If d is Super-Metric, Then $d/(1 + d)$ is Super-Metric

Matthijs J. Warrens

GION
University of Groningen
The Netherlands

Copyright © 2017 Matthijs J. Warrens. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

If a function d is metric, a well-known result is that $d/(1 + d)$ is also metric. We consider m-ary analogs of the binary notion of semimetric, called hemi-metrics and super-metrics. The metrics are totally symmetric maps from X^{m+1} into $\mathbb{R}_{\geq 0}$. It is shown that, if d is super-metric, then $d/(1 + d)$ is also super-metric.

Mathematics Subject Classification: 51Fxx, 54E35

Keywords: Hemi-metric, simplex inequality, tetrahedron inequality

1 Hemi-metrics and super-metrics

A metric is a function that defines a distance between two elements of a set. We consider generalizations of the notion of metric in the direction of distances between three or more elements.

Deza and Rosenberg [4] introduced the following notion. Let m be a positive integer and X a set with at least $m+2$ elements. A function $d : X^{m+1} \to \mathbb{R}$ is called m-hemi-metric if (see, also [1,2,5]):

1. d is non-negative, i.e., $d(x_1, \ldots, x_{m+1}) \geq 0$ for all $x_1, \ldots, x_{m+1} \in X$.

2. d is totally symmetric, i.e., satisfies $d(x_1, \ldots, x_{m+1}) = d(x_{\pi(1)}, \ldots, x_{\pi(m+1)})$ for all $x_1, \ldots, x_{m+1} \in X$ and for any permutation π of $\{1, \ldots, m+1\}$.
3. \(d\) is zero conditioned, i.e. \(d(x_1, \ldots, x_{m+1}) = 0\) if and only if \(x_1, \ldots, x_{m+1}\) are not pairwise distinct.

4. For all \(x_1, \ldots, x_{m+2} \in X\), \(d\) satisfies the \(m\)-simplex inequality:

\[
d(x_1, \ldots, x_{m+1}) \leq \sum_{i=1}^{m+1} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}).
\]

(1)

The notion of \(m\)-hemi-metric is an \(m\)-ary analog of the binary notion of semi-metric. An important special case of the \(m\)-hemi-metric is the following notion obtained for \(m = 2\). A function \(d : X^3 \to \mathbb{R}\) is called a 2-metric if \(d\) is non-negative, totally symmetric, zero conditioned, and satisfies the tetrahedron inequality:

\[
d(x_1, x_2, x_3) \leq d(x_1, x_2, x_4) + d(x_1, x_3, x_4) + d(x_2, x_3, x_4).
\]

(2)

Interpreting \(d(x_1, x_2, x_3)\) as the area of the triangle with vertices \(x_1, x_2\) and \(x_3\), the tetrahedron inequality specifies that the area of each triangle face of the tetrahedron formed by \(x_1, x_2, x_3\) and \(x_4\) does not exceed the sum of the areas of the remaining faces. Alternative axiom systems are considered in [6-11].

Deza and Dutour [3] introduced the following notion. Let \(s\) be a positive real number. A function \(d : X^{m+1} \to \mathbb{R}\) is called \((m, s)\)-super-metric if \(d\) is non-negative, totally symmetric, zero conditioned, and satisfies the \((m, s)\)-simplex inequality

\[
sd(x_1, \ldots, x_{m+1}) \leq \sum_{i=1}^{m+1} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}).
\]

(3)

An \((m, s)\)-super-metric is an \(m\)-hemi-metric if \(s \geq 1\). Furthermore, a \(m\)-hemi-metric is a \((m, 1)\)-super-metric and a semi-metric is a \((1, 1)\)-super-metric.

For the ordinary metric, a well-known result is that, if \(d\) is metric, then \(d/(1 + d)\) and \(\min\{1, d\}\) are also metric. In Section 2 we present an analogous result for the function \(d/(1 + d)\) for hemi-metrics and super-metrics. In Section 3 we present an analogous result for the function \(\min\{1, d\}\) for hemi-metrics and the \((2, 2)\)-super-metric.

2 Function \(d/(1 + d)\)

Lemma 2.1 considers the notion of \(m\)-hemi-metric. Lemma 2.3 considers the notion of \((m, s)\)-super-metric for \(s \geq 1\). Lemma 2.2 is used in the proof of Lemmas 2.3 and 3.2.

Lemma 2.1. Let \(d\) be \(m\)-hemi-metric. Then \(d/(1 + d)\) is \(m\)-hemi-metric.
If d is super-metric, then $d/(1 + d)$ is super-metric

Proof. Non-negativity of $d/(1 + d)$ follows from the non-negativity of d. Furthermore, total symmetry and axiom 3 follow from the identity

$$
\frac{d(x_1, \ldots, x_{m+1})}{1 + d(x_1, \ldots, x_{m+1})} = 1 - \frac{1}{1 + d(x_1, \ldots, x_{m+1})},
$$

and the fact that d is totally symmetric and zero conditioned. Thus, we must show that $d/(1 + d)$ satisfies (1).

Because $d/(1 + d)$ is strictly increasing in d, and since d satisfies (1), we have

$$
\frac{d(x_1, \ldots, x_{m+1})}{1 + d(x_1, \ldots, x_{m+1})} \leq \sum_{i=1}^{m+1} \frac{d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})}{1 + \sum_{i=1}^{m+1} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})}.
$$

Furthermore, for all $i \in \{1, \ldots, m+1\}$ we have the inequality

$$
\frac{d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})}{1 + \sum_{j=1}^{m+1} d(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m+2})} \leq \frac{d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})}{1 + d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})}.
$$

Summing (6) over all $i \in \{1, \ldots, m+1\}$, and combining the resulting inequality with inequality (5), completes the proof.

Lemma 2.2. Suppose $s > 1$ and let d be (m, s)-super-metric. Then d satisfies the inequality

$$
(s - 1)d(x_1, \ldots, x_{m+1}) \leq \sum_{i=2}^{m+1} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}).
$$

Proof. Interchanging the roles of x_1 and x_{m+2} in (3), and dividing the result by s, we obtain

$$
d(x_2, \ldots, x_{m+2}) \leq \frac{1}{s} \sum_{i=2}^{m+2} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}). \tag{8}
$$

Adding inequalities (3) and (8) yields

$$
(s - \frac{1}{s}) d(x_1, \ldots, x_{m+1}) \leq \left(1 + \frac{1}{s}\right) \sum_{i=2}^{m+1} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}), \tag{9}
$$

which is equivalent to (7).
Lemma 2.3. Suppose $s \geq 1$ and let d be (m, s)-super-metric. Then $d/(1+d)$ is (m, s)-super-metric.

Proof. The case $s = 1$ is proved in Lemma 2.1. Therefore, suppose $s > 1$. The proof of non-negativity, total symmetry and axiom 3 is analogous to the proof of Lemma 2.1. We must show that d satisfies (3).

Because $d/(1+d)$ is strictly increasing in d, and since d satisfies (3), we have

$$
\frac{d(x_1, \ldots, x_{m+1})}{1 + d(x_1, \ldots, x_{m+1})} \leq \frac{1}{s} \sum_{i=1}^{m+1} d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2}).
$$

(10)

After multiplying both sides of (10) by s, we may write the result as

$$
\frac{sd(x_1, \ldots, x_{m+1})}{1 + d(x_1, \ldots, x_{m+1})} \leq \sum_{i=1}^{m+1} \frac{d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2})}{1 + \frac{1}{s} \sum_{j=1}^{m+1} d(x_1, \ldots, x_{j-1}, x_j+1, \ldots, x_{m+2})}.
$$

(11)

Due to Lemma 2.2, combined with the total symmetry of d, we have for all $i \in \{1, \ldots, m+1\}$,

$$(s-1)d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2}) \leq \sum_{j=1}^{m+1} d(x_1, \ldots, x_{j-1}, x_j+1, \ldots, x_{m+2}) - d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2}).
$$

(12)

Adding $d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2})$ to both sides of (12), and dividing the result by s, we have for all $i \in \{1, \ldots, m+1\}$,

$$
d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2}) \leq \frac{1}{s} \sum_{j=1}^{m+1} d(x_1, \ldots, x_{j-1}, x_j+1, \ldots, x_{m+2}).
$$

(13)

Furthermore, using (13), we have, for all $i \in \{1, \ldots, m+1\}$, the inequality

$$
\frac{d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2})}{1 + \frac{1}{s} \sum_{j=1}^{m+1} d(x_1, \ldots, x_{j-1}, x_j+1, \ldots, x_{m+2})} \leq \frac{d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2})}{1 + d(x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_{m+2})}.
$$

(14)

Summing (14) over all $i \in \{1, \ldots, m+1\}$, and combining the result with (11), completes the proof. \qed
If \(d \) is super-metric, then \(d/(1 + d) \) is super-metric

3 Function \(\min \{1, d\} \)

Lemma 3.1 considers the notion of \(m \)-hemi-metric. Lemma 3.2 considers the notion of \((2,2)\)-super-metric.

Lemma 3.1. Let \(d \) be \(m \)-hemi-metric. Then \(\min \{1, d\} \) is \(m \)-hemi-metric.

Proof. Non-negativity, symmetry and axiom 3 of \(\min \{1, d\} \) follow from the analogous properties of \(d \). Thus, we must show that \(\min \{1, d\} \) satisfies (1).

We go through the various cases.

Suppose there is an \(j \in \{1, \ldots, m+1\} \) such that

\[
d(x_1, \ldots, x_{m+1}) \leq d(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m+2}).
\]

(15)

In this case we have

\[
\min \{1, d(x_1, \ldots, x_{m+1})\} \leq \min \{1, d(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m+2})\}
\]

\[
\leq \sum_{i=1}^{m+1} \min \{1, d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})\}.
\]

(16)

Thus, we may assume that, for all \(i \in \{1, \ldots, m+1\} \), we have

\[
d(x_1, \ldots, x_{m+1}) \geq d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}).
\]

(17)

Suppose \(d(x_1, \ldots, x_{m+1}) \leq 1 \). In this case we have, for all \(i \in \{1, \ldots, m+2\} \),

\[
\min \{1, d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})\} = d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}),
\]

and it follows that \(\min \{1, d\} \) satisfies (1) because \(d \) satisfies (1).

Next, suppose \(d(x_1, \ldots, x_{m+1}) > 1 \). Furthermore, suppose there is an \(j \in \{1, \ldots, m+1\} \) such that \(d(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m+2}) \geq 1 \). In this case we have

\[
\min \{1, d(x_1, \ldots, x_{m+1})\} = 1 = \min \{1, d(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{m+2})\}
\]

\[
\leq \sum_{i=1}^{m+1} \min \{1, d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})\}.
\]

(18)

Therefore, suppose that \(d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2}) \leq 1 \) for all \(i \in \{1, \ldots, m+1\} \). In this final case we have, since \(d \) satisfies (1),

\[
\min \{1, d(x_1, \ldots, x_{m+1})\} = 1 < d(x_1, \ldots, x_{m+1})
\]

\[
\leq \sum_{i=1}^{m+1} d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})
\]

\[
= \sum_{i=1}^{m+1} \min \{1, d(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m+2})\}.
\]

(19)

This completes the proof. \(\Box \)
Lemma 3.2. Let d be $(2,2)$-super-metric. Then $\min\{1, d\}$ is $(2,2)$-super-metric.

Proof. Non-negativity, symmetry and axiom 3 of $\min\{1, d\}$ follow from the analogous properties of d. Thus, we must show that $\min\{1, d\}$ satisfies

$$2d(x_1, x_2, x_3) \leq d(x_1, x_2, x_4) + d(x_1, x_3, x_4) + d(x_2, x_3, x_4),$$

which is a strong version of tetrahedron inequality (2) [6,8,9,11]. We go through the various cases.

First, suppose $d(x_1, x_2, x_3) \leq 1$. In addition, suppose at least two of the three quantities on the right-hand side of (20) ≥ 1. In this case we have

$$2 \min\{1, d(x_1, x_2, x_3)\} = 2d(x_1, x_2, x_3) \leq 2 = 1 + 1$$

$$\leq \min\{1, d(x_1, x_2, x_4)\} + \min\{1, d(x_1, x_3, x_4)\} + \min\{1, d(x_2, x_3, x_4)\}.$$

Furthermore, without loss of generality, suppose that $d(x_1, x_2, x_4) > 1$ and $d(x_1, x_3, x_4), d(x_2, x_3, x_4) \leq 1$. In this case we have

$$\min\{1, d(x_1, x_2, x_3)\} = d(x_1, x_2, x_3) \leq 1 = \min\{1, d(x_1, x_2, x_4)\}.$$

(21)

We also have, using Lemma 2.2,

$$\min\{1, d(x_1, x_2, x_3)\} = d(x_1, x_2, x_3) \leq d(x_1, x_3, x_4) + d(x_2, x_3, x_4)$$

$$= \min\{1, d(x_1, x_3, x_4)\} + \min\{1, d(x_2, x_3, x_4)\}.$$

(22)

Combining (21) and (22) gives the desired inequality.

Moreover, suppose all three quantities on the right-hand side of (20) ≤ 1. In this case we have, since d satisfies (20),

$$2 \min\{1, d(x_1, x_2, x_3)\} = 2d(x_1, x_2, x_3)$$

$$\leq d(x_1, x_2, x_4) + d(x_1, x_3, x_4) + d(x_2, x_3, x_4)$$

$$= \min\{1, d(x_1, x_2, x_4)\} + \min\{1, d(x_1, x_3, x_4)\} + \min\{1, d(x_2, x_3, x_4)\}.$$

Second, suppose $d(x_1, x_2, x_3) > 1$. In addition, suppose at least two of the three quantities on the right-hand side of (20) ≥ 1. In this case we have

$$2 \min\{1, d(x_1, x_2, x_3)\} = 2 = 1 + 1$$

$$\leq \min\{1, d(x_1, x_2, x_4)\} + \min\{1, d(x_1, x_3, x_4)\} + \min\{1, d(x_2, x_3, x_4)\}.$$

Furthermore, without loss of generality, suppose that $d(x_1, x_2, x_4) \geq 1$ and $d(x_1, x_3, x_4), d(x_2, x_3, x_4) \leq 1$. In this case we have

$$2 \min\{1, d(x_1, x_2, x_3)\} = 2 < d(x_1, x_2, x_3) + \min\{1, d(x_1, x_2, x_4)\}.$$

(23)
If d is super-metric, then $d/(1 + d)$ is super-metric

We also have, using Lemma 2.2,
\[
d(x_1, x_2, x_3) \leq d(x_1, x_3, x_4) + d(x_2, x_3, x_4) \\
= \min \{1, d(x_1, x_3, x_4)\} + \min \{1, d(x_2, x_3, x_4)\}.
\] (24)

Combining (23) and (24) gives the desired inequality.

Finally, suppose all three quantities on the right-hand side of (20) ≤ 1. In this case we have, since d satisfies (20),
\[
2 \min \{1, d(x_1, x_2, x_3)\} = 2 < 2d(x_1, x_2, x_3) \\
\leq d(x_1, x_2, x_4) + d(x_1, x_3, x_4) + d(x_2, x_3, x_4) \\
= \min \{1, d(x_1, x_2, x_4)\} + \min \{1, d(x_1, x_3, x_4)\} + \min \{1, d(x_2, x_3, x_4)\}.
\]

This completes the proof.

References

Received: September 5, 2017; Published: October 4, 2017