Fully Annihilator Small Stable Modules

Mehdi Sadiq Abbas and Hiba Ali Salman

Department of Mathematics, College of Science
Mustansiriyah University, Baghdad, Iraq

Copyright © 2017 Mehdi Sadiq Abbas and Hiba Ali Salman. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let R be an associative ring with non-zero identity and M be a left R-module. A submodule N of M is called annihilator small (briefly a-small), if for every submodule L of M with $N+L=M$, then $l_R(L)=l_R(M)$. The properties of a-small submodules have been studied and characterizations of a-small cyclic submodules have been investigated. The sum of a-small submodules is studied. Moreover, we shall introduce fully annihilator small stable module (briefly FASS module) where M is called a FASS module if every annihilator small submodule of M is stable. Characterizations of FASS modules are proven.

Keywords: Annihilator small submodules, Fully stable modules, Annihilator small regular modules

1. Introduction

Throughout this work R will denote an associative ring with non-zero identity, M a left R-module. A submodule N of M is called small, if for every submodule K of M with $N+K=M$, then $l_R(K)=l_R(M)$ [5]. Recently, many authors have been interested in studying different kinds of a-small submodules as in [3] and [4], where the authors in [3] introduced the concept of R-annihilator small submodules, that is; a submodule N of an R-module M is called R-annihilator small, if whenever $N+K=M$, where K a submodule of $M; then l_R(K)=0$. This has motivated us in turn to introduce the concept of annihilator small submodules, in way that a submodule N of M is called annihilator small (briefly a-small) in case $l_R(K)=l_R(M)$, where K is a submodule of $M; whenever N+K=M. It is clear that every small submodule is a-small, but the converse is not true generally as examples can show next, while the two definitions become equal if M is faithful, recalling that M is called faithful in case $l_R(M) = 0. Remember that singular submodule of an R-module M denoted by $Z(M) = \{m \in M \mid l_R(m) \text{ is essential in } R \}$ [5]. We shall study the properties of a-small
submodules, and define a subset of M that consists of all annihilator small elements (denoted by AS_M), as well as; we shall denote the sum of all annihilator small submodules of M by $J_\alpha(M)$, and study its properties and the relation between it and the Jacobson radical. Finally, we shall introduce the concept of fully annihilator small stable modules as a generalization of fully stable modules [1]. Recall that a submodule N of an R-module M is called stable in case for every R-homomorphism $\alpha: N \to M$ we have $\alpha(N) \subseteq N$ and M is called fully stable if every submodule of M is stable. Characterizations and properties of this concept is studied involving the satisfaction of Baer’s criterion on a-small cyclic submodules and its effect on M being a FASS module. Recall that, a submodule N of M is said to satisfy Baer’s criterion if for each $\beta: N \to M$ there exists an element $r \in R$ such that $\beta(n) = rn$ for each $n \in N$ [1]. In this paper, we are also interested to study the relation between M being a FASS module and $\text{End}_R(M)$ being commutative.

2. Annihilator small submodules

Definition 2.1: A submodule N of an R-module M is called annihilator small (briefly a-small) in M, and denoted by $N \ll M$; if whenever $N + K = M$ for each submodule K of M, then $l_R(K) = l_R(M)$. Where l_R denotes the left annihilators in R. A left ideal I of R is annihilator small if for each left ideal J of R with $I + J = R$, implies that $l_R(J) = 0$.

Examples and remarks 2.2:
1. It is clear that every small submodule is annihilator small, but the converse is not true generally. For example, in the \mathbb{Z}-module \mathbb{Z}, (0) is the only small submodule while for every $n > 1$, there exists m such that $n\mathbb{Z} + m\mathbb{Z} = \mathbb{Z}$ and $l_\mathbb{Z}(m\mathbb{Z}) = 0 = l_\mathbb{Z}(\mathbb{Z})$.
2. If M is a faithful R-module then the concepts of annihilator small submodules and R-annihilator small submodules are equivalent.
3. There are annihilator small submodules that are direct summands as in the \mathbb{Z}_2-module $M = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, where it is clear that $A = \mathbb{Z}_2 \oplus (0)$ is a direct summand of M, $M = A \oplus \mathbb{Z}_2 = A \oplus (\bar{1}, \bar{1})$ and $l_{\mathbb{Z}_2}(\mathbb{Z}_2) = 0 = l_{\mathbb{Z}_2}(\bar{1}, \bar{1})$.

Recall that, M is called **prime** if $l_R(N) = l_R(M)$ for every non-zero submodule N of $M[5]$. M is called **quasi-Dedekind** if $\text{Hom}(M/N, M) = 0$ for every proper submodule N of $M[6]$, it is mentioned in [6] that every quasi-Dedekind module is prime.

The proof of the following proposition is obvious.

Proposition 2.3: Let M be a prime R-module. Then every proper submodule of M is annihilator small. In particular, every proper submodule of a quasi-Dedekind R-module is annihilator small.

It is mentioned in [6, p.25] that \mathbb{Q} as \mathbb{Z}-module is quasi-Dedekind, and hence by the use of proposition (2.3) we get that every proper submodule of \mathbb{Q} is annihilator small, but only finitely generated submodules of \mathbb{Q} are small.
Proposition 2.4: Let M be an R-module with submodules $A \subseteq N$. If $N \triangleleft M$ then $A \triangleleft M$.

Proof: Let X be a submodule of M such that $A + X = M$, since $A \subseteq N$ hence $N + X = M$. By N being a-small in M then $l_R(X) = l_R(M)$ and hence $A \triangleleft M$. ■

Proposition 2.5: Let M be an R-module with submodules $A \subseteq N$, if $A \triangleleft N$ and $l_R(N) = l_R(M)$ then $A \triangleleft M$.

Proof: Let X be any submodule of M such that $A + X = M$, now $N \cap M = N \cap (A + X)$ implies that $N = A + (N \cap X)$ by the modular law. Since $A \triangleleft N$, thus $l_R(N \cap X) = l_R(N)$. But $l_R(X) \subseteq l_R(N \cap X) = l_R(N) = l_R(M)$ implies that $l_R(X) \subseteq l_R(M)$ and then $l_R(X) = l_R(M)$, hence $X \triangleleft M$. ■

Proposition 2.6: Let M and N be R-modules and $\alpha: M \rightarrow N$ an R-monomorphism if $W \triangleleft M$ then $\alpha(W) \triangleleft \alpha(M)$.

Proof: Let U be a submodule of N such that $\alpha(W) + U = \alpha(M)$, now $U \subseteq N$ implies $\alpha^{-1}(U) \subseteq \alpha^{-1}(N) = M$ and $\alpha(\alpha^{-1}(U)) = U \cap \text{Im}(\alpha) = U \cap \alpha(M) = U$. Now, $\alpha^{-1}(\alpha(W)) \subseteq \alpha^{-1}(\alpha(M))$ and then $W + \alpha^{-1}(U) = M$ this implies that $l_R(\alpha^{-1}(U)) = l_R(M)$ since $W \triangleleft M$. Let $X = \alpha^{-1}(U)$ then $l_R(X) = l_R(M)$. Let $r \in l_R(U) = l_R(\alpha(X))$, thus $r \alpha(X) = 0 \implies rX = 0 \implies r \in l_R(X) \implies l_R(U) \subseteq l_R(X) = l_R(M) \implies l_R(U) = l_R(M) \subseteq l_R(\alpha(M)) \implies l_R(U) = l_R(\alpha(M))$. Hence, $\alpha(W) \triangleleft \alpha(M)$. ■

Corollary 2.7: Let M and N be R-modules and $\alpha: M \rightarrow N$ an R-monomorphism such that $l_R(\alpha(M)) = l_R(N)$, if $W \triangleleft M$ then $\alpha(W) \triangleleft N$.

In the same manner of the definition of Jacobson radical related to small submodules, we will state a definition related to annihilator small submodules in the following. But first we need this definition.

Definition 2.8: Let M be an R-module and $a \in M$. We say that an element a in M is annihilator small if Ra is annihilator small submodule of M. let $AS_M = \{a \in M | Ra \triangleleft M\}$.

Note that AS_M is not a submodule of M. In fact, it is not closed under addition, for example in the $\mathbb{Z} - module$ \mathbb{Z} we have that $3, -2 \in AS_\mathbb{Z}$ but $3 - 2 = 1 \notin AS_\mathbb{Z}$

We can see by the use of proposition (2.4) that if M is an R-module and $a \in AS_M$, then $Ra \subseteq AS_M$. Moreover, if $A \triangleleft M$ then $A \subseteq AS_M$.

Definition 2.9: Let M be an R-module. Denote $I_a(M)$ for the sum of all annihilator small submodules of M.
It is clear that $AS_M \subseteq J_a(M)$ for every R-module M. The $\mathbb{Z} - module \mathbb{Z}$ is an example of this inclusion being proper, where $n\mathbb{Z}$ is a-small for each $n \neq 1, -1$ in \mathbb{Z}, hence $J_a(\mathbb{Z}) = \sum_{n \mathbb{Z} \ll \mathbb{Z}} n\mathbb{Z} = \mathbb{Z}$, but $AS_{\mathbb{Z}} = \{n \in \mathbb{Z}| n\mathbb{Z} \ll \mathbb{Z}\} = \{n\mathbb{Z}| n \neq 1, -1\}$.

Recall that, if T is an arbitrary proper submodule of a right R-module M and N a submodule of M, then N is called T-essential provided that $N \not\subseteq T$ and for each submodule K of M, $N \cap K \subseteq T$ implies that $K \subseteq T$ [8].

We introduce the following singularity of modules.

Definition 2.10: Let M be an R-module and J be an arbitrary left ideal of R. define the subset $Z(J,M)$ of M by $Z(J,M)=\{x \in M| l_R(x) \text{ is } J\text{-essential in } R\}$, it is easy to show that $Z(J,M)=\{x \in M| l_R(x) \text{ is } J\text{-essential in } R\}$. It is clear that $Z(0,M)=Z(\mathbb{M})$ for any R-module M.

Proposition 2.11: Let M be an R-module and J an arbitrary proper left ideal of R. Then $Z(J,M)$ is a submodule of M, and it is called the singular submodule of M relative to J.

Proof: It is clear that $Z(J,M)$ is non-empty. Let $x,y \in Z(J,M)$, then there exist two J-essential left ideals A and B of R with $Ax=0$ and $By=0$. Now, $A \cap B$ is J-essential and $(A\cap B)(x-y)=0$ [7] and thus $x-y \in Z(J,M)$. For each $r \in R$, since $l_R(x) \subseteq l_R(rx)$ and $l_R(x)$ is J-essential in R hence $rx \in Z(J,M)$.

Lemma 2.12: Let M be a non-zero R-module and N a submodule of M. If $l_R(N)$ is $l_R(M)$-essential in R, then $r_M(l_R(N))$ is a-small in M; in particular, N is a-small in M.

Proof: Let X be a submodule of M with $X+r_M(l_R(N))=M$. Then $l_R(X) \cap l_R(\ell_M(l_R(N))) = l_R(X) \cap l_R(N) = l_R(M)$, since $l_R(N)$ is $l_R(M)$-essential in R then $l_R(X) \subseteq l_R(M)$ and hence $r_M(l_R(N))$ is a-small in M. The last assertion follows from proposition (2.4).

Corollary 2.13: Let M be a non-zero R-module. If $m \in Z(l_R(M),M)$, then Rm is a-small in M.

Proof: Let $m \in Z(l_R(M),M)$. Then $l_R(m)$ is $l_R(M)$-essential in R, and by lemma (2.12) we have Rm is a-small in M.

Note that the converse of lemma(2.12) is true if $r_M(A \cap B) = r_M(A) + r_M(B)$ for each left ideals A and B of R. For this, let T be a left ideal of R with $l_R(N) \cap T \subseteq l_R(M)$. Then

$$M \subseteq r_M(l_R(M)) \subseteq r_M(l_R(N) \cap T) = r_M(l_R(N)) + r_M(T).$$

Since $r_M(l_R(N))$ is a-small in M, then $T \subseteq l_R(r_M(T)) \subseteq l_R(M)$. This shows that $l_R(N)$ is $l_R(M)$-essential in R.

Proposition 2.14: Let M be a non-zero finitely generated R-module and K a submodule of M. If K is a-small in M, then so is K+J(M)+Z(J,M) where J=l_R(M).

Proof: Let X be a submodule of M such that K+J(M)+Z(J,M)+X=M. Since M is finitely generated, then \{m_i\}_{i=1}^n is a set of generators of M and M=\sum_{i=1}^n Rm_i, and J(M) is small in M; that is, K+Z(J,M)+X=M. Now, for each m_i \in M we have m_i = k_i + z_i + x_i where k_i \in K, z_i \in Z(J,M) and x_i \in X for each i=1,\ldots,n. Thus M=K+\sum_{i=1}^n Rz_i+X and since K is a-small in M by our assumption.

Thus \(l_R(M)=l_R(\sum_{i=1}^n Rz_i+X)=l_R(\sum_{i=1}^n Rz_i) \cap l_R(X)=(\cap_{i=1}^n l_R(Rz_i)) \cap (l_R(X))\). But z_i \in Z(J,M), thus l_R(z_i) is l_R(M)-essential in R for each i=1,\ldots,n, and hence \(\cap_{i=1}^n l_R(Rz_i)\) is l_R(M)-essential in R [2]. Thus \(l_R(X) \subseteq l_R(M)\), and hence K+J(M)+Z(J,M) is a-small submodule of M.

Corollary 2.15: Let M be a finitely generated R-module. Then J(M)+Z(J,M) is a-small in M where J=l_R(M).

The proof of the following proposition is as that in lemma (2.12).

Proposition 2.16: let M be an R-module such that Z(J,M) is finitely generated. If K is an a-small submodule of M, then so is K+Z(J,M).

In the following we give a characterization of cyclic annihilator small submodules.

Theorem 2.17: Let M be an R-module and m \in M. Then the following statements are equivalent:
1. Rm \triangleleft\triangleleft M.
2. \(\cap_{i \in I} l_R(m_i-r_i m) = l_R(M)\) for each \(r_i \in R\).
3. There exists \(j \in I\) such that \(rm_j \notin Rrm\) for all \(r \notin l_R(M)\).

Proof: (1)⇒ (2) For each \(i \in I\), \(m_i = m_i - r_i m + r_i m\) and hence \(M=\sum_{i \in I} R(m_i - r_i m) + Rm\). By (1) we have \(l_R(M) = l_R(\sum_{i \in I} R(m_i - r_i m)) = \cap_{i \in I} l_R(m_i - r_i m)\).

(2)⇒ (1) Let X be a submodule of M with X+Rm=M. Then for each \(i \in I\), \(m_i = x_i + r_i m\), \(r_i \in R\) and \(x_i \in X\). Let \(t \in l_R(X)\), then \(tm_i = tr_i m + tx_i = l_R(M)\).

(2)⇒ (3) Let \(r \notin l_R(M)\) and assume that \(rm_i \in Rrm\) for all \(i \in I\). Then \(r m_i = r i m = r m_i\) for all \(i \in I\), so by (1) \(r \in \cap_{i \in I} l_R(m_i - r_i m) = l_R(M)\) which is a contradiction.

(3)⇒ (2) Let \(r \in \cap_{i \in I} l_R(m_i - r_i m)\) and hence \(r \in l_R(m_i - r_i m)\) for all \(i \in I\). Thus \(rm_i = r_i m\) for all \(i \in I\), so \(r m_i \in Rrm\). By (2) \(r \in l_R(M)\) and hence \(\cap_{i \in I} l_R(m_i - r_i m) \subseteq l_R(M)\) and \(\cap_{i \in I} l_R(m_i - r_i m) = l_R(M)\) for all \(r_i \in R\).

Theorem 2.18: Let R be a commutative ring, M=\(\sum_{i \in I} Rm_i\) and K a submodule of M. Then the following statements are equivalent:
1. K \triangleleft\triangleleft M.
2. \(\cap_{i \in I} l_R(m_i - k_i) = l_R(M)\) for all \(k_i \in K\).
Proof: (1) \(\Rightarrow\) (2) For each \(i \in I\), let \(k_i \in K\). Then \(m_i = m_i - k_i + k_i\) for each \(i \in I\). Then \(M = \sum_{i \in I} R(m_i - k_i) + K\), by (1) we obtain \(l_R(M) = l_R(\sum_{i \in I} R(m_i - k_i)) = l_R(R(m_i - k_i))\).

(2)\(\Rightarrow\) (1) Let \(A\) be a submodule of \(M\) with \(M = A + K\). Then for each \(i \in I\) \(m_i = a_i + k_i\) where \(a_i \in A\) and \(k_i \in K\). Hence \(a_i = m_i - k_i\) for each \(i \in I\) and \(M = \sum_{i \in I} R(m_i - k_i) + K\). Now, let \(t \in l_R(A)\) then \(ta_i = t(m_i - k_i)\) for each \(i \in I\) and hence \(t \in l_R(R(m_i - k_i)) = l_R(M)\) by (2), so \(l_R(A) \subseteq l_R(M)\). Thus \(K \triangleleft M\).

Next, properties and characterization of \(J_a(M)\) are given.

Proposition 2.19: Let \(M\) be an \(R\)-module such that \(AS_M \neq \emptyset\), then we have the following:
1. \(J_a(M)\) is a submodule of \(M\) and contains every annihilator small submodule of \(M\).
2. \(J_a(M) = \{a_1 + a_2 + \ldots + a_n; a_i \in AS_M\ for each i, n \geq 1\}\).
3. \(J_a(M)\) is generated by \(AS_M\).
4. If \(M\) is finitely generated, then \(J(M) \subseteq J_a(M)\).

Proof:
1. Let \(\{N_\lambda | \lambda \in \Lambda\}\) be the set of all annihilator small submodules of \(M\), thus \(J_a(M) = \sum_{\lambda \in \Lambda} N_\lambda\). Let \(x, y \in J_a(M)\), this means that \(x = \sum_{\lambda \in \Lambda} x_\lambda \) and \(y = \sum_{\lambda \in \Lambda} y_\lambda \) where \(x_\lambda, y_\lambda \in N_\lambda\) for each \(\lambda \in \Lambda\) and \(x_\lambda, y_\lambda \neq 0\) for at most a finite number of \(\lambda \in \Lambda\). Then \(x + y = \sum_{\lambda \in \Lambda} (x_\lambda + y_\lambda)\) such that \(x_\lambda + y_\lambda \in N_\lambda\) for each \(\lambda \in \Lambda\), \(x + y \in J_a(M)\). Hence, \(J_a(M) \subseteq \text{a submodule of } M\). it is clear from the definition of \(J_a(M)\) that it contains every a-small submodule of \(M\).
2. Follows from (1) and \(AS_M \subseteq J_a(M)\).
3. Since \(AS_M \subseteq J_a(M)\), then \(<AS_M> \subseteq J_a(M)\). Clearly, \(J_a(M) \subseteq <AS_M>\).
4. Hence, \(J_a(M)\) is generated by \(AS_M\).
4. Since \(M\) is finitely generated then \(J(M) \triangleleft M\), hence \(J(M) \triangleleft M\) and by (1) \(J(M) \subseteq J_a(M)\).

Proposition 2.20: Let \(M\) be an \(R\)-module such that \(AS_M \neq \emptyset\). Then the following statements are equivalent:
1. \(AS_M\) is closed under addition; that is, a finite sum of a-small elements is a-small.
2. \(J_a(M) = AS_M\).

Proof:
(1)\(\Rightarrow\) (2) Let \(a_1 + a_2 + \ldots + a_n \in J_a(M)\), \(a_i \in A_i\ i = 1, \ldots, n\), \(A_i\) is a-small in \(M\) for each \(i = 1, \ldots, n\). Then \(RA_i \triangleleft M\) by proposition (2.4). Hence \(a_i \in AS_M\) for each \(i = 1, \ldots, n\), by the assumption in (1) we get that \(a_1 + \cdots + a_n \in AS_M\). thus \(J_a(M) \subseteq AS_M\) and hence \(J_a(M) = AS_M\).
(2)\(\Rightarrow\) (1) Let \(x, y \in AS_M\), since \(AS_M \subseteq J_a(M)\) then \(x, y \in J_a(M)\) and by using proposition (2.19) we have \(x + y \in J_a(M)\). Hence, \(x + y \in AS_M\) (by our assump-
tion); that is, AS_M is closed under addition. We can prove that a finite sum of annihilator small elements is annihilator small by the use of induction.

Proposition 2.21: Let M be an R-module such that $\text{AS}_M \neq \emptyset$. If considering the following statements:

1. $J_a(M)$ is an annihilator small submodule of M.
2. If K and L are annihilator small submodules of M, then $K+L$ is an annihilator small submodule of M.
3. AS_M is closed under addition; that is, sum of annihilator small elements of M is annihilator small.
4. $J_a(M) = \text{AS}_M$.

Then $(1) \implies (2) \implies (3) \iff (4)$. If M is finitely generated, then $(1) \iff (2)$.

Proof:

$(1) \implies (2)$ Let K,L be a-small in M, then $K+L \subseteq J_a(M)$ which is a-small by assumption. Thus by using proposition (2.4) we get $K+L \ll M$.

$(2) \implies (3)$ Let $x,y \in AS_M$, then Rx, Ry are a-small in M, and hence by $(2) Rx + Ry$ is annihilator small in M. But $R(x+y) \subseteq Rx + Ry$ and by using proposition (2.4) we get $R(x+y) \ll M$. Hence, $x+y \in AS_M$.

$(3) \iff (4)$ By proposition (2.20).

Now, let M be finitely generated to prove $(2) \implies (1)$. Consider

$\{m_1,m_2,\ldots,m_n\}$ to be the set of generators of M. Let X be a submodule of M such that $J_a(M)+X=M$, then $m_i = a_i + x_i$ such that $a_i \in J_a(M)$ and $x_i \in X$ for each $i=1,\ldots,n$. Thus $\sum_{i=1}^n Rm_i = \sum_{i=1}^n Ra_i + \sum_{i=1}^n Rx_i$ and hence $M=\sum_{i=1}^n Ra_i + X$.

Now, since $a_i \in J_a(M)$ and since $(2) \implies (3) \iff (4)$ we get $J_a(M) = AS_M$; that is, $a_i \in AS_M$ and hence $Ra_i \ll M$ thus $l_R(X) = l_R(M)$ implies that $J_a(M) \ll M$.

Proposition 2.22: Let M be a finitely generated R-module and $J_a(M) \ll M$. Then we have the following statements:

1. $J_a(M)$ is the largest annihilator small submodule of M.
2. $J_a(M) = \cap\{W | W$ is a maximal submodule of M with $J_a(M) \subseteq W\}$.

Proof:

1. Clear by the definition of $J_a(M)$.
2. Let $a \in \cap\{W | W$ is a maximal submodule of M with $J_a(M) \subseteq W\}$. Claim that $Ra \ll M$, if not then $M=Ra+X$ where X is a submodule of M and $l_R(X) = l_R(M)$. Since $J_a(M) \ll M$ then $J_a(M)+X \neq M$. But M is finitely generated, thus there exist a maximal submodule B of M such that $J_a(M) + X \subseteq B$. Now, if $a \in B$ then $B=M$ a contradiction! But $a \in \cap\{W | W$ is a maximal submodule of M with $J_a(M) \subseteq W\}$ a contradiction! Thus $Ra \ll M$ and hence $a \in J_a(M)$. Hence, $J_a(M) = \cap\{W | W$ is a maximal submodule of $M with $J_a(M) \subseteq W\}$. ■
3. Fully annihilator small stable modules

Definition 3.1: An R-module M is called fully annihilator small stable; (briefly FASS-module), if every annihilator small submodule of it is stable.

Characterizations of FASS-modules are given in the following.

Proposition 3.2: Let M be an R-module. Then the following statements are equivalent:
1- M is a FASS-module.
2- Each a-small cyclic submodule of M is stable.
3- For each $x \in AS_M$, $y \in M$ if $l_R(x) \subseteq l_R(y)$ then $Ry \subseteq Rx$.
4- M satisfies Baer’s criterion on a-small cyclic submodules.
5- $r_M(l_R(Rx)) = Rx$ for each $x \in AS_M$.

Proof:
(1)\implies (2) Obvious
(2)\implies (3) Let $x \in AS_M$, $y \in M$ such that $l_R(x) \subseteq l_R(y)$. Define $\theta: Rx \to M$ by $\theta(rx) = ry$ if $rx=0$ then $r \in l_R(x)$, hence $r \in l_R(y)$ and $ry=0$, this shows that θ is well-defined which is a hom. Now, since $x \in AS_M$ then $Rx \trianglelefteq M$ by definition of AS_M. Thus $\theta(Rx) \subseteq Rx$ implies that $Ry \subseteq Rx$.
(3)\implies (1) Let N be an a-small submodule of M and let $\alpha: N \to M$ be an R-homomorphism. Now, let $y = \alpha(x) \in \alpha(N)$ then $x \in N$ and hence $Rx \subseteq N$ implies that Rx is a-small by proposition (2.4) and $x \in AS_M$. Now, let $r \in l_R(x) \implies rx = 0 \implies \alpha(rx) = 0 \implies r(\alpha(x)) = 0 \implies ry = 0 \implies r \in l_R(y) \implies l_R(x) \subseteq l_R(y) \implies Ry \subseteq Rx \subseteq N$ and since in particular $y = 1 \cdot y \in Ry \subseteq Rx \subseteq N$ then $\alpha(N) \subseteq N$.
(2)\implies (4) Let Rx be a small cyclic in M and let $\alpha: Rx \to M$ be an R-homo. Then by (2) $\alpha(Rx) \subseteq Rx \implies \forall n \in Rx, \alpha(n) \in Rx \implies \forall n \in Rx \exists r \in R$ such that $\alpha(n) = rn$.
(4)\implies (5) Let $y \in r_M(l_R(Rx))$, define $\theta: Rx \to M$ by $\theta(rx) = ry$ if $r_1x = r_2x \implies (r_1 - r_2)x = 0 \implies r_1 - r_2) \in l_R(x) \implies (r_1 - r_2)y = 0 \implies r_1y = r_2y \implies \theta$ is well-defined and clearly a homo. Now, by assumption there exists $t \in R$ such that $\theta(w) = tw \forall w \in Rx$ since $Rx \trianglelefteq M$. In particular, $\theta(x) = y = tx \in Rx \implies y \in Rx \implies r_M(l_R(Rx)) = Rx$.
(5)\implies (1) Let N be an a-small submodule of M and $\alpha: N \to M$ be an R-homo. Suppose $y = \alpha(x) \in \alpha(N) \implies x \in N \implies Rx \subseteq N \implies Rx \trianglelefteq M$ by (2.4) $\implies x \in AS_M \implies$ let $s \in l_R(Rx) \implies s(x) = s(0) = 0 \implies \alpha(x) \in r_M(l_R(Rx)) \implies \alpha(x) \in Rx$ by assumption $\implies y = \alpha(x) \in N$ since $Rx \subseteq N$, which implies that M is a FASS module.

Proposition 3.3: Let M be an R-module such that $l_R(N \cap K) = l_R(N) + l_R(K)$ for every finitely generated a-small submodules N and K of M. Then M is a FASS module if and only if M satisfies baer’s criterion on finitely generated a-small submodules of M.
Proof: \implies) Let N be a finitely generated a-small submodule of M and let $f: N \to M$ be an R-homomorphism. Now, $N = Rx_1 + Rx_2 + \cdots + Rx_n$ for some x_1, \ldots, x_n in N. Now, the proof goes by induction if $n=1$ then it is the same as for proposition (3.2). Assume that Baer’s criterion holds for all a-small submodules generated by m elements for $m \leq n-1$, there exists two elements r, s in R such that $f(x) = rx$ for each $x \in Rx_1 + Rx_2 + \cdots + Rx_{n-1}$ and $f(x^*) = sx^*$ for each $x^* \in Rx_n$. Now, for each $y \in ((Rx_1 + Rx_2 + \cdots + Rx_{n-1}) \cap Rx_n)$ we have $ry = sy$ and hence $r-s \in l_R((Rx_1 + Rx_2 + \cdots + Rx_{n-1}) \cap Rx_n)$, thus by hypothesis there exists $u + v \in l_R((Rx_1 + \cdots + Rx_n) + l_R(Rx_n)$ such that $r-s = u + v$ and then $r-u + v = t$. For each $z \in l_R(N) = \sum_{i=1}^n r_i x_i$ for some $r_i \in R$, $i=1,\ldots, n$ and $f(z) = f(\sum_{i=1}^n r_i x_i) = f(\sum_{i=1}^{n-1} r_i x_i) + f(r_n x_n) = r(\sum_{i=1}^{n-1} r_i x_i) + s(r_n x_n) = r(\sum_{i=1}^{n-1} r_i x_i) - u(\sum_{i=1}^{n-1} r_i x_i) + s(r_n x_n) + v(r_n x_n) = (r - u)(\sum_{i=1}^{n-1} r_i x_i) + (s + v)(r_n x_n) = t(\sum_{i=1}^{n-1} r_i x_i) + t(r_n x_n) = t(\sum_{i=1}^n r_i x_i) = tz$.

\impliedby) If Baer’s criterion holds for a small finitely generated submodules then it holds for small cyclic submodules and proposition (3.2) ends the discussion.

Proposition 3.4: Let M be a FASS R-module such that for each x in AS_M and left ideal I of R, every R-homo $\theta : Ix \to M$ can be extended to an R-homomorphism $\alpha : Rx \to M$. If any a-small submodule N of M satisfies the double annihilator condition; that is, $r_M(l_R(N)) = N$ then so does $N+Rx$.

Proof: Denote $l_R(N)$ and $l_R(Rx)$ by A and B respectively. Then by our assumption $r_M(A) = N$, and since M is a FASS module then $r_M(B) = Rx$. The proof of $N + Rx \subseteq l_R(N + Rx)$ is obvious, since $l_R(N + Rx) = l_R(N) \cap l_R(Rx) = A \cap B$. It is enough to show that $r_M(l_R(N + Rx) \subseteq N + Rx$. Now, let $y \in l_R(A \cap B)$ and define $\theta : Ax \to M$ by $\theta(ax) = ay$ for each $a \in A$, if $a = 0$ then $a \in l_R(x) = B$ hence $a \in A \cap B$ and since $y \in r_M(A \cap B)$ then $ay = 0$. Therefore, θ is a well-defined clearly a homo. The use of our assumption implies that there exists an extension $\alpha : Rx \to M$ of θ, and $\alpha(Rx) \subseteq Rx$ since M is a FASS module implies that $a\alpha(x) = \alpha(ax) = ay$ for each a in A. Then $a(\alpha(x) - y) = 0$ implies that $\alpha(x) - y \in r_M(A) = N$; that is, there exists $n \in N$ such that $\alpha(x) - y = n + \alpha(x) \in N + Rx$. Thus $N + Rx = r_M(l_R(N + Rx)$.

Proposition 3.5: Let M be an R-module such that for each $x \in AS_M$ and left ideal I of R, every R-homomorphism $\theta : Ix \to M$ can be extended to an R-homomorphism $\alpha : Rx \to M$. Then M is a FASS module if and only if each finitely generated a-small submodule of M satisfies the double annihilator condition.

Proof: The proof goes by induction as for $n=1$ it implies from proposition (3.2), and for $n=m+1$ it implies from proposition (3.4).

The following proposition gives properties of FASS modules.

Proposition 3.6: Let M be an R-module. consider the following statements:

1. M is a FASS module.
2. Every submodule N of M with $l_R(N) = l_R(M)$ is a FASS module.
3. Every 2-generated a-small submodule B of M with \(l_R(B) = l_R(M) \) is a FASS module.
4. If \(N, K \subseteq M \), \(K \ll M \) and \(N \) is an epimorphic image of \(K \) then \(N \subseteq K \).
Then \((1) \implies (2) \implies (3) \), and \((1) \iff (4) \)

Proof: (1)\(\iff \) (2) Necessity, Let \(N \) be a submodule of \(M \) such that \(l_R(N) = l_R(M) \), let \(K \ll N \) and \(\alpha : K \to N \) be an R-homo. Proposition (2.6) implies that \(K \ll M \) and hence \(i \circ \alpha(K) \subseteq K \) by \(M \) being a FASS module, where \(i : N \to M \) is the inclusion homomorphism. Thus \(\alpha(K) \subseteq K \) and \(N \) is a FASS module.
Sufficiency, clear.
(2)\(\implies \) (3) Obvious.
(1)\(\implies \) (4) Let \(x \in N \) and \(\alpha : K \to N \) be an R-epimorphism. Then \(i \circ \alpha : K \to M \) is an R-homomorphism, since \(K \ll M \) then by (1) \(i \circ \alpha(K) \subseteq K \) where \(i : N \to M \) is the inclusion homomorphism. Since \(N \) is an epimorphic image of \(K \) then for each \(x \) in \(N \) there exist \(y \) in \(K \) such that \(\alpha(y) = x \) and hence \(N \subseteq \alpha(K) \subseteq K \) implies that \(N \subseteq K \).
(4)\(\implies \) (1) Let \(N \ll M \) and \(\alpha : N \to M \) be an R-homo. Now, \(\alpha : N \to \alpha(N) \) is an epimorphism and using (4) we get \(\alpha(N) \subseteq N \).

Next, the relation between the property of an \(R \)-module \(M \) being FASS and the commutativity of its endomorphism ring is discussed.

Proposition 3.7: Let \(R \) be a commutative ring and \(M \) a FASS \(R \)-module. Then \(\text{End}_R(M) \) is commutative over elements in \(AS_M \). Moreover, for each \(x \in AS_M \) and \(f \in \text{End}_R(M) \) there exists an element \(r \) in \(R \) (depends on \(x \)) such that \(f(x) = rx \).

Proof: Let \(f \) and \(g \) be any two elements in \(\text{End}_R(M) \) and let \(x \) belongs to \(AS_M \), then \(Rx \) is annihilator small in \(M \) and hence stable. But every stable submodule is fully invariant \([1]\), which leads to that there exists two elements \(r, s \) in \(R \) such that \(f(x) = rx \) and \(g(x) = sx \) \([8]\). Now, \((f \circ g)(x) = f(g(x)) = f(sx) = r(sx) = s(rx) = g(rx) = g(f(x) = (g \circ f)(x) \); that is, \(\text{End}_R(M) \) is commutative over elements in \(AS_M \).

A natural question to ask is whether there exist conditions under which the converse true? Such a question leads us to define the concept of annihilator small regular modules as shown below.

Definition 3.8: An \(R \)-module \(M \) is called **annihilator small regular** if given any element in \(AS_M \), then there exists \(f \in M^* = \text{Hom}_R(M, R) \) such that \(m = f(m)m \). A ring \(R \) is called annihilator small regular if it is annihilator small module on itself.

There are bilinear functions:
\[
\theta : M \times M^* \to R \\
\psi : M^* \times M \to \text{End}_R
\]
Where \(\theta(m, \alpha) = \alpha(m) \forall \ m \in AS_M, \alpha \in M^* \) and \(\psi(\alpha, m) = \alpha(m)m \forall \ \alpha \in M^*, m \in AS_M \).

Proposition 3.9: Every commutative a-small regular ring \(R \) is a FASS ring.
Fully annihilator small stable modules

Proof: For each a-small principal ideal \(< r >\) of \(R\) and each \(R\)-homomorphism \(f: < r >\to R\), there exists an element \(t \in R\) such that \(r = rt\) and hence \(f(r) = f(rt) = rt f(r)\) implies that \(f(< r >) \subseteq < r >\).

Next, \(S\) will denote the ring of endomorphisms of \(M\) and \(Z_S\) denotes the center of \(S\).

Lemma 3.10: Let \(\alpha \in AS_{Z_S}\). Then there exists an element \(\beta \in Z_S\) with \(\alpha = \alpha \beta \alpha\) if and only if \(M = \alpha(M) \oplus \ker(\alpha)\).

Proof: \(\implies\) Suppose that such a \(\beta\) exists. Set \(\pi = \alpha \beta = \beta \alpha\) then \(\pi^2 = (\beta \alpha)(\beta \alpha) = \beta (\alpha \beta \alpha) = \beta \alpha = \pi\). Now, \(\alpha(M) \subseteq M\) thus \(\pi(\alpha(M)) \subseteq \pi(M)\) but \(\pi(\alpha(M)) = \alpha\beta(\alpha(M)) = (\alpha \beta \alpha)(M) = \alpha(M)\) which implies that \(\alpha(M) \subseteq \pi(M)\) and since \(\beta(M) \subseteq M\), then \(\beta(\alpha(M)) \subseteq \alpha(M)\) and \(\pi(M) \subseteq \alpha(M)\) implies that \(\pi(M) = \alpha(M)\). Moreover, \(\ker(\alpha) = \ker(\pi)\) since \(\pi = \alpha \beta\) and \(\alpha = \pi \alpha\). Clearly, \(M = \pi(M) \oplus (1 - \pi)(M) = \pi(M) \oplus \ker(\pi)\) and hence \(M = \alpha(M) \oplus \ker(\alpha)\).

\(\impliedby\) Suppose that \(\alpha \in Z_S\) and \(M = \alpha(M) \oplus \ker(\alpha)\). Given any \(m \in M\) then \(m = (\alpha(n) + k)\) with \(n \in M, k \in \ker(\alpha)\) and so we write \(n = \alpha(n_1) + k_1\) with \(n_1 \subseteq M, k_1 \subseteq \ker(\alpha)\). Thus \(m = \alpha(n_1) + k + \alpha(n) = \alpha(\alpha(n_1) + k_1) + k = \alpha(\alpha(n_1) + k_1) + k = \alpha^2(n_1) + \alpha(k_1) + k = \alpha^2(n_1) + \alpha(k) = \alpha^2(\alpha(n_1))\). Set \(x_m = \alpha(n_1) \subseteq \alpha(M)\), observe that \(x_m\) is the unique element of \(M\) such that \(\alpha(m) = \alpha^2(x_m)\), for if \(y \subseteq \alpha(M)\) with \(\alpha(m) = \alpha^2(y)\) then \(\alpha^2(x_m - y) = 0\) so that \(\alpha(x_m - y) \subseteq \alpha(M) \cap \ker(\alpha) = (0)\) and hence \(x_m - y \subseteq \alpha(M) \cap \ker(\alpha) = (0)\) implies that \(x_m = y\). It is easy to check that \(x_{rm} = rx_m, x_{n+m} = x_n + x_m\) and \(x_{y(m)} = y(x_m)\) for any \(n, m \in M, r \subseteq R\) and \(y \subseteq S\). Consequently, there is a homomorphism \(\beta \subseteq S\) defined by \(\beta(m) = x_m\). For any \(m \subseteq M\), \(\alpha \beta \alpha(m) = \alpha(\beta \alpha(m)) = \alpha(x_{\alpha(m)}) = \alpha(\alpha(x_m)) = \alpha^2(x_m) = \alpha(m)\) so that \(\alpha = \alpha \beta \alpha\). It remains only to show that \(\beta \subseteq Z_S\) which easy to show for given any \(\gamma \subseteq S\) and \(m \subseteq M\) then \(\beta(\gamma(m)) = x_{\gamma(m)} = y(x_m) = y(\beta(m))\).

Proposition 3.11: Let \(M\) be an annihilator small regular \(R\)-module. Then \(Z_S\) is an annihilator small regular ring.

Proof: Let \(\alpha \in AS_{Z_S}\) and given any \(m \in AS_M\) choose \(f \subseteq M^*\) with \(m = f(m)m\), hence \(\alpha(m) = f(m)\alpha(m)\) and \(\alpha(m) = \psi(f, \alpha(m))\). Now, \(m = f(m)\alpha(m) + (m - f(m)\alpha(m))\) then \(f(m)\alpha(m) \subseteq \alpha(M)\) and \(m - f(m)\alpha(m) \subseteq \ker(\alpha)\), since \(\alpha(m - f(m)\alpha(m)) = \alpha(m) - f(m)\alpha^2(m) = 0\). So \(M = \alpha(M) + \ker(\alpha)\). Now, let \(\alpha(m) \subseteq \alpha(M) \cap \ker(\alpha)\) then from above we get that \(\alpha(m) = f(m)\alpha^2(m) = 0\) since \(\alpha(\alpha(m)) = 0\). Hence, \(\alpha(M) \cap \ker(\alpha) = (0)\) and thus \(M = \alpha(M) \oplus \ker(\alpha)\) and by lemma (3.10) we get that \(Z_S\) is a small regular ring.
Proposition 3.12: Let M be an R-module such that every a-small cyclic submodule is a direct summand. If S is commutative over elements in AS_M, then M is a FASS module.

Proof: let N be any a-small cyclic submodule of M and $f: N \rightarrow M$ be an R-homomorphism, then there exists $m \in AS_M$ such that $N = Rm$. By our assumption Rm is a direct summand of M; that is, there exists a submodule L of M such that $M = Rm \oplus L$. Now, f can be extended to an R-endomorphism of M, $g: M \rightarrow M$ by putting $g(l) = 0$ for each $l \in L$. Define $h: M \rightarrow M$ by $h(x, y) = x$ for each $x \in Rm$ and $y \in L$. Let $f(x) = n_1 + l_1$ for some $n_1 \in N$ and $l_1 \in L$. Now, let $z \in AS_M$ then $z = x + l$ for some $x \in N$ and $l \in L$. Thus we have $(g \circ h)(z) = (g \circ h)(x + l) = g(x) = f(x) = n_1 + l_1$ and $(h \circ g)(z) = (h \circ g)(x + l) = h(f(x)) = h(n_1 + l_1) = n_2$, but S is commutative for each $z \in AS_M$ and hence $g \circ h = h \circ g$ implies that $l_1 = 0$ and $f(x) \in N \forall x \in N$. Therefore, $f(N) \subseteq N$ and then M is a FASS module. \blacksquare

Lemma 3.13: Let M be an annihilator small regular R-module. Then every a-small cyclic submodule of M is a direct summand.

Proof: Let Rm be an a-small cyclic submodule of M, then $m \in AS_M$ and hence $m = \psi(f, m)m$ for some f in M^*, which implies that $M = Rm \oplus \ker(\psi)$ [9]. \blacksquare

The proof of the following corollary is immediate.

Corollary 3.14: Let M be an annihilator small regular R-module. Then M is a FASS module if and only if S is commutative over elements in AS_M.

References

Received: October 8, 2017; Published: November 16, 2017