Lehmer - 3 Mean Labeling of Graphs

S. Somasundaram1, S. S. Sandhya2 and T. S. Pavithra3

1 Manonmaniam Sundaranar University, Tirunelveli-627012, India

2 Sree Ayyappa College for Women Chunkankadai- 629003, Kanyakumari, India

3 Department of Mathematics, Manonmaniam Sundaranar University
Tirunelveli-627012, India

Abstract

A graph $G=(V,E)$ with P vertices and q edges is called Lehmer - 3 mean graph, if it is possible to label vertices $x \in V$ with distinct label $f(x)$ from $1,2,3,\ldots,q+1$ in such a way that when each edge $e=uv$ is labeled with

$$f(e=uv)=\left\lfloor \frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right\rfloor \quad \text{or} \quad \left\lceil \frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right\rceil,$$

then the edge labels are distinct. In this case f is called Lehmer - 3 mean labeling of G. In this paper we investigate Lehmer - 3 mean labeling of some standard graphs.

Keywords: Path, Cycle, Comb, Ladder, Crown, Triangular snake, Quadrilateral snake

1. Introduction

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are denoted by $V(G)$ and $E(G)$ respectively. A path of length n is denoted by P_n. A cycle of length n is denoted by C_n. For standard terminology and notations we follow Harary [2] and for the detailed survey of graph labeling we follow J.A. Gallian [1]. S. Somasundaram and S.S. Sandhya introduced the concept of Harmonic Mean Labeling of Graphs in [3] and its basic results was proved in [3]. In this paper we investigate Lehmer – 3 Mean Labeling behavior of some standard graphs. The following definitions are used here:
Definition 1.1 A graph $G=(V,E)$ with p vertices and q edges is called Lehmer - 3 mean graph. If it is possible to label vertices $x \in V$ with distinct labels $f(x)$ from $1,2,3,\ldots,q+1$ in such a way that when each edge $e=uv$ is labeled with $f(e=uv)=\left\lceil \frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right\rceil$ (or) $\left\lfloor \frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2} \right\rfloor$, then the edge labels are distinct. In this case f is called Lehmer - 3 mean labeling of G.

Definition 1.2 A path P_n is obtained by joining u_i to the consecutive vertices u_{i+1} for $1 \leq i \leq n$.

Definition 1.3 Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

Definition 1.4 A closed path is called a cycle of G.

Definition 1.5 A product graph $P_m \times P_n$ is called a planar grid $P_2 \times P_n$ is called a ladder.

Definition 1.6 Crown is a graph obtained by joining a single pendant edge to each vertex of a cycle.

Definition 1.7 A star graph is a graph obtained from a complete bipartite graph $K_{1,n}$.

Definition 1.8 A triangular snake T_n is obtained from a path $v_n, v_{n-1}, \ldots, v_1$ by joining v_i to a new vertex w_i for $1 \leq i \leq n-1$. That is every edge of a path is replaced by a triangle C_3.

Definition 1.9 A quadrilateral snake Q_n is obtained from a path $u_n, u_{n-1}, \ldots, u_1$ by joining u_i, u_{i+1} to a new vertices v_i and w_i respectively and joining v_i and w_i. That is every edge of a path is replaced by a cycle C_4.

2. Main Results

Theorem 2.1 Any path is a Lehmer -3 mean graph.

Proof: Let P_n be a path $v_n, v_{n-1}, \ldots, v_1$. Define a function $f: (V(P_n)) \rightarrow \{1,2,\ldots,q+1\}$ by $f(v_i)=i$; $1 \leq i \leq n$.

Then we get distinct edge labels clearly f is a Lehmer -3 mean labeling of G.

Example 2.2 A Lehmer -3 mean labeling of P_n is given below.
Theorem 2.3 Any cycle is a Lehmer -3 mean graph.

Proof: Let C_n be a cycle of length n. Let the vertices of C_n be $u_1, u_2, \ldots, u_n, u_1$. Define a function $f: V(C_n) \rightarrow \{1, 2, \ldots, q+1\}$ by $f(u_i)=i; 1 \leq i \leq n$. The edges are labeled with $f(u_i, u_{i+1})=i; 1 \leq i \leq n$. Hence f is a Lehmer -3 mean labeling of graph G.

Example 2.4 A Lehmer -3 mean labeling of C_{10} is given below.
Theorem 2.5 Combs are Lehmer-3 mean graph.

Proof: Let C_n be a comb with $V(G) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$. Let P_n be a path. Let us label $P_n = v_1, v_2, \ldots, v_n$ and join a vertex u_i to v_i, $1 \leq i \leq n$.

Define a function $f: V(G) \rightarrow \{1, 2, 3, \ldots, q+1\}$ by $f(v_i) = 2i-1$; $1 \leq i \leq n$ and $f(u_i) = 2i$, $1 \leq i \leq n$.

The label of the edge u_iv_i is $2i-1$; $1 \leq i \leq n$ and the label of the edge u_iv_{i+1} is $2i$, $1 \leq i \leq n$.

Clearly the edge labels are distinct and hence f is a Lehmer-3 mean labeling of graph G.

Example 2.6 A Lehmer-3 mean labeling of $P_6 \circ k_{1,1}$ is given below.

![Figure 3](image)

Theorem 2.7 Any Triangular snake T_n is a Lehmer-3 mean graph.

Proof: Let T_n be a Triangular snake.

Define a function f: $V(T_n) \rightarrow \{1, 2, 3, \ldots, q+1\}$ by

$f(v_i) = 1$

$f(v_i) = 3i-3$; $2 \leq i \leq n$

$f(w_i) = 3i-1$; $1 \leq i \leq n$

The label of the edges $f(v_1v_2) = 2$

The label of the edges $f(v_iv_{i+1})$ is $3i-1$, $2 \leq i \leq n$

The label of the edge $f(v_iw_i)$ is $3i-2$, $1 \leq i \leq n$

The label of the edge $f(w_iv_{i+1}) = 3i$, $1 \leq i \leq n$
Hence this T_n forms a Lehmer -3 mean graph.

Example 2.8 The Lehmer -3 mean labeling of T_3 is given below.

![Figure 4]

Theorem 2.9 Any Quadrilateral snake Q_n is a Lehmer -3 mean graph.

Proof: Let Q_n be the Quadrilateral snake as in definition.
Define $f: V(Q_n)\rightarrow \{1,2,\ldots,q+1\}$ by

- $f(u_1)=1$,
- $f(u_i)=4i-4; \ 2\leq i\leq n$
- $f(v_i)=4i-2; \ 1\leq i\leq n$
- $f(w_i)=4i-1; \ 1\leq i\leq n$

The label of the edge u_1u_2 is 3
The label of the edge u_iu_{i+1} is $4i-1, \ 2\leq i\leq n$
The label of the edge u_iv_i is $4i-3, \ 1\leq i\leq n$
The label of the edge v_iw_i is $4i-2, \ 1\leq i\leq n$
The label of the edge u_iw_i is $4i, \ 1\leq i\leq n$

This gives a Lehmer -3 mean labeling Q_n.

Example 2.10 The Lehmer -3 mean labeling of Q_4 is given below.

![Figure 5]
Theorem 2.11 Any Ladder is a Lehmer -3 mean graph.

Proof: Let Lₙ denote a ladder graph. Define f: V(Lₙ) → {1, 2, …, q+1} by f(u₁) = 1
f(uᵢ) = 3i - 3; i = 2, 3, …, n and f(vᵢ) = f(uᵢ) + 1; i ≤ i ≤ n
The label of the edge uᵢuᵢ₊₁ is 3i - 1, 1 ≤ i ≤ n

The label of the edge uᵢvᵢ is 3i - 2, 1 ≤ i ≤ n

The label of the edge vᵢvᵢ₊₁ is 3i, 1 ≤ i ≤ n

This makes Lₙ as a Lehmer -3 mean graph.

Example 2.12 Lehmer -3 mean labeling of L = PₚxP₂ is given below.

Theorem 2.13 A Crown CₙOK₁ is a Lehmer 3 mean graph for all n ≥ 3

Proof: Let Cₙ be a cycle uᵢuᵢ,…, u₀u₁ and vᵢ be the pendent vertices adjacent to uᵢ, 1 ≤ i ≤ n.

Define a function f: V(CₙOK₁) → {1, 2, …, q+1} by
f(uᵢ) = 2i - 1; 1 ≤ i ≤ n
f(vᵢ) = 2i; 1 ≤ i ≤ n

Then the edge labels are all distinct.

Obviously f is a Lehmer -3 mean labeling.

Example 2.14 A Lehmer -3 mean labeling of C₅OK₁ is given below.
References

Received: June 27, 2016; Published: September 6, 2017