International Mathematical Forum, Vol. 12, 2017, no. 17, 819 - 825 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.6674

Lehmer - 3 Mean Labeling of Graphs

S. Somasundaram¹, S. S. Sandhya² and T. S. Pavithra³

¹ Manonmaniam Sundaranar University, Tirunelveli-627012, India

³ Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli-627012, India

Copyright © 2017 S. Somasundaram, S. S. Sandhya and T. S. Pavithra. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A graph G=(V,E) with P vertices and q edges is called Lehmer - 3 mean graph, if it is possible to label vertices $x \in V$ with distinct label f(x) from 1,2,3,...........q+1 in such a way that when each edge e=uv is labeled with $f(e=uv)=\left\lceil\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2}\right\rceil$ (or) $\left\lceil\frac{f(u)^3+f(v)^3}{f(u)^2+f(v)^2}\right\rceil$, then the edge labels are distinct. In this case f is called Lehmer - 3 mean labeling of G. In this paper we investigate Lehmer - 3 mean labeling of some standard graphs.

Keywords: Path, Cycle, Comb, Ladder, Crown, Triangular snake, Quadrilateral snake

1. Introduction

A graph considered here are finite, undirected and simple. The vertex set and edge set of a graph are denoted by V(G) and E(G) respectively. A path of length n is denoted by P_n . A cycle of length n is denoted by C_n . For standard terminology and notations we follow Harrary [2] and for the detailed survey of graph labeling we follow J.A. Gallian [1]. S. Somasundaram and S.S. Sandhya introduced the concept of Harmonic Mean Labeling of Graphs in [3] and its basic results was proved in [3].

In this paper we investigate Lehmer -3 Mean Labeling behavior of some standard graphs. The following definitions are used here:

² Sree Ayyappa College for Women Chunkankadai- 629003, Kanyakumari, India

Definition 1.1 A graph G=(V,E) with P vertices and q edges is called Lehmer - 3 mean graph. If it is possible to label vertices x \in V with distinct labels f(x) from 1,2,3,......q+1 in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$ (or) $\left[\frac{f(u)^3 + f(v)^3}{f(u)^2 + f(v)^2}\right]$, then the edge labels are distinct. In this case f is called Lehmer - 3 mean labeling of G.

Definition 1.2 A path P_n is obtained by joining u_i to the consecutive vertices u_{i+1} for $1 \le i \le n$.

Definition 1.3 Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

Definition 1.4 A closed path is called a cycle of G.

Definition 1.5 A product graph $P_m x P_n$ is called a planar grid $P_2 x P_n$ is called a ladder.

Definition 1.6 Crown is a graph obtained by joining a single pendant edge to each vertex of a cycle.

Definition 1.7 A star graph is a graph obtained from a complete bipartite graph $k_{1,n}$.

Definition 1.8 A triangular snake T_n is obtained from a path v_i , v_2 ,..... v_n by joining v_i to a new vertex w_i for $1 \le i \le n-1$. That is every edge of a path is replaced by a triangle c_3 .

Definition 1.9 A quadrilateral snake Q_n is obtained from a path u_i, u_2, \ldots, u_n by joining u_i, u_{i+1} to a new vertices v_i and w_i respectively and joining v_i and w_i . That is every edge of a path is replaced by a cycle C_4 .

2. Main Results

Theorem 2.1 Any path is a Lehmer -3 mean graph.

Proof: Let P_n be a path v_1, v_2, \dots, v_n . Define a function $f:(V(P_n)) \rightarrow \{1, 2, \dots, q+1\}$ by $f(v_i)=i$; $1 \le i \le n$.

Then we get distinct edge labels clearly f is a Lehmer -3 mean labeling of G.

Example 2.2 A Lehmer -3mean labeling of P_n is given below.

Figure-1

Theorem 2.3 Any cycle is a Lehmer -3 mean graph.

Proof: Let C_n be a cycle of length n. Let the vertices of C_n be u_1,u_2,\ldots,u_n,u_1 . Define a function $f:V(C_n) \rightarrow \{1,2,\ldots,q+1\}$ by $f(u_i)=i;1 \le i \le n$. The edges are labeled with $f(u_i,u_{i+1})=i;1 \le i \le n$.

Hence f is a Lehmer -3 mean labeling of graph G.

Example 2.4 A Lehmer -3 mean labeling of C_{10} is given below.

Figure-2

Theorem 2.5 Combs are Lehmer -3 mean graph.

Proof: Let C_n be a comb with $V(G)=\{v_1,v_2,\ldots,v_n,u_1,u_2,\ldots,u_n\}$. Let P_n be a path. Let us label $P_n=v_1,\,v_2,\ldots,v_n$ and join a vertex u_i to v_i , $1\leq i\leq n$.

Define a function $f:V(G) \rightarrow \{1,2,3,\ldots,q+1\}$ by $f(v_i)=2i-1;$ $1 \le i \le n$ and $f(u_i)=2i,$ $1 \le i \le n$.

The label of the edge u_iv_i is 2i-1; $1 \le i \le n$ and the label of the edge u_iv_{i+1} is 2i, $1 \le i \le n$. Clearly the edge labels are distinct and hence f is a Lehmer -3 men labeling of graph G.

Example 2.6 A Lehmer -3 mean labeling of P_6 Ok₁, is given below.

Figure -3

Theorem 2.7 Any Triangular snake T_n is a Lehmer -3 mean graph.

Proof: Let T_n be a Triangular snake.

Define a function f: $V(T_n) \rightarrow \{1,2,3,\ldots,q+1\}$ by

 $f(v_i)=1$

 $f(v_i)=3i-3; 2 \le i \le n$

 $f(w_i)=3i-1; 1 \le i \le n$

The label of the edges $f(v_1v_2) = 2$

The label of the edges $f(v_iv_{i+1})$ is 3i-1, $2 \le i \le n$

The label of the edge $f(v_iw_i)$ is 3i-2, $1 \le i \le n$

The label of the edge $f(w_iv_{i+1})=3i$, $1 \le i \le n$

Hence this T_n forms a Lehmer -3 mean graph.

Example 2.8 The Lehmer -3 mean labeling of T₅ is given below.

Theorem 2.9 Any Quadrilateral snake Q_n is a Lehmer -3 mean graph.

Proof: Let Q_n be the Quadrilateral snake as in definition.

Define f: $V(Q_n) \rightarrow \{1,2,...,q+1\}$ by

 $f(u_1)=1$,

 $f(u_i)=4i-4; 2 \le i \le n$

 $f(v_i)=4i-2; 1 \le i \le n$

 $f(w_i)=4i-1; 1 \le i \le n$

The label of the edge u_1u_2 is 3

The label of the edge u_iu_{i+1} is 4i-1, $2 \le i \le n$

The label of the edge u_iv_i is 4i-3, $1 \le i \le n$

The label of the edge v_i , w_i is 4i-2, $1 \le i \le n$

The label of the edge $u_i w_i$ is 4i, $1 \le i \le n$

This gives a Lehmer -3 mean labeling Q_{n.}

Example 2.10 The Lehmer -3 mean labeling of Q₄ is given below.

Figure-5

Theorem 2.11 Any Ladder is a Lehmer -3 mean graph.

Proof: Let L_n denote a ladder graph. Define $f:V(L_n) \rightarrow \{1,2,\ldots,q+1\}$ by $f(u_1)=1$ $f(u_i)=3i-3$; $i=2,3,\ldots,n$ and $f(v_i)=f(u_i)+1$; $i\leq i\leq n$ The label of the edge u_iu_{i+1} is 3i-1, $1\leq i\leq n$

The label of the edge $u_i v_i$ is 3i-2, $1 \le i \le n$

The label of the edge $v_i v_{i+1}$ is 3i, $1 \le i \le n$

This makes L_n as a Lehmer -3 mean graph.

Example 2.12 Lehmer -3 mean labeling of $L=P_qxP_2$ is given below.

Figure-6

Theorem 2.13 A Crown C_nOk_1 is a Lehmer 3 mean graph for all $n \ge 3$

Proof: Let C_n be a cycle $u_1, u_2, \dots, u_n, u_1$ and v_i be the pendent vertices adjacent to u_i $1 \le i \le n$.

Define a function f: $V(C_n\Theta K_1) \rightarrow \{1,2,...,q+1\}$ by

 $f(u_i)=2i-1; 1 \le i \le n$

 $f(v_i)=2i; 1 \le i \le n$

Then the edge labels are all distinct.

Obviously f is a Lehmer -3 mean labeling.

Example 2.14 A Lehmer -3 mean labeling of C₅OK₁ is given below.

Figure-7

References

- [1] J.A. Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatories*, **17** (2010), # DS6.
- [2] F. Harary, *Graph Theory*, Narosa Publication House Reading, New Delhi, 1988.
- [3] S. Somasundaram and R. Ponraj and S. S. Sandhya, Harmonic mean labeling of graphs, *Journal of Combinatorial Mathematics and Combinatorial Computing*, to appear.

Received: June 27, 2016; Published: September 6, 2017