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Abstract 

 

    A graph G=(V,E) with P vertices and q edges is called Lehmer - 3 mean 

graph, if it is possible to label vertices x Є V with distinct label f(x) from 

1,2,3,………….q+1 in such a way that when each edge e=uv is labeled with 

f(e=uv)=⌈
f(u)3+f(v)3

f(u)2+f(v)2
⌉ (or) ⌊

f(u)3+f(v)3

f(u)2+f(v)2
⌋, then the edge labels are distinct. In this case 

f is called Lehmer - 3 mean labeling of G. In this paper we investigate Lehmer - 3 

mean labeling of some standard graphs. 
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1. Introduction  
 

      A graph considered here are finite, undirected and simple. The vertex set 

and edge set of a graph are denoted by V(G) and E(G) respectively. A path of length 

n is denoted by Pn. A cycle of length n is denoted by Cn. For standard terminology 

and notations we follow Harrary [2] and for the detailed survey of graph labeling 

we follow J.A. Gallian [1]. S. Somasundaram and S.S. Sandhya introduced the 

concept of Harmonic Mean Labeling of Graphs in [3] and its basic results was 

proved in [3]. 

In this paper we investigate Lehmer – 3 Mean Labeling behavior of some standard 

graphs. The following definitions are used here: 
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Definition 1.1 A graph G=(V,E) with P vertices and q edges is called Lehmer  - 3 

mean graph. If it is possible to label vertices x ЄV with distinct labels f(x) from 

1,2,3,………….q+1 in such a way that when each edge e=uv is labeled with 

f(e=uv)=⌈
𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
⌉ (or) ⌊

𝑓(𝑢)3+𝑓(𝑣)3

𝑓(𝑢)2+𝑓(𝑣)2
⌋, then the edge labels are distinct. In this case 

f is called Lehmer - 3 mean labeling of G. 

 

Definition 1.2 A path Pn is obtained by joining ui to the consecutive vertices ui+1 for 

1≤i≤n. 

 

Definition 1.3 Comb is a graph obtained by joining a single pendant edge to each 

vertex of a path. 

 

Definition 1.4 A closed path is called a cycle of G.  

 

Definition 1.5 A product graph PmxPn is called a planar grid P2xPn is called a ladder. 

 

Definition 1.6 Crown is a graph obtained by joining a single pendant edge to each 

vertex of a cycle. 

 

Definition 1.7 A star graph is a graph obtained from a complete bipartite graph k1,n. 

 

Definition 1.8 A triangular snake Tn is obtained from a path v₁, v₂,……..vn by 

joining vi to a new vertex wi for 1≤i≤n-1. That is every edge of a path is replaced 

by a triangle c3. 

 

Definition 1.9 A quadrilateral snake Qn is obtained from a path u₁,u₂,………..un by 

joining ui,ui+1 to a new vertices vi and wi respectively and joining vi and wi .That is 

every edge of a path is replaced by a cycle C4. 

 

 

2. Main Results 
 

Theorem 2.1 Any path is a Lehmer -3 mean graph. 

 

Proof: Let Pn be a path v₁, v₂,……..vn. 

Define a function f:(V(Pn))→{1,2,…..q+1} by f(vi)=i ; 1≤i≤n. 

Then we get distinct edge labels clearly f is a Lehmer -3 mean labeling of G. 

 

Example 2.2 A Lehmer -3mean labeling of Pn is given below. 
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Theorem 2.3 Any cycle is a Lehmer -3 mean graph. 

 

Proof: Let Cn be a cycle of length n. Let the vertices of Cn be u₁,u₂,………..un,u1. 

Define a function f:V(Cn)→{1,2,……..q+1}  by f(uᵢ)=i;1≤i≤n. 

The edges are labeled with f(ui,ui+1)=i; 1≤i≤n. 

Hence f is a Lehmer -3 mean labeling of graph G. 

 

 

Example 2.4 A Lehmer -3 mean labeling of C10 is given below. 

 

 

 

 
 

 



 

 

822                                                                                          S. Somasundaram et al. 

 

 

Theorem 2.5 Combs are Lehmer -3 mean graph. 

 

Proof: Let Cn be a comb with V(G)={v1,v2,…….vn,u1,u2,……un}. 

Let Pn be a path. Let us label Pn=v1, v2,……vn and join a vertex ui to vi , 1≤i≤n. 

Define a function f:V(G)→{1,2,3,…….q+1} by f(vi)=2i-1; 1≤i≤n and f(ui)=2i, 

1≤i≤n. 

The label of the edge uivi is 2i-1; 1≤i≤n and the label of the edge uivi+1 is 2i, 1≤i≤n.  

Clearly the edge labels are distinct and hence f is a Lehmer -3 men labeling of graph 

G. 

 

 

Example 2.6 A Lehmer -3 mean labeling of P6 ʘk1, is given below. 

 

 

 

Theorem 2.7 Any Triangular snake Tn is a Lehmer -3 mean graph. 

 

Proof: Let Tn be a Triangular snake. 

Define a function f: V(Tn)→{1,2,3,……….q+1} by 

 f(vi)=1 

 f(vi)=3i-3; 2≤i≤n 

 f(wi)=3i-1; 1≤i≤n 

The label of the edges f(v1v2) =2 

The label of the edges f(vivi+1) is 3i-1, 2≤i≤n  

The label of the edge f(viwi) is 3i-2, 1≤i≤n 

The label of the edge f(wivi+1)=3i, 1≤i≤n 
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Hence this Tn forms a Lehmer -3 mean graph. 

 

Example 2.8 The Lehmer -3 mean labeling of T5 is given below. 

 

 

 

Theorem 2.9 Any Quadrilateral snake Qn is a Lehmer -3 mean graph. 

 

Proof: Let Qn be the Quadrilateral snake as in definition. 

Define f: V(Qn)→{1,2,…..q+1} by 

f(u1)=1, 

f(ui)=4i-4; 2≤i≤n 

f(vi)=4i-2;  1≤i≤n 

f(wi)=4i-1; 1≤i≤n 

The label of the edge u1u2 is 3 

The label of the edge uiui+1 is 4i-1, 2≤i≤n 

The label of the edge uivi is 4i-3, 1≤i≤n 

The label of the edge vi,wi is 4i-2, 1≤i≤n 

The label of the edge uiwi is 4i, 1≤i≤n  

This gives a Lehmer -3 mean labeling Qn. 

 

Example 2.10 The Lehmer -3 mean labeling of Q4 is given below. 
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Theorem 2.11 Any Ladder is a Lehmer -3 mean graph. 

 

Proof: Let Ln denote a ladder graph. Define f:V(Ln)→{1,2,…..q+1} by f(u1)=1    

f(ui)=3i-3 ; i=2,3,….n and  f(vi)=f(ui)+1; i≤i≤n 

The label of the edge uᵢui+1 is 3i-1, 1≤i≤n 

The label of the edge uivi is 3i-2, 1≤i≤n  

The label of the edge vi vi+1 is 3i, 1≤i≤n  

This makes Ln as a Lehmer -3 mean graph. 

 

Example 2.12 Lehmer -3 mean labeling of L=PqxP2 is given below. 

 

 

 

 

 

 

Theorem 2.13 A Crown Cnʘk1 is a Lehmer 3 mean graph for all n≥ 3 

 

Proof: Let Cn be a cycle u₁,u₂,………..un,u1 and vi be the pendent vertices adjacent 

to ui  1≤i≤n. 

Define a function f: V(CnʘK1)→{1,2,…..q+1} by 

 f(ui)=2i-1; 1≤i≤n           

 f(vi)=2i; 1≤i≤n            

Then the edge labels are all distinct.  

Obviously f is a Lehmer -3 mean labeling. 

 

 

Example 2.14 A Lehmer -3 mean labeling of C5ʘK1 is given below. 
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