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Hamid-Reza Fanäı and Hamed Hessam

Department of Mathematical Sciences
Sharif University of Technology

P.O. Box 11155-9415, Tehran, Iran
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Abstract

A classical object of differential geometry are Killing vector fields.
This notion has been generalized to conformal vector fields and recently
to 2-Killing vector fields . In this paper we obtain some relations be-
tween 2-Killing vector fields and conformal vector fields on a Riemannian
manifold and among other results we show that a 2-Killing conformal
vector field on a compact Riemannian manifold must be Killing if the
dimension of manifold is greater than two.
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1 Introduction

A classical object of differential geometry are Killing vector fields. These are by
definition infinitesimal isometries, i.e. the flow of such a vector field preserves a
given metric. More precisely, a smooth vector field ξ on a Riemannian manifold
(M, g) is said to be Killing vector field if the Lie derivative of the metric tensor g
with respect to ξ is zero, that is Lξ g = 0. Killing vector fields play an important
role in the geometry as well as the topology of a Riemannian manifold, for
instance, it is known that the existence of a nontrivial Killing vector field on
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a compact Riemannian manifold implies that all its Ricci curvatures can not
be negative. Also it is known that on an even dimensional positively curved
Riemannian manifold, every Killing vector field must have a zero. In [2] the
authors have studied Riemannian manifolds admitting nontrivial Killing vector
fields of constant length and obtained interesting results.

Slightly more generally one can consider conformal vector fields, i.e. vector
fields with a flow preserving a given conformal class of metrics. More precisely,
a smooth vector field ξ on a Riemannian manifold (M, g) is said to be a confor-
mal vector field if there exists a smooth function f on M such that Lξ g = 2fg.
Conformal vector fields are important objects on a space and have been studied
quite extensively on Riemannian manifolds. We call ξ a nontrivial conformal
vector field if the potential function f is not a constant. We note that on a
compact M , if f is a constant it has to be zero and consequently ξ is Killing.
If in addition ξ is a closed vector field, that is the 1-form dual to ξ with respect
to g is a closed form, then ξ is called a closed conformal vector field. Rieman-
nian manifolds admitting closed conformal vector fields or conformal gradient
vector fields have been investigated by many authors. Also in [1] it is shown
that a compact Riemannian manifold with positive constant scalar curvature
admitting a nonzero conformal gradient vector field is isometric to a sphere
using the classical result of Obata [10]. There are several geometric conditions
which force a conformal vector field to be Killing, for instance, a conformal
vector field on a compact Kähler manifold of dimension greater than two is
a Killing vector field [8]. We recall that Killing forms as a generalization of
Killing vector fields were introduced by Yano [13]. Kashiwada [6] introduced
conformal Killing forms generalizing conformal vector fields. In fact on a Rie-
mannian manifold, a vector field ξ is dual to a conformal Killing 1-form if and
only if it is a conformal vector field. Moreover ξ is dual to a Killing 1-form
if and only if it is a Killing vector field. The simplest examples of manifolds
with conformal Killing forms are the spaces of constant curvature. See [12] for
more details.

Recently the notion of Killing vector fields is generalized to 2-Killing vector
fields in [11]. This class of vector fields on a Riemannian manifold (M, g)
enlarges the class of Killing vector fields. In fact a smooth vector field ξ
is called 2-Killing if Lξ Lξ g = 0. In [11] the author has studied the relations
between 2-Killing vector fields and monotone vector fields introduced in [9] and
obtained interesting results. In this paper, we work in the same direction and
use similar ideas. In particular, we are interested in finding conditions under
which a 2-Killing vector field on a Riemannian manifold is Killing. Some of
our results are comparable to those of [11]. The main results of this paper are
Theorems 3.2, 3.3 and Corollaries 4.2 and 4.3.
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2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold with Lie algebra X (M) of
smooth vector fields and Riemannian connection ∇. Recall that the curvature
tensor R is a correspondence that associates to every pair of vector fields X,
Y a mapping R(X, Y ) : X (M)→ X (M) given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

The Ricci curvature tensor is defined by

Ric(X, Y ) =
n∑
i=1

g(R(ei, X)Y, ei)

where {e1, . . . , en} is a local orthonormal frame on M and X, Y ∈ X (M).
A smooth vector field ξ is said to be a Killing vector field if Lξ g = 0 where

Lξ is the Lie derivative with respect to ξ. This means that for every pair of
X, Y ∈ X (M) we have

(Lξ g)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 0.

A smooth vector field ξ is said to be a conformal vector field if Lξ g = 2fg for a
smooth function f on M called the potential function. Note that div ξ = nf ,
so if M is compact and f is a constant function on M , then by Stokes’ theorem
we have f = 0, that is ξ is a Killing vector field. Using Kozul’s formula we
obtain the following for any vector field ξ on M

2g(∇Xξ, Y ) = (Lξ g)(X, Y ) + dη(X, Y ), X, Y ∈ X (M)

where η is the 1-form dual to ξ, that is η(X) = g(X, ξ). Define a skew sym-
metric tensor field ϕ on M by

dη(X, Y ) = 2g(ϕX, Y ), X, Y ∈ X (M).

Then we get the following (cf. [3])

Lemma 2.1. Let ξ be a conformal vector field on M with potential function
f . Then for any vector field X we have

∇Xξ = fX + ϕX.

Note that if ξ is a conformal closed vector field, that is the 1-form η dual
to ξ is closed, we get ϕ = 0. So by the above lemma we have ∇Xξ = fX for
any vector field X on M . In particular if ξ is a conformal gradient vector field,
then ξ is a conformal closed vector field as well and we have ∇Xξ = fX for
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any X ∈ X (M). Recall that a vector field X is called a gradient vector field
on M if X is the gradient of a smooth function h on M , that is X = ∇h where
∇h denotes the gradient of h.

A smooth vector field ξ on M is called 2-Killing if Lξ Lξ g = 0. This
is a generalization of the notion of a Killing vector field. In this paper, we
consider 2-Killing and conformal vector fields and we are interested in finding
conditions under which a 2-Killing vector field is Killing. We need the following
fact concerning 2-Killing vector fields (cf. [11]).

Lemma 2.2. Let ξ be a 2-Killing vector field on a Riemannian manifold
(M, g). Then we have

Ric(ξ, ξ) = div(∇ξξ) + Tr(g(∇ξ,∇ξ)) = div(∇ξξ) +
∥∥∇ξ∥∥2.

We use also the notion of harmonic vector fields as following.
In [5] the authors have defined the Laplacian operator acting on smooth

vector fields ∆ : X (M)→ X (M) by

∆X =
n∑
i=1

∇2X(ei, ei) =
n∑
i=1

(∇ei∇eiX −∇∇eieiX)

where {e1, . . . , en} is a local orthonormal frame on M . This operator is a
self adjoint elliptic operator with respect to the inner product

< X, Y > =

∫
M

g(X, Y )

on the set of compactly supported vector fields in X (M). A vector field is
called harmonic if ∆X = 0.

3 Conformal vector fields

Suppose that ξ is a 2-Killing vector field onM . In [11] a necessary and sufficient
condition for a vector field to be 2-Killing is given in terms of the curvature
tensor R. We can present an easier equivalent condition if ξ is conformal too.

Lemma 3.1. Suppose that ξ is a conformal vector field with a potential func-
tion f on a Riemannian manifold (M, g). Then ξ is a 2-Killing vector field if
and only if

ξ · f + 2f 2 = 0 (1)
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Proof. As ξ is a conformal vector field, for any pair of V,W ∈ X (M) we have
by definition

Lξ g(V,W ) = 2fg(V,W ) = ξ · g(V,W )− g([ξ, V ],W )− g([ξ,W ], V ) (2)

and from equation (2), we obtain

Lξ Lξ g(V,W ) = Lξ(2fg)(V,W )

= (ξ · (2fg))(V,W )− 2fg([ξ, V ],W )− 2fg([ξ,W ], V )

= 2 (ξ · f)g(V,W ) + 2fξ · g(V,W )− 2fg([ξ, V ],W )

− 2fg([ξ,W ], V )

= 2 (ξ · f)g(V,W ) + 4f 2g(V,W )

therefore

Lξ Lξ g = (2 ξ · f + 4f 2)g (3)

so by equation (3) we conclude that ξ is a 2-Killing vector field if and only
if

ξ · f + 2f 2 = 0.

Note that if ξ is a conformal vector field with a potential function f then
div ξ = nf .

After describing a relation between 2-Killing vector fields and conformal
vector fields, we show that in a compact Riemannian manifold, Killing property
is equivalent to 2-Killing property for a conformal vector field.

Theorem 3.2. Suppose that ξ is a conformal vector field with a potential
function f on a compact Riemannian manifold (M, g) with dimension n > 2.
Then the next assertions are equivalent
i) ξ is a Killing vector field.
ii) ξ is a 2-Killing vector field.

Proof. If ξ is a Killing vector field then clearly ξ is a 2-Killing vector field.
Suppose that ξ is a 2-Killing vector field. Then by Lemma 3.1, we have

ξ · div ξ +
2

n
(div ξ)2 = 0. (4)

By a direct calculation we know
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div((div ξ)ξ) = (div ξ)2 + ξ · div ξ (5)

so together with equation (4), we have

div((div ξ)ξ) =
n− 2

n
(div ξ)2 (6)

hence by Stokes’ theorem, integrating equality (6) on the compact Rieman-
nian manifold M , we obtain

n− 2

n

∫
M

(div ξ)2 = 0. (7)

Therefore div ξ = 0, so f = 0, i.e. ξ is a Killing vector field.

Recall that by Lemma 2.1, if ξ is a conformal closed vector field on M with
a potential function f , then for any vector field X we have

∇Xξ = fX.

Now we can show the following

Theorem 3.3. Suppose that ξ is a conformal closed 2-Killing vector field on
a Riemannian manifold (M, g) with dimension n > 1. If Ric(ξ, ξ) 6 0 then ξ
is a parallel vector field.

Proof. Consider a local orthonormal frame {e1, ..., en} on M . We directly
compute the value of Ric(X, ξ) for an arbitrary vector field X.

Ric(X, ξ) =
n∑
i=1

g(∇ei∇Xξ −∇X∇eiξ −∇∇eiXξ +∇∇Xeiξ, ei)

=
n∑
i=1

g(∇eifX −∇Xfei − f∇eiX + f∇Xei, ei)

= div(fX)− fdiv X +
n∑
i=1

g(−(X · f)ei, ei)

= X · f − n X · f = −(n− 1) X · f.

In particular we have (compare with the formula (30) in [7])

Ric(ξ, ξ) = −(n− 1) ξ · f (8)

as ξ is a 2-Killing vector field by Lemma 3.1 and equation (8) we get

f 2 =
1

2(n− 1)
Ric(ξ, ξ) 6 0. (9)

Therefore f = 0 on M and ξ is Killing. So by Lemma 2.1 ξ is a parallel vector
field.
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4 Laplacian

As we mentioned before, in [5] the Laplacian operator acting on smooth vector
fields on a Riemannian manifold has been defined by

∆X =
n∑
i=1

∇2X(ei, ei) =
n∑
i=1

(∇ei∇eiX −∇∇eieiX).

We shall denote by ∆ both the Laplacian operators, the one acting on
smooth functions on M as well as that acting on smooth vector fields. Now
we use this notion to prove the following lemma (compare with the formula
(2.5) in [4]).

Lemma 4.1. Suppose ξ is a conformal vector field with a potential function f
on a Riemannian manifold (M, g). Then

Ric(ξ, ξ) = −(n− 2) ξ · f − g(∆ξ, ξ). (10)

Proof. By definition we have

Ric(ξ, ξ) =
n∑
i=1

g(∇ei∇ξξ −∇ξ∇eiξ +∇∇ξei ξ −∇∇eiξ ξ, ei) (11)

where {e1, ..., en} is a local orthonormal frame on M . Note that for any fixed
p ∈ M , we can take the frame such that ∇eiej(p) = 0 for all 1 ≤ i, j ≤ n. As
ξ is a conformal vector field, for any pair of X, Y ∈ X (M), we have

g(∇Xξ, Y ) = 2fg(X, Y )− g(∇Y ξ,X). (12)

By direct computations and using equation (12), we obtain the following equa-
tions

n∑
i=1

g(∇ei∇ξξ, ei) = 2 div(fξ)− g(∆ξ, ξ)−
∥∥∇ξ∥∥2 (13)

n∑
i=1

g(−∇ξ∇eiξ, ei) = −n ξ · f −
n∑
i=1

g(∇∇ξeiξ, ei) (14)

n∑
i=1

g(−∇∇eiξ ξ, ei) =
∥∥∇ξ∥∥2 − 2f div ξ. (15)

Now from equations (13), (14) and (15) we immediately get

Ric(ξ, ξ) = −(n− 2) ξ · f − g(∆ξ, ξ).
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Now we present some corollaries giving us relations between conformal 2-
Killing vector fields and Laplacian operator.

Corollary 4.2. Suppose that ξ is a harmonic conformal 2-Killing vector field
on a Riemannian manifold (M, g) with dimension n > 2. If Ric(ξ, ξ) 6 0,
then ξ is a Killing vector field.

Proof. Since ξ is a harmonic vector field, so ∆ξ = 0. By using Lemma 4.1 we
obtain

Ric(ξ, ξ) = −(n− 2) ξ · f (16)

which together with Lemma 3.1 gives

Ric(ξ, ξ) = 2(n− 2)f 2 6 0 (17)

then f = 0 which implies that ξ is a Killing vector field.

Corollary 4.3. Suppose that ξ is a 2-Killing vector field on a compact Rie-
mannian manifold (M, g). If ξ is a gradient vector field of a smooth function
f on M such that ∇∆f = ∆∇f , then ξ is a parallel vector field.

Proof. The Bochner-Weitzenbock formula gives

g(ξ,∇∆f) = −
∥∥∇ξ∥∥2 −Ric(ξ, ξ) +

1

2
∆(
∥∥ξ∥∥2). (18)

On the other hand we have

g(ξ,∆∇f) =
n∑
i=1

g(∇2ξ(ei, ei), ξ)

=
n∑
i=1

g(∇2ξ(ei, ξ), ei)

=
n∑
i=1

(g(∇ei∇ξξ, ei)− g(∇eiξ,∇eiξ))

hence

g(ξ,∆∇f) = div(∇ξξ)−
∥∥∇ξ∥∥2. (19)

As ξ is a 2-Killing vector field, by Lemma 2.2 we have

Ric(ξ, ξ) = div(∇ξξ) +
∥∥∇ξ∥∥2. (20)

Now by equations (18) , (19) and (20) we get
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g(∇∆f −∆∇f, ξ) =
1

2
∆(
∥∥ξ∥∥2)− 2 div(∇ξξ)−

∥∥∇ξ∥∥2 (21)

so by Stokes’ theorem and the assumption we obtain∫
M

∥∥∇ξ∥∥2 = 0 (22)

hence
∥∥∇ξ∥∥ = 0 which implies that ξ is a parallel vector field.
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