z^*, x] = 0\) for all \(x, z \in R\).

Using the arguments of the last part in proof of Theorem 3.7, we get the required result.
References

Received: February 9, 2017; Published: March 16, 2017