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Abstract 

 

Let R be an associative ring with non-zero identity and M be a left R-module. A 

submodule N of M is called annihilator small (briefly a-small), if for every 

submodule L of M with N+L=M, then 𝑙𝑅(L)=𝑙𝑅(M). The properties of a-small 

submodules have been studied and characterizations of a-small cyclic submodules 

have been investigated. The sum of a-small submodules is studied. Moreover, we 

shall introduce fully annihilator small stable module (briefly FASS module) where 

M is called a FASS module if every annihilator small submodule of M is stable. 

Characterizations of FASS modules are proven.  

 

Keywords: Annihilator small submodules, Fully stable modules, Annihilator small 

regular modules 

 

1. Introduction 
 

Throughout this work R will denote an associative ring with non-zero identity, M a 

left R-module. A submodule N of M is called small, if for every submodule K of M 

with N+K=M, then K=M [5]. Recently, many authors have been interested in 

studying different kinds of a-small submodules as in [3] and [4], where the authors 

in [3] introduced the concept of R-annihilator small submodules, that is; a 

submodule N of an R-module M is called R-annihilator small, if whenever N+K=M, 

where K a submodule of M; then 𝑙𝑅(K)=0. This has motivated us in turn to introduce 

the concept of annihilator small submodules, in way that a submodule N of M is 

called annihilator small (briefly a-small) in case 𝑙𝑅(K)=𝑙𝑅(M), where K is a 

submodule of M; whenever N+K=M. It is clear that every small submodule is a-

small, but the converse is not true generally as examples can show next, while the 

two definitions become equal if M is faithful, recalling that M is called faithful in 

case 𝑙𝑅(𝑀) = 0. Remember that singular submodule of an R-module M denoted by 
Z(M)={m∈M | 𝑙𝑅(𝑚) is essential in R} [5], We shall study the properties of a- small 
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submodules, and define a subset of M that consists of all annihilator small elements 

(𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝐴𝑆𝑀), as well as; we shall denote the sum of all annihilator small 

submodules of M by 𝐽𝑎(𝑀), and study its properties and the relation between it and 

the Jacobson radical. Finally, we shall introduce the concept of fully annihilator 

small stable modules as a generalization of fully stable modules [1]. Recall that a 

submodule N of an R-module M is called stable in case for every R-homomorphism 

𝛼: 𝑁 ⟶ 𝑀 we have 𝛼(𝑁) ⊆ 𝑁 and M is called fully stable if every submodule of 

M is stable. Characterizations and properties of this concept is studied involving the 

satisfaction of Baer’s criterion on a-small cyclic submodules and its effect on M 

being a FASS module. Recall that, a submodule N of M is said to satisfy Baer’s 

criterion if for each 𝛽: 𝑁 ⟶ 𝑀 there exists an element 𝑟 ∈ 𝑅 such that 𝛽(𝑛) =
𝑟𝑛 for each 𝑛 ∈ 𝑁 [1].In this paper, we are also interested to study the relation 

between M being a FASS module and 𝐸𝑛𝑑𝑅(𝑀) being commutative. 

 

2. Annihilator small submodules 
 

Definition 2.1: A submodule N of an R-module M is called annihilator small 

(briefly a-small) in M, and denoted by N a≪ M; if whenever N+K=M for each 

submodule K of M, then 𝑙𝑅(K)=𝑙𝑅(M). Where 𝑙𝑅 denotes the left annihilators in R. 

A left ideal I of R is annihilator small if for each left ideal J of R with I+J=R, implies 

that 𝑙𝑅(J)=0. 

 

Examples and remarks 2.2: 

1. It is clear that every small submodule is annihilator small, but the converse is not 

true generally. For example, in the ℤ-module ℤ, (0) is the only small submodule 

while for every n>1, there exists m such that nℤ+mℤ=ℤ and 𝑙𝑅(𝑚ℤ)=0= 𝑙𝑅(ℤ). 

2. If M is a faithful R-module then the concepts of annihilator small submodules 

and R-annihilator small submodules are equivalent. 

3. There are annihilator small submodules that are direct summands as in the ℤ2-

module M=ℤ2⨁ℤ2, where it is clear that A=ℤ2⨁(0) is a direct summand of M, 

𝑀 = 𝐴⨁ℤ2 = 𝐴 ⊕< (1̅, 1̅) > and 𝑙ℤ2
(M)=0=𝑙ℤ2

(< (1̅, 1̅) >). 

Recall that, M is called prime if 𝑙𝑅(N)=𝑙𝑅(M) for every non-zero submodule N 

of M[5]. M is called quasi-Dedekind if Hom(M/N, M)=0 for every proper 

submodule N of M[6], it is mentioned in [6] that every quasi-Dedekind module is 

prime. 

 The proof of the following proposition is obvious. 

 

Proposition 2.3: Let M be a prime R-module. Then every proper submodule of M 

is annihilator small. In particular, every proper submodule of a quasi-Dedekind R-

module is annihilator small. 

 

     It is mentioned in [6, p.25] that ℚ 𝑎𝑠 ℤ-module is quasi-Dedekind, and hence by 

the use of proposition (2.3) we get that every proper submodule of ℚ is annihilator 

small, but only finitely generated submodules of ℚ are small. 
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Proposition 2.4: Let M be an R-module with submodules A⊆ 𝑁. If N a≪ 𝑀 then 

A a≪ 𝑀. 

 

Proof: Let X be a submodule of M such that A+X=M, since A⊆ 𝑁 hence N+X=M.  

By N being a-small in M then 𝑙𝑅(𝑋) = 𝑙𝑅(𝑀) and hence A a≪ M.          ∎ 

 

Proposition 2.5: Let M be an R-module with submodules A⊆ 𝑁, if A a≪ 𝑁 and 

𝑙𝑅(𝑁) = 𝑙𝑅(𝑀) then A a≪ 𝑀. 

Proof: Let X be any submodule of M such that A+X=M, now N∩M=N∩ (A+X) 

implies that N=A+(N∩X) by the modular law. Since A a≪ 𝑁, thus 𝑙𝑅(𝑁 ∩ 𝑋) =
𝑙𝑅(𝑁). But 𝑙𝑅(𝑋) ⊆ 𝑙𝑅(𝑁 ∩ 𝑋) = 𝑙𝑅(𝑁) = 𝑙𝑅(𝑀) implies that 𝑙𝑅(𝑋) ⊆ 𝑙𝑅(𝑀) and 

then 𝑙𝑅(𝑋) = 𝑙𝑅(𝑀), hence X a≪ 𝑀.                          ∎ 

 

Proposition 2.6: Let M and N be R-modules and 𝛼: 𝑀 ⟶ 𝑁 an R-monomorphism 

if W a≪ M  then 𝛼(𝑊) a≪  𝛼(𝑀). 
 

Proof: Let U be a submodule of N such that 𝛼(𝑊)+U=𝛼(𝑀), now U⊆ 𝑁 implies 

𝛼−1(𝑈) ⊆ 𝛼−1(𝑁) = 𝑀 and 𝛼(𝛼−1(𝑈))=U∩ 𝐼𝑚(𝛼) = 𝑈 ∩ 𝛼(𝑀) = 𝑈. Now, 

𝛼−1(𝛼(𝑊)) + 𝛼−1(𝑈) = 𝛼−1(𝛼(𝑀)) and then W+𝛼−1(𝑈) = 𝑀 this implies that 

𝑙𝑅(𝛼−1(𝑈))=𝑙𝑅(𝑀) since W a≪ M. Let X=𝛼−1(𝑈) then 𝑙𝑅(𝑋)=𝑙𝑅(𝑀). Let r∈ 

𝑙𝑅(𝑈)=𝑙𝑅(𝛼(𝑋)), thus r𝛼(𝑋)=0 ⟹ 𝛼(𝑟𝑋)=0 ⟹ 𝑟𝑋 = 0 ⟹ 𝑟 ∈ 𝑙𝑅(𝑋) ⟹

𝑙𝑅(𝑈) ⊆ 𝑙𝑅(𝑋) = 𝑙𝑅(𝑀) ⟹ 𝑙𝑅(𝑈) = 𝑙𝑅(𝑀) ⊆ 𝑙𝑅(𝛼(𝑀)) ⟹ 𝑙𝑅(𝑈) = 𝑙𝑅(𝛼(𝑀)). 
Hence, 𝛼(𝑊) a≪ 𝛼(𝑀).                 ∎ 

 

Corollary 2.7: Let M and N be R-modules and 𝛼: 𝑀 → 𝑁 an R-monomorphism 

such that 𝑙𝑅(𝛼(𝑀)) = 𝑙𝑅(𝑁), if W a≪ M then 𝛼(𝑊) a≪ 𝑁. 
 

 In the same manner of the definition of Jacobson radical related to small 

submodules, we will state a definition related to annihilator small submodules in 

the following. But first we need this definition. 

 

Definition 2.8: Let M be an R-module and a∈ 𝑀. We say that an element a in M is 

annihilator small if Ra is annihilator small submodule of M. let 𝐴𝑆𝑀 = {𝑎 ∈
𝑀|𝑅𝑎 a≪ 𝑀}. 

Note that 𝐴𝑆𝑀 is not a submodule of M. In fact, it is not closed under 

addition, for example in the ℤ − 𝑚𝑜𝑑𝑢𝑙𝑒 ℤ we have that 3,-2 ∈ 𝐴𝑆ℤ but 3-2=1∉
𝐴𝑆ℤ. 

We can see by the use of proposition (2.4) that if M is an R-module and a∈
𝐴𝑆𝑀, then Ra ⊆ 𝐴𝑆𝑀. Moreover, if A a≪ M then A⊆ 𝐴𝑆𝑀. 
  

Definition 2.9: Let M be an R-module. Denote 𝐽𝑎(𝑀) for the sum of all annihilator 

small submodules of M.  
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   It is clear that 𝐴𝑆𝑀 ⊊ 𝐽𝑎(𝑀) for every R-module M. The ℤ − 𝑚𝑜𝑑𝑢𝑙𝑒 ℤ is 

an example of this inclusion being proper, where 𝑛ℤ is a-small for each n≠ 1, −1 

in ℤ, hence 𝐽𝑎(ℤ) = ∑ 𝑛ℤ𝑛ℤ 𝑎≪ℤ = ℤ, but 𝐴𝑆ℤ = {𝑛 ∈ ℤ|𝑛ℤ 𝑎 ≪  ℤ} =
{𝑛ℤ|𝑛 ≠ 1, −1}. 
 Recall that, if T is an arbitrary proper submodule of a right R-module M and 

N a submodule of M, then N is called T-essential provided that N ⊈ T   and for each 

submodule K of M,  N∩K⊆T implies that K⊆T [8].  

 

 We introduce the following singularity of modules.  

Definition 2.10: Let M be an R-module and J be an arbitrary left ideal of R. define 

the subset Z(J,M)of M by Z(J,M)={x∈M| 𝑙𝑅(x) is J-essential in R}, it is easy to 

show that Z(J,M)={x∈M| Ix=0 for some J-essential left ideal I of R}. It is clear that 

Z(0,M)=Z(M) for any R-module M. 

 

Proposition 2.11: Let M be an R-module and J an arbitrary proper left ideal of R. 

Then Z(J,M) is a submodule of M, and it is called the singular submodule of M 

relative to J. 

 

Proof: It is clear that Z(J,M) is non-empty. Let x,y ∈ Z(J,M), then there exist two 

J-essential left ideals A and B of R with Ax=0 and By=0. Now, A∩B is J-essential 

and (A∩B)(x-y)=0 [7] and thus x-y ∈ Z(J,M). For each r∈R, since 𝑙𝑅(𝑥) ⊆ 𝑙𝑅(𝑟𝑥) 

and 𝑙𝑅(𝑥) is J-essential in R hence rx∈ Z(J,M).             ∎ 

 

Lemma 2.12: Let M be a non-zero R-module and N a submodule of M. If 𝑙𝑅(𝑁) is 

𝑙𝑅(𝑀)-essential in R, then 𝑟𝑀(𝑙𝑅(𝑁)) is a-small in M; in particular, N is a-small in 

M. 

 

Proof: Let X be a submodule of M with X+𝑟𝑀(𝑙𝑅(𝑁))=M. Then 𝑙𝑅(𝑋) ∩

𝑙𝑅 (𝑟𝑀(𝑙𝑅(𝑁))) = 𝑙𝑅(𝑋) ∩ 𝑙𝑅(𝑁) = 𝑙𝑅(𝑀), since 𝑙𝑅(𝑁) is 𝑙𝑅(𝑀)-essential  in R 

then 𝑙𝑅(𝑋) ⊆ 𝑙𝑅(𝑀) and hence 𝑟𝑀(𝑙𝑅(𝑁)) is a- small in M. The last assertion 

follows from proposition (2.4).               ∎ 

 

Corollary 2.13: Let M be a non-zero R-module. If  m ∈ Z(𝑙𝑅(𝑀),M), then Rm is 

a-small in M. 

 

Proof: Let m∈ 𝑍(𝑙𝑅(𝑀), 𝑀). Then 𝑙𝑅(𝑚) 𝑖𝑠 𝑙𝑅(𝑀)-essential in R, and by lemma 

(2.12) we have Rm is a-small in M.               ∎ 

 

 Note that the converse of lemma(2.12) is true if 𝑟𝑀(𝐴 ∩ 𝐵) = 𝑟𝑀(𝐴) +
𝑟𝑀(𝐵) for each left ideals A and B of R. For this, let T be a left ideal of R with 

𝑙𝑅(𝑁) ∩ 𝑇 ⊆ 𝑙𝑅(𝑀). Then 

 M⊆ 𝑟𝑀(𝑙𝑅(𝑀)) ⊆ 𝑟𝑀(𝑙𝑅(𝑁) ∩ 𝑇) = 𝑟𝑀(𝑙𝑅(𝑁)) + 𝑟𝑀(𝑇).  

Since 𝑟𝑀(𝑙𝑅(𝑁)) is a-small in M, then 𝑇 ⊆ 𝑙𝑅(𝑟𝑀(𝑇)) ⊆ 𝑙𝑅(𝑀). This shows that 

𝑙𝑅(𝑁) 𝑖𝑠 𝑙𝑅(𝑀)-essential in R.   
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Proposition 2.14: Let M be a non-zero finitely generated R-module and K a 

submodule of M. If K is a-small in M, then so is K+J(M)+Z(J,M) where J=𝑙𝑅(𝑀).  
 

Proof: Let X be a submodule of M such that K+J(M)+Z(J,M)+X=M. Since M is 

finitely generated, then {𝑚𝑖}𝑖=1
𝑛  is a set of generators of M and M= ∑ 𝑅𝑚𝑖

𝑛
𝑖=1 , and 

J(M) is small in M; that is, K+Z(J,M)+X=M. Now, for each 𝑚𝑖 ∈ M we have 𝑚𝑖 =
𝑘𝑖 + 𝑧𝑖 + 𝑥𝑖 where 𝑘𝑖 ∈ K, 𝑧𝑖 ∈ Z(J,M) and 𝑥𝑖 ∈ X for each i=1,…,n. Thus M= 

K+∑ 𝑅𝑧𝑖
𝑛
𝑖=1 +X and since K is a-small in M by our assumption. 

  Thus 𝑙𝑅(𝑀)=𝑙𝑅(∑ 𝑅𝑧𝑖
𝑛
𝑖=1 +X)=𝑙𝑅(∑ 𝑅𝑧𝑖

𝑛
𝑖=1 )∩ 𝑙𝑅(𝑋)=(∩𝑖=1

𝑛 𝑙𝑅(𝑅𝑧𝑖)) ∩
(𝑙𝑅(𝑋)). But 𝑧𝑖 ∈ Z(J,M), thus 𝑙𝑅(𝑧𝑖) is 𝑙𝑅(𝑀)-essential in R for each i=1,…,n, and 

hence ∩𝑖=1
𝑛 𝑙𝑅(𝑅𝑧𝑖) is 𝑙𝑅(𝑀)-essential in R [2]. Thus 𝑙𝑅(𝑋) ⊆ 𝑙𝑅(𝑀), and hence 

K+J(M)+Z(J,M) is a-small submodule of M.              ∎  

 

Corollary 2.15: Let M be a finitely generated R-module. Then J(M)+Z(J,M) is a-

small in M where J=𝑙𝑅(𝑀). 
  

 The proof of the following proposition is as that in lemma (2.12). 

Proposition 2.16: let M be an R-module such that Z(J,M) is finitely generated. If 

K is an a-small submodule of M, then so is K+Z(J,M). 

  

 In the following we give a characterization of cyclic annihilator small 

submodules. 

Theorem 2.17: Let M be an R-module and m∈M. Then the following statements 

are equivalent: 

1. Rm a≪ M. 

2. ∩𝑖∈𝐼 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚) = 𝑙𝑅(𝑀) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑖 ∈ 𝑅. 

3. There exists j∈I such that 𝑟𝑚𝑗 ∉ 𝑅𝑟𝑚 for all 𝑟 ∉ 𝑙𝑅(𝑀). 

 

Proof: (1)⟹ (2) For each i∈I, 𝑚𝑖 = 𝑚𝑖 − 𝑟𝑖𝑚 + 𝑟𝑖𝑚 and hence M=∑ 𝑅(𝑚𝑖 −𝑖∈𝐼

𝑟𝑖𝑚) + 𝑅𝑚. By (1) we have 𝑙𝑅(𝑀) = 𝑙𝑅(∑ 𝑅(𝑚𝑖 − 𝑟𝑖𝑚𝑖∈𝐼 )) =∩𝑖∈𝐼 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚). 
(2)⟹ (1) Let X be a submodule of M with X+Rm=M. Then for each i∈I 𝑚𝑖 =
𝑥𝑖 + 𝑟𝑖𝑚, 𝑟𝑖 ∈ 𝑅 𝑎𝑛𝑑 𝑥𝑖 ∈ 𝑋 . Let t∈ 𝑙𝑅(𝑋), then 𝑡𝑚𝑖 = 𝑡𝑟𝑖𝑚 + 𝑡𝑥𝑖 = 𝑙𝑅(M).     

(2)⟹ (3) Let 𝑟 ∉ 𝑙𝑅(𝑀) and assume that 𝑟𝑚𝑖 ∈ 𝑅𝑟𝑚 for all i∈ I. Then 𝑟𝑚𝑖 =
𝑟𝑖𝑟𝑚 = 𝑟𝑟𝑖𝑚 for all i∈I, so by (1) 𝑟 ∈∩𝑖∈𝐼 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚) = 𝑙𝑅(𝑀) which is a 

contradiction.  

(3)⟹ (2) Let 𝑟 ∈∩𝑖∈𝐼 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚) and hence 𝑟 ∈ 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚) for all 𝑖 ∈ 𝐼. 

Thus 𝑟𝑚𝑖=𝑟𝑟𝑖𝑚 = 𝑟𝑖𝑟𝑚 for all 𝑖 ∈ 𝐼, so 𝑟𝑚𝑖 ∈ 𝑅𝑟𝑚. By (2) 𝑟 ∈ 𝑙𝑅(𝑀) and hence 

∩𝑖∈𝐼 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚) ⊆ 𝑙𝑅(𝑀) and ∩𝑖∈𝐼 𝑙𝑅(𝑚𝑖 − 𝑟𝑖𝑚) = 𝑙𝑅(𝑀) for all 𝑟𝑖 ∈ 𝑅.        ∎ 

 

Theorem 2.18: Let R be a commutative ring, M=∑ 𝑅𝑚𝑖𝑖∈𝐼  and K a submodule of 

M. Then the following statements are equivalent: 

1. K a≪ M. 

2. ∩𝑖∈𝐼 𝑙𝑅𝑅(𝑚𝑖 − 𝑘𝑖) = 𝑙𝑅(𝑀) for all 𝑘𝑖 ∈ 𝐾. 
 



 

920                                                             Mehdi Sadiq Abbas and Hiba Ali Salman 

 

 

Proof: (1)⟹ (2) For each 𝑖 ∈ 𝐼, let 𝑘𝑖 ∈ 𝐾. Then 𝑚𝑖 = 𝑚𝑖 − 𝑘𝑖 + 𝑘𝑖 for each 𝑖 ∈
𝐼. Then 𝑀 = ∑ 𝑅(𝑚𝑖 − 𝑘𝑖)𝑖∈𝐼 + 𝐾, by (1) we obtain 𝑙𝑅(𝑀) =
𝑙𝑅(∑ 𝑅(𝑖∈𝐼 𝑚𝑖−𝑘𝑖)) =∩𝑖∈𝐼 𝑙𝑅(𝑅(𝑚𝑖 − 𝑘𝑖)). 

(2)⟹ (1) Let A be a submodule of M with M=A+K. Then for each 𝑖 ∈ 𝐼 𝑚𝑖 =
𝑎𝑖 + 𝑘𝑖  where 𝑎𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑘𝑖 ∈ 𝐾. Hence 𝑎𝑖 = 𝑚𝑖 − 𝑘𝑖 for each 𝑖 ∈ 𝐼 and 𝑀 =
∑ 𝑅(𝑚𝑖 − 𝑘𝑖)𝑖∈𝐼 + 𝐾. Now, let 𝑡 ∈ 𝑙𝑅(𝐴) then 𝑡𝑎𝑖 = 𝑡(𝑚𝑖 − 𝑘𝑖) for each 𝑖 ∈ 𝐼 and 

hence 𝑡 ∈ 𝑙𝑅(𝑅(𝑚𝑖 − 𝑘𝑖)) = 𝑙𝑅(𝑀) by (2), so 𝑙𝑅(𝐴) ⊆ 𝑙𝑅(𝑀). Thus K a≪ M.     ∎ 

 

 Next, properties and characterization of 𝐽𝑎(𝑀) are given. 

Proposition 2.19: Let M be an R-module such that 𝐴𝑆𝑀 ≠ 𝜙, then we have the 

following: 

1. 𝐽𝑎(𝑀) is a submodule of M and contains every annihilator small submodule 

of M. 

2. 𝐽𝑎(𝑀) = {𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛; 𝑎𝑖 ∈ 𝐴𝑆𝑀 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖, 𝑛 ≥ 1}. 

3. 𝐽𝑎(𝑀) is generated by 𝐴𝑆𝑀. 
4. If M is finitely generated, then J(M) ⊆ 𝐽𝑎(𝑀).  

 

Proof:  

1. Let {𝑁𝜆|𝜆 ∈ Λ} be the set of all annihilator small submodules of M, thus 

𝐽𝑎(𝑀) = ∑ 𝑁𝜆𝜆∈Λ . Let x,y∈ 𝐽𝑎(𝑀), this means that 𝑥 = ∑ 𝑥𝜆𝜆∈Λ  𝑎𝑛𝑑 𝑦 =
∑ 𝑦𝜆𝜆∈Λ  𝑤ℎ𝑒𝑟𝑒 𝑥𝜆, 𝑦𝜆 ∈ 𝑁𝜆 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝜆 ∈ Λ 𝑎𝑛𝑑 𝑥𝜆, 𝑦𝜆 ≠0 for at most a finite 

number of 𝜆 ∈ Λ. Then x+y=∑ (𝑥𝜆 + 𝑦𝜆)𝜆∈Λ  such that 𝑥𝜆 + 𝑦𝜆 ∈ 𝑁𝜆 for each 

𝜆 ∈ Λ, x+y∈ 𝐽𝑎(𝑀). Now, let r∈ 𝑅 and 𝑥 ∈ 𝐽𝑎(𝑀) it is an easy matter to see 

that 𝑟𝑥 ∈ 𝐽𝑎(𝑀). Hence, 𝐽𝑎(𝑀) is a submodule of M. it is clear from the 

definition of 𝐽𝑎(𝑀)that it contains every a-small submodule of M. 

2. Follows from (1) and 𝐴𝑆𝑀 ⊆ 𝐽𝑎(𝑀). 
3. Since 𝐴𝑆𝑀 ⊆ 𝐽𝑎(𝑀), then < 𝐴𝑆𝑀 >⊆ 𝐽𝑎(𝑀). Clearly, 𝐽𝑎(𝑀) ⊆< 𝐴𝑆𝑀 >. 

Hence, 𝐽𝑎(𝑀)is generated by 𝐴𝑆𝑀. 

4. Since M is finitely generated then J(M) ≪ M, hence J(M) a≪ M and by (1) 

J(M) ⊆ 𝐽𝑎(𝑀).                ∎ 

 

Proposition 2.20: Let M be an R-module such that 𝐴𝑆𝑀 ≠ 𝜙. Then the following 

statements are equivalent: 

1. 𝐴𝑆𝑀 is closed under addition; that is, a finite sum of a-small elements is a-

small. 

2. 𝐽𝑎(𝑀) = 𝐴𝑆𝑀. 
 

Proof:  

(1)⟹(2) Let 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 ∈ 𝐽𝑎(𝑀), 𝑎𝑖 ∈ 𝐴𝑖 i=1,…,n, 𝐴𝑖 is a-small in M for 

each i=1,…,n. then 𝑅𝑎𝑖 a≪ M by proposition (2.4). Hence 𝑎𝑖 ∈ 𝐴𝑆𝑀 for each 

i=1,…,n, by the assumption in (1) we get that 𝑎1 + ⋯ + 𝑎𝑛 ∈ 𝐴𝑆𝑀. thus 𝐽𝑎(𝑀) ⊆
𝐴𝑆𝑀 and hence  𝐽𝑎(𝑀) = 𝐴𝑆𝑀. 
(2)⟹ (1) Let x,y ∈ 𝐴𝑆𝑀, since 𝐴𝑆𝑀 ⊆ 𝐽𝑎(𝑀) then 𝑥, 𝑦 ∈ 𝐽𝑎(𝑀) and by using 

proposition (2.19) we have 𝑥 + 𝑦 ∈ 𝐽𝑎(𝑀). Hence, 𝑥 + 𝑦 ∈ 𝐴𝑆𝑀 (by our assump- 
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tion); that is, 𝐴𝑆𝑀 is closed under addition. We can prove that a finite sum of 

annihilator small elements is annihilator small by the use of induction.          ∎  

 

Proposition 2.21: Let M be an R-module such that 𝐴𝑆𝑀 ≠ 𝜙. If considering the 

following statements: 

1. 𝐽𝑎(𝑀) is an annihilator small submodule of M. 

2. If K and L are annihilator small submodules of M, then K+L is an 

annihilator small submodule of M. 

3. 𝐴𝑆𝑀 is closed under addition; that is, sum of annihilator small elements of 

M is annihilator small. 

4. 𝐽𝑎(𝑀) = 𝐴𝑆𝑀. 

Then (1) ⟹ (2) ⟹ (3) ⟺ (4) . If M is finitely generated, then (1) ⟺ (2). 
 

Proof: 

(1)⟹ (2) Let K,L be a-small in M, then K+L⊆ 𝐽𝑎(𝑀) which is a-small by 

assumption. Thus by using proposition (2.4) we get K+L a≪ M. 

(2)⟹ (3) Let x, y ∈ 𝐴𝑆𝑀, then Rx, Ry are a-small in M, and hence by (2) Rx+Ry is 

annihilator small in M. But R(x+y)⊆Rx+Ry and by using proposition (2.4) we get 

R(x+y) a≪ M. Hence, x+y ∈ 𝐴𝑆𝑀. 

(3)⟺ (4)  By proposition (2.20). 

 Now, let M be finitely generated to prove (2)⟹ (1). Consider 

{𝑚1, 𝑚2, … , 𝑚𝑛} to be the set of generators of M. Let X be a submodule of M such 

that 𝐽𝑎(𝑀)+X=M, then 𝑚𝑖 = 𝑎𝑖 + 𝑥𝑖 such that 𝑎𝑖 ∈ 𝐽𝑎(𝑀) and 𝑥𝑖 ∈ X for each 

i=1,…,n. Thus ∑ 𝑅𝑚𝑖
𝑛
𝑖=1 = ∑ 𝑅𝑎𝑖

𝑛
𝑖=1 + ∑ 𝑅𝑥𝑖

𝑛
𝑖=1  and hence M=∑ 𝑅𝑎𝑖

𝑛
𝑖=1 + 𝑋. 

Now, since 𝑎𝑖 ∈ 𝐽𝑎(𝑀) and since (2) ⟹ (3) ⟺ (4) we get 𝐽𝑎(𝑀) = 𝐴𝑆𝑀; that is, 

𝑎𝑖 ∈ 𝐴𝑆𝑀 and hence 𝑅𝑎𝑖 a≪ M thus 𝑙𝑅(𝑋) = 𝑙𝑅(𝑀) implies that 𝐽𝑎(𝑀) a≪ M.   ∎ 

 

Proposition 2.22: Let M be a finitely generated R-module and 𝐽𝑎(𝑀) a≪ M. Then 

we have the following statements: 

1. 𝐽𝑎(𝑀) is the largest annihilator small submodule of M. 

2. 𝐽𝑎(𝑀) = ⋂{𝑊|𝑊 is a maximal submodule of M with 𝐽𝑎(𝑀) ⊆ 𝑊}. 
 

Proof:  

1. Clear by the definition of 𝐽𝑎(𝑀). 

2. Let a ∈ ⋂{𝑊|𝑊 is a maximal submodule of M with 𝐽𝑎(𝑀) ⊆ 𝑊}. Claim 

that Ra a≪ M, if not then M=Ra+X where X is a submodule of M and 

𝑙𝑅(𝑋) = 𝑙𝑅(𝑀). Since 𝐽𝑎(𝑀) a≪ M then 𝐽𝑎(𝑀)+X≠M. But M is finitely 

generated, thus there exist a maximal submodule B of M such that 𝐽𝑎(𝑀) +
𝑋 ⊆ B. Now, if a ∈ B then B=M a contradiction! But a ∈ ⋂{𝑊|𝑊 is a 

maximal submodule of M with 𝐽𝑎(𝑀) ⊆ 𝑊} a contradiction! Thus Ra a≪M 

and hence a∈ 𝐽𝑎(𝑀). Hence, 𝐽𝑎(𝑀) = ⋂{𝑊|𝑊 is a maximal submodule of 

M with 𝐽𝑎(𝑀) ⊆ 𝑊}.                        ∎ 
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3. Fully annihilator small stable modules 
 

Definition 3.1: An R-module M is called fully annihilator small stable; (briefly 

FASS-module), if every annihilator small submodule of it is stable. 

 

 Characterizations of FASS-modules are given in the following. 

Proposition 3.2: Let M be an R-module. Then the following statements are 

equivalent: 

1- M is a FASS-module. 

2- Each a-small cyclic submodule of M is stable. 

3- For each x∈ 𝐴𝑆𝑀, y∈ M if 𝑙𝑅(𝑥) ⊆ 𝑙𝑅(𝑦) then 𝑅𝑦 ⊆ 𝑅𝑥. 

4- M satisfies Baer’s criterion on a-small cyclic submodules. 

5- 𝑟𝑀(𝑙𝑅(𝑅𝑥)) = 𝑅𝑥 for each 𝑥 ∈ 𝐴𝑆𝑀. 
 

Proof:  

(1)⟹ (2) Obvious 

(2)⟹ (3) Let 𝑥 ∈ 𝐴𝑆𝑀, 𝑦 ∈ 𝑀 such that 𝑙𝑅(𝑥) ⊆ 𝑙𝑅(𝑦). Define 𝜃: 𝑅𝑥 ⟶ 𝑀 by 

𝜃(𝑟𝑥) = 𝑟𝑦 if rx=0 then r∈ 𝑙𝑅(𝑥), hence 𝑟 ∈ 𝑙𝑅(𝑦) and ry=0, this shows that 𝜃 is 

well-defined which is clear a homo. Now, since 𝑥 ∈ 𝐴𝑆𝑀 then  Rx a≪ M by 

definition of 𝐴𝑆𝑀. Thus 𝜃(𝑅𝑥) ⊆ 𝑅𝑥 implies that 𝑅𝑦 ⊆ 𝑅𝑥.  

(3)⟹ (1) Let N be an a-small submodule of M and let 𝛼: 𝑁 ⟶ 𝑀 be an R-

homomorphism. Now, let 𝑦 = 𝛼(𝑥) ∈ 𝛼(𝑁) then 𝑥 ∈ 𝑁 and hence 𝑅𝑥 ⊆ 𝑁 implies 

that 𝑅𝑥 is a-small by proposition (2.4) and 𝑥 ∈ 𝐴𝑆𝑀. Now, let 𝑟 ∈ 𝑙𝑅(𝑥) ⟹ 𝑟𝑥 =

0 ⟹ 𝛼(𝑟𝑥) = 0 ⟹ 𝑟(𝛼(𝑥)) = 0 ⟹ 𝑟𝑦 = 0 ⟹ 𝑟 ∈ 𝑙𝑅(𝑦) ⟹ 𝑙𝑅(𝑥) ⊆ 𝑙𝑅(𝑦) ⟹

𝑅𝑦 ⊆ 𝑅𝑥 ⊆ 𝑁 and since in particular 𝑦 = 1. 𝑦 ∈ 𝑅𝑦 ⊆ 𝑅𝑥 ⊆ 𝑁 then 𝛼(𝑁) ⊆ 𝑁. 
(2)⟹ (4) Let 𝑅𝑥 be a-small cyclic in M and let 𝛼: 𝑅𝑥 ⟶ 𝑀 be an R-homo. Then 

by (2) 𝛼(𝑅𝑥) ⊆ 𝑅𝑥 ⟹ ∀ 𝑛 ∈ 𝑅𝑥, 𝛼(𝑛) ∈ 𝑅𝑥 ⟹ ∀ 𝑛 ∈ 𝑅𝑥 ∃ 𝑟 ∈
𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼(𝑛) = 𝑟𝑛. 
(4)⟹ (5) Let 𝑦 ∈ 𝑟𝑀(𝑙𝑅(𝑅𝑥)), define 𝜃: 𝑅𝑥 ⟶ 𝑀 by 𝜃(𝑟𝑥) = 𝑟𝑦 if 𝑟1𝑥 = 𝑟2𝑥 ⟹
(𝑟1 − 𝑟2)𝑥 = 0 ⟹ (𝑟1 − 𝑟2) ∈ 𝑙𝑅(𝑥) ⟹ (𝑟1 − 𝑟2)𝑦 = 0 ⟹ 𝑟1𝑦 = 𝑟2𝑦 ⟹ 𝜃 is 

well-defined and clearly a homo. Now, by assumption there exists 𝑡 ∈ 𝑅 such that 

𝜃(𝑤) = 𝑡𝑤 ∀ 𝑤 ∈ 𝑅𝑥 since 𝑅𝑥 a≪ M. In particular, 𝜃(𝑥) = 𝑦 = 𝑡𝑥 ∈ 𝑅𝑥 ⟹ 𝑦 ∈

𝑅𝑥 ⟹ 𝑟𝑀(𝑙𝑅(𝑅𝑥)) = 𝑅𝑥. 

(5)⟹ (1) Let N be an a-small submodule of M and 𝛼: 𝑁 ⟶ 𝑀 be an R-homo. 

Suppose 𝑦 = 𝛼(𝑥) ∈ 𝛼(𝑁) ⟹  𝑥 ∈ 𝑁 ⟹ 𝑅𝑥 ⊆ 𝑁 ⟹ 𝑅𝑥 𝑎 ≪ 𝑀 𝑏𝑦 (2.4) ⟹
𝑥 ∈ 𝐴𝑆𝑀 ⟹ 𝑙𝑒𝑡 𝑠 ∈ 𝑙𝑅(𝑅𝑥) ⟹ 𝑠𝛼(𝑥) = 𝛼(𝑠𝑥) = 𝛼(0) = 0 ⟹ 𝛼(𝑥) ∈

𝑟𝑀(𝑙𝑅(𝑅𝑥)) ⟹ 𝛼(𝑥) ∈ 𝑅𝑥 𝑏𝑦 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ⟹ 𝑦 = 𝛼(𝑥) ∈ 𝑁 𝑠𝑖𝑛𝑐𝑒 𝑅𝑥 ⊆ 𝑁, 

which implies that M is a FASS module.                      ∎ 

 

Proposition 3.3: Let M be an R-module such that 𝑙𝑅(𝑁 ∩ 𝐾) = 𝑙𝑅(𝑁) + 𝑙𝑅(𝐾) for 

every finitely generated a-small submodules N and K of M. Then M is a FASS 

module if and only if M satisfies baer’s criterion on finitely generated a-small 

submodules of M. 
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Proof: ⟹) Let N be a finitely generated a-small submodule of M and let 𝑓: 𝑁 ⟶
𝑀 be an R-homomorphism. Now, 𝑁 = 𝑅𝑥1 + 𝑅𝑥2 + ⋯ + 𝑅𝑥𝑛 for some 

𝑥1, … , 𝑥𝑛 𝑖𝑛 𝑁. Now, the proof goes by induction if n=1 then it is the same as for 

proposition (3.2). Assume that Baer’s criterion holds for all a-small submodules 

generated by m elements for m ≤ n-1, there exists two elements r, s in R such that 

f(x)=rx for each 𝑥 ∈ 𝑅𝑥1 + 𝑅𝑥2 + ⋯ + 𝑅𝑥𝑛−1 and 𝑓(𝑥∗) = 𝑠𝑥∗ for each 𝑥∗ ∈ 𝑅𝑥𝑛. 

Now, for each 𝑦 ∈ ((𝑅𝑥1 + 𝑅𝑥2 + ⋯ + 𝑅𝑥𝑛−1) ∩ 𝑅𝑥𝑛) we have ry=sy and hence 

r-s∈ 𝑙𝑅((𝑅𝑥1 + 𝑅𝑥2 + ⋯ + 𝑅𝑥𝑛−1) ∩ 𝑅𝑥𝑛
 ), thus by hypothesis there exists 𝑢 +

𝑣 ∈ 𝑙𝑅(𝑅𝑥1 + ⋯ + 𝑅𝑥𝑛) + 𝑙𝑅(𝑅𝑥𝑛) such that r-s=u+v and then r-u=v+s=t. For 

each 𝑧 ∈ 𝑁, 𝑧 = ∑ 𝑟𝑖𝑥𝑖
𝑛
𝑖=1  for some 𝑟𝑖 ∈ 𝑅, i=1,…,n and 𝑓(𝑧) = 𝑓(∑ 𝑟𝑖𝑥𝑖

𝑛
𝑖=1 ) =

𝑓(∑ 𝑟𝑖𝑥𝑖
𝑛−1
𝑖=1 ) + 𝑓(𝑟𝑛𝑥𝑛) = 𝑟(∑ 𝑟𝑖𝑥𝑖)

𝑛−1
𝑖=1 + 𝑠(𝑟𝑛𝑥𝑛) = 𝑟(∑ 𝑟𝑖𝑥𝑖)

𝑛−1
𝑖=1 −

𝑢(∑ 𝑟𝑖𝑥𝑖)
𝑛−1
𝑖=1 + 𝑠(𝑟𝑛𝑥𝑛) + 𝑣(𝑟𝑛𝑥𝑛)      =   (𝑟 − 𝑢)(∑ 𝑟𝑖𝑥𝑖)

𝑛−1
𝑖=1 +  (𝑠 + 𝑣)(𝑟𝑛𝑥𝑛) =

𝑡(∑ 𝑟𝑖𝑥𝑖)
𝑛−1
𝑖=1 + 𝑡(𝑟𝑛𝑥𝑛) = 𝑡(∑ 𝑟𝑖𝑥𝑖) = 𝑡𝑧.𝑛

𝑖=1  

 ⟸) If Baer’s criterion holds for a-small finitely generated submodules then it holds 

for a-small cyclic submodules and proposition (3.2) ends the discussion.              ∎ 

 

Proposition 3.4: Let M be a FASS R-module such that for each x in 𝐴𝑆𝑀 and  left 

ideal I of R, every R-homo 𝜃: 𝐼𝑥 ⟶ 𝑀 can be extended to an R-homomorphism 

𝛼: 𝑅𝑥 ⟶ 𝑀. If any a-small submodule N of M satisfies the double annihilator 

condition; that is, 𝑟𝑀(𝑙𝑅(𝑁)) = 𝑁 then so does N+Rx. 

 

Proof: Denote 𝑙𝑅(𝑁) and 𝑙𝑅(𝑅𝑥) by A and B respectively. Then by our assumption 

𝑟𝑀(𝐴) = 𝑁, and since M is a FASS module then 𝑟𝑀(𝐵) = 𝑅𝑥. The proof of 𝑁 +
𝑅𝑥 ⊆ 𝑟𝑀(𝑙𝑅(𝑁 + 𝑅𝑥)) is obvious, since 𝑙𝑅(𝑁 + 𝑅𝑥) = 𝑙𝑅(𝑁) ∩ 𝑙𝑅(𝑅𝑥) = 𝐴 ∩ 𝐵. 

It is enough to show that 𝑟𝑀(𝑙𝑅(𝑁 + 𝑅𝑥) ⊆ 𝑁 + 𝑅𝑥. Now, let 𝑦 ∈ 𝑙𝑅(𝐴 ∩ 𝐵) and 

define 𝜃: 𝐴𝑥 ⟶ 𝑀 by 𝜃(𝑎𝑥) = 𝑎𝑦 for each 𝑎 ∈ 𝐴, if ax=0 then 𝑎 ∈ 𝑙𝑅(𝑥) = 𝐵 

hence 𝑎 ∈ 𝐴 ∩ 𝐵 and  since 𝑦 ∈ 𝑟𝑀(𝐴 ∩ 𝐵) then ay=0. Therefore, 𝜃 is a well-

defined clearly a homo. The use of our assumption implies that there exists an 

extension 𝛼: 𝑅𝑥 ⟶ 𝑀 of 𝜃, and 𝛼(𝑅𝑥) ⊆ 𝑅𝑥 since M is a FASS module implies 

that 𝑎𝛼(𝑥) = 𝛼(𝑎𝑥) = 𝑎𝑦 for each a in A. Then 𝑎(𝛼(𝑥) − 𝑦) = 0 implies that 

𝛼(𝑥) − 𝑦 ∈ 𝑟𝑀(𝐴) = 𝑁; that is, there exists 𝑛 ∈ 𝑁 such that 𝛼(𝑥) − 𝑦 = 𝑛 𝑜𝑟 𝑦 =
𝑛 + 𝛼(𝑥) ∈ 𝑁 + 𝑅𝑥. Thus 𝑁 + 𝑅𝑥 = 𝑟𝑀(𝑙𝑅(𝑁 + 𝑅𝑥).                             ∎ 

 

Proposition 3.5: Let M be an R-module such that for each 𝑥 ∈ 𝐴𝑆𝑀 and left ideal 

I of R, every R-homomorphism 𝜃: 𝐼𝑥 ⟶ 𝑀 can be extended to an R-

homomorphism 𝛼: 𝑅𝑥 ⟶ 𝑀. Then M is a FASS module if and only if each finitely 

generated a-small submodule of M satisfies the double annihilator condition. 

Proof: The proof goes by induction as for n=1 it implies from proposition (3.2), 

and for n=m+1 it implies from proposition (3.4).                                   ∎  

 

 The following proposition gives properties of FASS modules. 

Proposition 3.6: Let M be an R-module. consider the following statements: 

1. M is a FASS module. 

2. Every submodule N of M with 𝑙𝑅(𝑁) = 𝑙𝑅(𝑀) is a FASS module. 
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3. Every 2-generated a-small submodule B of M with 𝑙𝑅(𝐵) = 𝑙𝑅(𝑀) is a 

FASS module. 

4. If N,K ⊆ M, K a≪ M and N is an epimorphic image of K then N ⊆ K. 

Then (1)⟺ (2) ⟹ (3), and (1)⟺ (4) 

 

Proof: (1)⟺ (2) Necessity, Let N be a submodule of M such that 𝑙𝑅(𝑁) = 𝑙𝑅(𝑀), 

let K a≪ N and 𝛼: 𝐾 ⟶ 𝑁 be an R-homo. Proposition (2.6) implies that K a≪ M 

and hence 𝑖 ∘ 𝛼(𝐾) ⊆ 𝐾 by M being a FASS module, where 𝑖: 𝑁 ⟶ 𝑀 is the 

inclusion homomorphism. Thus 𝛼(𝐾) ⊆ 𝐾 and N is a FASS module. 

Sufficiency, clear. 

(2)⟹ (3) Obvious. 

(1)⟹ (4) Let 𝑥 ∈ 𝑁 and 𝛼: 𝐾 ⟶ 𝑁 be an R-epimorphism. Then 𝑖 ∘ 𝛼: 𝐾 ⟶ 𝑀 is 

an R-homomorphism, since K a≪ M then by (1) 𝑖 ∘ 𝛼(𝐾) ⊆ 𝐾 where 𝑖: 𝑁 ⟶ 𝑀 is 

the inclusion homomorphism. Since N is an epimorphic image of K then for each x 

in N there exist y in K such that 𝛼(y)=x and hence N⊆ 𝛼(K)⊆K implies that N⊆K. 

(4)⟹ (1) Let N a≪ M and 𝛼: 𝑁 ⟶ 𝑀 be an R-homo. Now, 𝛼: 𝑁 ⟶ 𝛼(𝑁) is an 

epimorphism and using (4) we get 𝛼(𝑁) ⊆ 𝑁.                           ∎ 

  

 Next, the relation between the property of an R-module M being FASS and 

the commutativity of its endomorphism ring is discussed. 

 

Proposition 3.7: Let R be a commutative ring and M a FASS R-module. Then 

𝐸𝑛𝑑𝑅(𝑀) is commutative over elements in 𝐴𝑆𝑀. Moreover, for each 𝑥 ∈ 𝐴𝑆𝑀 and 

𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀) there exists an element r in R (depends on x) such that f(x)=rx. 

 

Proof: Let f and g be any two elements in 𝐸𝑛𝑑𝑅(𝑀) and let x belongs to 𝐴𝑆𝑀, then 

Rx is annihilator small in M and hence stable. But every stable submodule is fully 

invariant [1], which leads to that there exists two elements r, s in R such that f(x)=rx 

and g(x)=sx [8]. Now, (f∘g)(x)=f(g(x)=f(sx)=r(sx)=s(rx) =g(rx)=g(f(x)=(g∘ 𝑓)(𝑥); 

that is,  𝐸𝑛𝑑𝑅(𝑀) is commutative over elements in 𝐴𝑆𝑀.            ∎ 

 

 A natural question to ask is whether there exist conditions under which the 

converse true? Such a question leads us to define the concept of annihilator small 

regular modules as shown below. 

 

Definition 3.8: An R-module M is called annihilator small regular if given any 

element in 𝐴𝑆𝑀, then there exists f∈ 𝑀∗ = 𝐻𝑜𝑚𝑅(𝑀, 𝑅) such that m=f(m)m. A ring 

R is called annihilator small regular if it is annihilator small module on itself. 

 There are bilinear functions: 

𝜃: 𝑀 × 𝑀∗ ⟶ 𝑅 

𝜓: 𝑀∗ × 𝑀 ⟶ 𝐸𝑛𝑑𝑅 

Where 𝜃(𝑚, 𝛼) = 𝛼(𝑚) ∀ 𝑚 ∈ 𝐴𝑆𝑀 , 𝛼 ∈ 𝑀∗ and 𝜓(𝛼, 𝑚) = 𝛼(𝑚)𝑚 ∀ 𝛼 ∈
𝑀∗, 𝑚 ∈ 𝐴𝑆𝑀 . 
 

Proposition 3.9: Every commutative a-small regular ring R is a FASS ring. 
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Proof: For each a-small principal ideal < r > of R and each R-homomorphism 𝑓: <
𝑟 >⟶ 𝑅, there exists an element 𝑡 ∈ 𝑅 such that r=rtr  and hence 

f(r)=f(rtr)=rf(tr)=rtf(r) implies that f(< r >)⊆< r >.                                              ∎ 

 

 Next, S will denote the ring of endomorphisms of M and 𝑍𝑆 denotes the 

center of S. 

 

Lemma 3.10: Let 𝛼 ∈ 𝐴𝑆𝑍𝑆
. Then there exists an element 𝛽 ∈ 𝑍𝑆 with 𝛼 = 𝛼𝛽𝛼 if 

and only if 𝑀 = 𝛼(𝑀)⨁ker (𝛼). 

 

Proof: ⟹) Suppose that such a 𝛽 exists. Set 𝜋 = 𝛼𝛽 = 𝛽𝛼 then 𝜋2 = (𝛽𝛼)(𝛽𝛼) =

𝛽(𝛼𝛽𝛼) = 𝛽𝛼 = 𝜋. Now, 𝛼(𝑀) ⊆ 𝑀 thus 𝜋(𝛼(𝑀) ⊆ 𝜋(𝑀) but 𝜋(𝛼(𝑀)) =

𝛼𝛽(𝛼(𝑀)) = (𝛼𝛽𝛼)(𝑀) = 𝛼(𝑀) which implies that 𝛼(𝑀) ⊆ 𝜋(𝑀) and since 

𝛽(𝑀) ⊆ 𝑀, then 𝛼(𝛽(𝑀)) ⊆ 𝛼(𝑀) and 𝜋(𝑀) ⊆ 𝛼(𝑀) implies that 𝜋(𝑀) =
𝛼(𝑀). Moreover,  ker(𝛼) = ker (𝜋)  since 𝜋 = 𝛼𝛽 𝑎𝑛𝑑 𝛼 = 𝜋𝛼. Clearly, 𝑀 =
𝜋(𝑀)⨁(1 − 𝜋)(𝑀) = 𝜋(𝑀) ⨁ 𝑘𝑒𝑟(𝜋) and hence 𝑀 = 𝛼(𝑀)⨁ker (𝛼). 

 ⟸) Suppose that 𝛼 ∈ 𝑍𝑆 and 𝑀 = 𝛼(𝑀) ⨁ 𝑘𝑒𝑟(𝛼). Given any 𝑚 ∈ 𝑀 then 𝑚 =
𝛼(𝑛) + 𝑘 with 𝑛 ∈ 𝑀, 𝑘 ∈ ker (𝛼) and so we write 𝑛 = 𝛼(𝑛1) + 𝑘1 with 𝑛1 ∈
𝑀, 𝑘1 ∈ ker (𝛼). Thus 𝑚 = 𝛼(𝛼(𝑛1) + 𝑘1) + 𝑘 and 𝛼(𝑚) = 𝛼(𝛼(𝛼(𝑛1) + 𝑘1) +
𝑘) = 𝛼(𝛼2(𝑛1) + 𝛼(𝑘1) + 𝑘) = 𝛼3(𝑛1) + 𝛼(𝑘) = 𝛼2(𝛼(𝑛1)). Set 𝑥𝑚 = 𝛼(𝑛1) ∈
𝛼(𝑀), observe that 𝑥𝑚 is the unique element of M such that 𝛼(𝑚) = 𝛼2(𝑥𝑚), for 

if 𝑦 ∈ 𝛼(𝑀) with 𝛼(𝑚) = 𝛼2(𝑦) then 𝛼2(𝑥𝑚 − 𝑦) = 0 so that 𝛼(𝑥𝑚 − 𝑦) ∈
𝛼(𝑀) ∩ ker(𝛼) = (0) and hence 𝑥𝑚 − 𝑦 ∈ 𝛼(𝑀) ∩ ker(𝛼) = (0) implies that 

𝑥𝑚 = 𝑦. It is easy to check that 𝑥𝑟𝑚 = 𝑟𝑥𝑚, 𝑥𝑛+𝑚 = 𝑥𝑛 + 𝑥𝑚 and 𝑥𝛾(𝑚) = 𝛾(𝑥𝑚) 

for any 𝑛, 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 𝑎𝑛𝑑 𝛾 ∈ 𝑆. Consequently, there is a homomorphism 𝛽 ∈

𝑆 defined by 𝛽(𝑚) = 𝑥𝑚. For any 𝑚 ∈ 𝑀, 𝛼𝛽𝛼(𝑚) = 𝛼(𝛽𝛼(𝑚)) = 𝛼(𝑥𝛼(𝑚)) =

𝛼(𝛼(𝑥𝑚)) = 𝛼2(𝑥𝑚) = 𝛼(𝑚) so that 𝛼 = 𝛼𝛽𝛼. It remains only to show that 𝛽 ∈

𝑍𝑆 which easy to show for given any 𝛾 ∈ 𝑆 and 𝑚 ∈ 𝑀, 𝛽(𝛾(𝑚)) = 𝑥𝛾(𝑚) =

𝛾(𝑥𝑚) = 𝛾(𝛽(𝑚)).               ∎ 

 

Proposition 3.11: Let M be an annihilator small regular R-module. Then  𝑍𝑆 is an 

annihilator small regular ring. 

 

Proof: Let 𝛼 ∈ 𝐴𝑆𝑍𝑆
 and given any 𝑚 ∈ 𝐴𝑆𝑀 choose 𝑓 ∈ 𝑀∗ with 𝑚 = 𝑓(𝑚)𝑚, 

hence 𝛼(𝑚) = 𝑓(𝑚)𝛼(𝑚) 𝑎𝑛𝑑 𝛼(𝑚) = 𝜓(𝑓, 𝛼(𝑚))𝛼(𝑚) = 𝑓(𝑚)𝛼2(𝑚). Now, 

𝑚 = 𝑓(𝑚)𝛼(𝑚) + (𝑚 − 𝑓(𝑚)𝛼(𝑚)) then 𝑓(𝑚)𝛼(𝑚) ∈ α(M) 𝑎𝑛𝑑 𝑚 −

𝑓(𝑚)𝛼(𝑚) ∈ ker (𝛼), since 𝛼(𝑚 − 𝑓(𝑚)𝛼(𝑚)) = 𝛼(𝑚) − 𝑓(𝑚)𝛼2(𝑚) = 0. So 

𝑀 = 𝛼(𝑀) + ker (𝛼). Now, let 𝛼(𝑚) ∈ 𝛼(𝑀) ∩ ker (𝛼) then from above we get 

that 𝛼(𝑚) = 𝑓(𝑚)𝛼2(𝑚) = 0 since 𝛼(𝛼(𝑚)) = 0. Hence, 𝛼(𝑀) ∩ ker(𝛼) = (0) 

and thus 𝑀 = 𝛼(𝑀)⨁ker (𝛼) and by lemma (3.10) we get that 𝑍𝑆 is a small regular 

ring.                       ∎ 
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Proposition 3.12: Let M be an R-module such that every a-small cyclic submodule 

is a direct summand. If S is commutative over elements in 𝐴𝑆𝑀, then M is a FASS 

module. 

 

Proof: let N be any a-small cyclic submodule of M and 𝑓: 𝑁 ⟶ 𝑀 be an R-

homomorphism, then there exists 𝑚 ∈ 𝐴𝑆𝑀 such that N=Rm. By our assumption 

Rm is a direct summand of M; that is, there exists a submodule L of M such that 

𝑀 = 𝑅𝑚⨁𝐿. Now, f can be extended to an R-endomorphism of M, 𝑔: 𝑀 ⟶ 𝑀 by 

putting 𝑔(𝑙) = 0 for each 𝑙 ∈ 𝐿. Define ℎ: 𝑀 ⟶ 𝑀 by ℎ(𝑥, 𝑦) = 𝑥 for each 𝑥 ∈
𝑅𝑚 and 𝑦 ∈ 𝐿. Let f(x)=𝑛1 + 𝑙1 for some 𝑛1 ∈ 𝑁 and 𝑙1 ∈ 𝐿. Now, let 𝑧 ∈ 𝐴𝑆𝑀 

then z=x+l for some 𝑥 ∈ 𝑁 and 𝑙 ∈ 𝐿. Thus we have (𝑔 ∘ ℎ)(𝑧) = (𝑔 ∘ ℎ)(𝑥 + 𝑙) =

𝑔(𝑥) = 𝑓(𝑥) = 𝑛1 + 𝑙1 and (ℎ ∘ 𝑔)(𝑧) = (ℎ ∘ 𝑔)(𝑥 + 𝑙) = ℎ(𝑓(𝑥)) = ℎ(𝑛1 +

𝑙1) = 𝑛1,but S is commutative for each 𝑧 ∈ 𝐴𝑆𝑀 and hence 𝑔 ∘ ℎ = ℎ ∘ 𝑔 implies 

that 𝑙1 = 0 and f(x)∈N ∀ 𝑥 ∈ 𝑁. Therefore, 𝑓(𝑁) ⊆ 𝑁 and then M is a FASS 

module.                              ∎ 

 

Lemma 3.13: Let M be an annihilator small regular R-module. Then every a-small 

cyclic submodule of M is a direct summand. 

 

Proof: Let Rm be an a-small cyclic submodule of M, then 𝑚 ∈ 𝐴𝑆𝑀 and hence  

m=𝜓(f,m)m for some f in 𝑀∗, which implies that 𝑀 = 𝑅𝑚 ⨁ 𝑘𝑒𝑟 (𝜓) [9].            ∎          

 

 The proof of the following corollary is immediate. 

Corollary 3.14: Let M be an annihilator small regular R-module. Then M is a FASS 

module if and only S is commutative over elements in 𝐴𝑆𝑀. 
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