A Note on UU Rings

Peter V. Danchev

Mathematical Department, Plovdiv University, Bulgaria

Copyright © 2017 Peter V. Danchev. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A give a new simpler proof of the following result due to Danchev-Lam (Publ. Math. Debrecen, 2016): A ring R has only unipotent units if, and only if, 2 is a nilpotent in R and the unit group $U(R)$ is a 2-group.

Mathematics Subject Classification: 16S34; 16U60

Keywords: Nilpotents, Units, Groups

1. Introduction

All our rings R are associative and unital as their unit groups are denoted by $U(R)$.

Mimicking Călugăreanu, one states the following notion:

Definition 1.1. A ring is called UU if each its unit is unipotent, that is, the sum of 1 and a nilpotent.

In [3] was given a systematic exploration of these rings and, resulting, a necessary and sufficient condition was established when an arbitrary ring is a UU ring. The purpose of this short note is to demonstrate a new proof of the aforementioned criterion. This will be done in the upcoming section.

2. The Theorem

Our method of proof is based on two ideas from [1] and [2], thus considerably simplifying the proof given in [3]. However, it is stated there in a more conceptual form. And so, before doing that, we need the next simple but useful tools:
Fact 1. ([1, Proposition 2.29]) A ring R of char(R) = 2 is a UU ring if and only if $U(R)$ is a 2-group.

Fact 2. ([3, Theorem 2.4(1)]) For any nil-ideal $I \triangleleft R$, the ring R is UU if, and only if, the factor-ring R/I is UU.

Fact 3. (Folklore) For any nil-ideal I of the ring R the next group isomorphism holds:

$$U(R)/(1+I) \cong U(R/I).$$

Indeed, since I is nil and so $1+I \leq U(R)$, the natural map $\varphi : R \to R/I$ can be restricted to the surjective homomorphism $\varphi_{[U(R) : U(R) \to U(R/I)}$ with kernel $1+I$. We further just need to apply the classical Homomorphism's Theorem to get the desired relation after all.

We are now ready to proceed by proving our main statement.

Theorem 2.1. A ring R is UU if, and only if, char(R) is a power of 2 and $U(R)$ is a 2-group.

Proof. "Necessity". Since by definition $-1 \in 1 + \text{Nil}(R)$, it must be that $2 \in \text{Nil}(R)$, so that $2^t = 0$ in R and thus char(R) = 2^t for some $t \in \mathbb{N}$. Setting $I = 2R$, one sees that I is a nil-ideal of R with $I^t = 2^{t-1}I = \{0\}$. In view of Fact 2 it follows that R/I is a UU ring of characteristic 2 and this, accomplished with Fact 1, both assure that $U(R/I)$ is a 2-group. However, we claim that $1+I$ is a bounded 2-group (compare with [2, Theorem 2.3]). In fact, $(1+I)^{2^t} = 1 + I^{2^t} = 1 + (2R)^{2^t} = \{1\}$. This follows because for any $z \in R$ we write that $(1+2z)^{2^t} = \sum_{j=0}^{2^t} C_j^{2^t} 2^j z^j = 1$, where $C_j^{2^t}$ is the binomial coefficient of 2^t over j, and also calculate that the integer $C_j^{2^t} 2^j$ is divisible by the integer 2^t whenever $t \geq 0$ and $1 \leq j \leq t$. To verify the last assertion, for an arbitrary binomial coefficient C_i it is true the recurrent equality $C_i = \frac{n}{i} C_{i-1}^{n-1}$, whence one writes that $C_j^{2^t} 2^j = 2^t \frac{j}{j} C_{j-1}^{2^t-1}$. Furthermore, suppose that $j = 2^k m$, where $(2, m) = 1$ and $0 \leq k < j$ because $j \geq 2^k > k$. Consequently, $C_j^{2^t} 2^j = 2^t \frac{2^t-1}{m} C_{j-1}^{2^t-1}$. But m cannot be canceled by any power of 2, and hence $C_{j-1}^{2^t-1}$ must be an integer, as required. This substantiates our claim.

We therefore appeal to Fact 3, namely that $U(R/I) \cong U(R)/(1+I)$, and by what we have just already shown so far one can conclude that $U(R)$ is also a 2-group, as pursued.

"Sufficiency". Again put $I = 2R$ and observe that it is a nil-ideal of R because 2 is a nilpotent in R. Since by supposition $U(R)$ is a 2-group, any its factor-group is again a 2-group and thus Fact 3 is applicable to infer that so is $U(R/I)$. That is why, Fact 1 ensures that the quotient R/I is a UU ring, and so Fact 2 guarantees that the same holds for R, sustaining our assertion. □
A note on UU rings

References

Received: January 30, 2017; Published: February 21, 2017