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Abstract

In this paper we study the property of the operator equations STS = S2 and

TST = T 2 where S is dominant operator we show that is S dominant on a finite

dimensional Hilbert space and N(S) = N(ST ) then ST is normal and if N(S−λ) =

N(T − λ)for each λ ∈ C then A is normal operator where A ∈ {S, ST, TS} and we

show that if S is polynomial root of dominant then f(A) ∈ gW for each f ∈ H(σ(A)),

where A ∈ {ST, TS, T}.

1. Introduction

let H be an infinite dimensional separable Hilbert space and let B(H) ,
B0(H) denote the algebra of bounded linear operator, the ideal of compact
operator on H. If T ∈ B(H) then N(T ) and R(T ) be the null space and
the range of T . Also let α(T ) := dimN(T ), β(T ) := dimN(T ∗) and let
σ(T ), σa(T ), σs(T ), σp(T ), σp0(T ) and π0(T ) denote the spectrum, approx-
imate point spectrum , surjective spectrum, point spectrum of T , the set of
pole of the resolvent of T and the set of all eigenvalue of T which is isolated
in σ(T ).
Recall that T ∈ B(H) is dominant if for every λ ∈ C there exists a constant
number Mλ > 0 such that (T − λ)(T − λ)∗ ≤ Mλ(T − λ)∗(T − λ), and T ∈
B(H) is called isoloid if each isolated point of σ(T ) is an eigenvalue of (T ) , an
operator T ∈ B(H) is called normaloid if r(T ) = ||T || where r(T ) the spectral
radius of (T ) and it is well known that r(T ) ≤ ||T ||. An operator T is said
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to be nilpotent if T n = 0 for a natural number n and it is quasinilpotent if
r(T ) = 0 [9, 10]

The operator E := 1
2πi

∫
∂D

(λ− T )−1 is called Riesz idempotent with respect
to λ where D is a closed desk centered at λ and D∩σ(T ) = {λ} where λ ∈ σ(T )
be an isolated point of σ(T ) [9]

An operator T ∈ B(H) is said to have the single value extension property
(SV EP ) at λ0 if for every analytic solution f : U → H which is satisfy the
equation (T − λ)f(λ) = 0 (λ ∈ U) is the zero function , where U is open
disc centered at λ0 [14]

An operator T ∈ B(H) is said have (SV EP ) if T has (SV EP ) at every λ
in C from [2] we recall that for T ∈ B(H) , the asent a(T ) and the descent
d(T ) given by

a(T ) = inf{n ≥ 0 : N(T n) = N(T n+1)}
and

d(T ) = inf{n ≥ 0 : R(T n) = R(T n+1)}
An operator T ∈ B(H) is called Fredholm if it has closed range , finite di-
mensional null space and its range has finite co-dimensional.the index of a
Fredholm operator

i(T ) = α(T )− β(T )

T is called Weyle if it is Fredholm of index zero , and Browder if it is Fredholm
of finite ascent and descent.The essential spectrum σe(T ), the Wely spectrum
σw(T ) and the Browder spectrum σb(T ) define as [5, 8]

σe(T ) :={λ ∈ C : T − λ is not Fredholm}
σw(T ) :={λ ∈ C : T − λ is not Weyl}
σb(T ) :={λ ∈ C : T − λ is not Browder}
σe(T ) ⊆W (T ) ⊆ σb(T ) := σe(T ) ∪acc σ(T )

we write accK for the accumulation point of K ⊂ C if we write isoK =
K \ accK then we let

π00(T ) := {λ ∈ isoσ(T ) : 0 ≤ α(T − λ) ≤ ∞}

P00(T ) := σ(T )\σb(T )

we say that Weyl’s theorem hold for T if

σ(T )\σw(T ) = π00(T )

and Browder’s theorem hold for T if

σ(T )\σw(T ) = P00(T )
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An operator T ∈ B(H) is called B-Freadholm if there exists a natural num-
ber n for the induced operator Tn : R(T )→ R(T n) is Freadholm in the usual
sense and B-Weyl’s if in addition Tn has zero index .
the B-Fredholm spectrum σBF (T ) and B-Weyl spectrum σBW (T ) are define by

σBF (T ) := {λ ∈ C : T − λ is not B − Freadholm}
σBW (T ) := {λ ∈ C : T − λ is not B −Weyl}

An element x of A is Drazin invertible if there is an element b of A and non-
negative integer k such that

xkbx = xk , bxb = b, , xb = bx

[16] the Drazin spectrum of a ∈ A is define by [6]

σD(a) := {λ ∈ C : a− λ is not Drazin invertible}
If T ∈ B(H) that is T is Drazin invertible if and only if it has finite ascent

and descent and that is also equivalent to the fact that T decomposed as T1⊕T2
where T1 is invertible and T2 is nilpotent and

σBW (T ) = ∩{σD(T + F ) : F ∈ B0(H)}
[16] the spectrum of B-Browder σBB(T ) define as [4]

σBB(T ) = ∩{σD(T + F ) : F ∈ B0(H) and TF = FT}

Viav [18] study the operator equation STS = S2 and TST = T 2 and An, Il
Ju and Ko, Eungil [1] study the operator equation STS = S2and TST = T 2

for a paranormal operator S

2. Main Results

Let the pair (S, T ) of bounded linear operator acting on separable Hilbert
space H be a solution of the operator equation STS = S2 and TST = T 2,
before we give our main results we need the following lemmas

Lemma 2.1. [7]

(S − λ)−1{0} = {0} ⇐⇒ (ST − λ)−1(0) = {0}
⇐⇒ (TS − λ)−1(0) = {0} ⇐⇒ (T − λ)−1(0) = {0}

Lemma 2.2. [11] If A is dominant operator then N(λI − A) reduces A for
each λ ∈ C

Theorem 2.3. Let S be a dominant operator on a finite dimensional Hilbert
space H and N(S) = N(ST ) then we have
(1) ST is normal operator
(2) If N(S − λ) = N(T − λ) for every λ ∈ C then A is normal operator where
A ∈ {S, ST, TS}
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Proof. since STS = S2 and TST = T 2 then σp(ST ) = σp(S) and N(ST−λ) =
N(T − λ) [17]
Let

K :=
∑

λ∈σp(ST )

N(ST − λ) =
∑

λ∈σp(S)

N(S − λ)

since S is dominant operator and N(S−λ) reduces S then K reduces S so we
can represent S as follows

S = S1 ⊕ S2 : K ⊕K⊥

Assume that K⊥ 6= {0} then S2|K⊥ is also dominant operator and dim ¡∞
, σp(S2) 6= φ then for each λ ∈ σp(S2) there exists a nonzero vector xλ ∈ K⊥
such that λxλ = S2xλ = Sxλ then xλ ∈ K but xλ ∈ K⊥ that is xλ = 0 , which
is a contradiction there fore K⊥ = {0} which is H = K so for every x ∈ H

x =
∑

λ∈σp(S)

xλ =
∑

λ∈σp(ST )

xλ for some xλ ∈ N(A− λ)

STx =
∑

λ∈σp(ST )

λxλ =
∑

λ∈σp(S)

λxλ = Sx

but since S∗T ∗S∗ = S∗
2

and T ∗S∗T ∗ = T ∗
2

then

T ∗S∗x = S∗x =
∑

λ∈sigmap(S)

λ̄xλ =
∑

λ∈σp(ST )

λ̄xλ

therefore

||STx||2 =
∑

λ∈σp(ST )

||λxλ||2 =
∑

λ∈σ(ST )

|λ|||xλ||2 =
∑

λ∈σp(ST )

||λ̄xλ|| = ||T ∗S∗x||2

so that ST is normal
(2) since N(S − λ) = N(ST − λ) for every λ ∈ C then

N(S − λ) = N(ST − λ) = N(TS − λ) = N(T − λ)

so that (2) is obvious �

Recall that an operator S is called convexoid if convσ(S) = W (S) where
W (S)is the numerical range of S

Lemma 2.4. Let S be any operator which is normoloid and λ ∈ C and σ(S) =
{λ} then S = λI

Proof. If λ = 0 then S = 0 since S is normoloid.so let λ 6= 0, which weans
that S is invertible but S is normoloid so ||S|| = ||S−1|| = |λ|| 1

λ
| = 1 that is S

is convexoid so we have W (S) = {λ}and S = λI �
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Lemma 2.5. Let S be a dominant operator which is normoloid and σ(S) = {λ}
then we have
(1) if λ = 0 then T 2 = 0
(2) if λ 6= 0 then λ = 1 and S, T the identity operator

Proof. if λ = 0 then from lemma (2.4) we get T 2 = 0
suppose that λ 6= 0 since S is dominant which is normoliod then S = λI ,
and STS = S2 then λ2(T − I) = 0 so that T = I also since TST = T 2 then
(λ − I)λ2 = 0and λ = 1 that is σ(S) = σ(T ) = {1}, hence S and T are the
identity operator .

�

Remark 2.6. Let S be a dominant operator which is normoloid then we have
(1) if σ(S) = 0 then ST, TS,and T nilpotent
(2) is σ(S− I) = 0 then T = I that is ST −λ, TS−λ and T −λ are invertible
for all λ ∈ C\{1}

Corollary 2.7. Let S be a dominant operator which is inevitable on a finite
dimensional Hilbert space and N(S) = N(ST ) for any real number α then
αST + (1− α)S is a solution X for all n ∈ N where C(A,X)(A∗) define as

C(T,X)(T ∗) =
n∑
k=0

n k(−1)k(T−1)n−k(T )∗Xn−k

Proof. we have that [αST = (1− α)S]δ where δ = S
since (αST )δ = αSTS = αS2 = αδS = δ(αS) and ST, T are normal from
theorem (2.3) then by Fulglede-Put nam theorem that (αSR)∗δ = δ(αS)∗

then

[αST + (1− αS)]∗δ = δ(αS)∗ = δ[(1− α)S]∗ = δS∗

that is

C(S−1, X)(S∗) =
N∑
k=0

(
n

K

)
(S−1)n−kS∗Sn−k = 0

�

Corollary 2.8. If S is dominant operator which is normoloid then σ(A) ⊆
{0, 1} where A ∈ {S, ST, TS, T}

Proof. Let λ0 nonzero isolated point of σ(S) by Riesz decomposition theorem
on Eλ0(S) with respect to λ0 we can act S as a direct sum

S = S1 ⊕ S2 where σ(S1) = {λ0} and σ(S2) = σ(S)\{λ0}
since S1 is dominant operator then λ0 = 1 by lemma (2.5) that is σ(A) ⊆
{0, 1}where A ∈ {S, ST, TS, T}

�
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Lemma 2.9. If S is a dominant operator and λ0 is a nonzero isolated point
of σ(S, T )then for Riez idempotent Eλ0(S) with respect to λ0 we have

R(Eλ0(S)) = N(ST − λ0) = N(S∗T ∗ − λ0)

Proof. since S is dominant operator and λ0 ∈ σ(S)\{0} then
R(Eλ0(S)) = N(S − λ0) = N(S∗ − λ0) for the Riesz idempotent Eλ0(S) with
respect to λ0, But the pair (S, T )is solution of the operator equation STS =
S2and TST = T 2 then

N(S−λI) = N(ST−λI) = S(N(T−λI))N(T−λI) = N(TS−λI) = T (N(−λI))

then N(S−λ0) = N(ST −λ0) and N(S∗− λ̄0) = N(S∗T ∗− λ̄0) for λ0 6= 0 �

Remark 2.10. We denote the set δby the collection of every pair (S, T ) of
operator as
δ := {(S, T ) : S and T are the solution of the operator equation STS = S2

and TST = T 2 with N(S − λ) = N(T − λ) for λ 6= {0}

Proposition 2.11. Let (S, T ) ∈ δ and S be a dominant operator if λ0 is
nonzero isolated point of σ(TS) then the range is closed

Proof. Let λ0 be a nonzero isolated point of σ(TS) ⊆ {1} by Corollary (2.8)
isoσ(TS) = φ then it is obvious that σ(TS) has closed range
thus we only consider case which 1 is an isolated point of σ(TS) since STS = S2

and TST = T 2 then 1 is an isolated point of σ(S) [17] then by Riesz idempo-
tent E1(S) with respect to 1 we can act S as the direct sum

S = S1 ⊕ S2 σ(S1) = {1} and σ(S2) = σ(S)\{1}
since (S, T ) ∈ δand S1 is dominant then by lemma(2.10)

H = R(E)⊕R(E)⊥ = N(TS − I)⊕N(TS − I)⊥

TS = C1 ⊕ C2 where σ(C1) = {1} and σ(C2) = σ(TS)\{1}
since S1 and C1 are the restriction of S and TS to R(E1(S)) respectively we
not that if T1 := T |R(E1(S)) then S1T1S1 = T1

2 and T1S1T1 = T1
2 since S1

is dominant then by lemma(2.5) C1 = I that is TS − I = 0⊕ (C2 − I) then

R(TS − I) = (TS − I)(H) = 0⊕ (C2 − I)(N(TS − I)⊥)

since C2 − I is invertible , TS − I has closed range �

3. generalized Weyl’s theorem for algebraically dominant
operators

Definition 3.1. Let A ∈ B(H) is said to be an algebraically dominant if there
exists a non-constant complex polynomial P such that P (A) is dominant

M − hyponormal⇒ dominant⇒ algebraically dominant
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Remark 3.2. Let A ∈ B(H) be an algebraically dominant then A− λ is alge-
braically dominant for each λinC

Lemma 3.3. let S ∈ B(H) be a quasinilpotent algebraically dominant which
is normoliod then S is nilpotent

Proof. Let P a non-constant polynomial such that P (A) is dominant since
σ(P (A)) = Pσ(A)) then the operator P (A) − P (0) is quasinilpotent by (2.5)
since P (A)− P (0) = 0 that is

P (A) = c(A− λ1)(T − λ2)............(A− λn) and P (0) ≡ 0

then
c(A− λ1)(A− λ2)............(A− λn) = 0

cA[(A− λ1)(A− λ2)............(A− λn)] = 0

cA2[(A− λ1)(A− λ2)............(A− λn)] = 0

cAn[(A− λ1)(A− λ2)............(A− λn) = 0

since A− λi is invertible for every λ1 6= 0 we must have An = 0 �

Lemma 3.4. Let A ∈ B(H) be an algebraically dominant which is normoliod
then A is isoloid

Proof. Let λ be an isolated point of σ(A) then by spectral projection
E := 1

2πi

∫
∂D

(µ− A)−1dµ where D is closed disk of center λ which is contains
no other points of σ(A) , we can act A as the direct sum

A = A1 ⊕ T2 where σA1 = {λ} and σ(A2) = σ(A)\{λ}
by Riesz decomposition theorem ([15],p31) since A algebraically dominant
then P (A) is dominant operator for some non-constant polynomial P since
σ(A1) = {λ} then σ(P (T1)) = P (σ(A1)) = P (λ). therefore P (A1) − P (λ) is
quasinilpotent since P (A1) is dominant then by lemma(2.5) P (A1)−P (λ) = 0
put q(z) := p(z)−p(λ) then q(A1) = 0 and hence A1 is algebraically dominant
since A1 is quasinilpotent and algebraically dominant then by lemma (3.3) that
A1−λ nilpotent therefore λ ∈ σp(A1) and then λ ∈ σp(A) that is T isoloid �

Theorem 3.5. Let A ∈ B(H) be an algebraically dominant operator which is
normoloid then f(A) ∈ gW for each f ∈ H(σ(A))

Proof. Since A is dominant operator then by [12] A has SV EP then by [14,
Theorem 3.3.9,p231]P (A) has SV EP hence from [4] that is f(σBW (A)) =
σBW (f(A)) for eachH(σ(A)) sinceA is algebraically dominant then by lemma(3.4)
T is isoloid therefore [19]

σ(f(A))\π0(f(T )) = f(σ(T )\π0(A)) = f(σBW (A) = σBW (f(A))

that is f(A) ∈ gw �

Lemma 3.6. we have the following
(1)π0(S) = π0(ST ) = π0(TS) = π0(T )
(2)S is isoloid if and only in A is isoloid where A ∈ {S, ST, TS, T}



814 Buthainah A. A. Ahmed and Hassan N. Almrayatee

Proof. since by [17] and [7, lemma 2.3] that is σ(S) = σ(ST ) = σ(TS) = σ(T )
and σp(S) = σp(ST ) = σP (TS) = σp(T ) that is (2) hold .then for all λ ∈ C
α(S − λ) > 0 ⇐⇒ α(ST − λ) > 0 ⇐⇒ α(TS − λ) > 0 ⇐⇒ α(T − λ) > 0

that is (1) hold
�

Remark 3.7. Let (S, T ) ∈ δ and one of the operator S, ST, TS, T be a domi-
nant. If λ0 is a nonzero isolated point in the spectrum of one of them, then all
of the range of S−λ0, TS−λ0, ST −λ0 and T −λ0 are closed. Moreover, if λ0
is a nonzero isolated eigenvalue of the spectrum of one of them with finite mul-
tiplicity, then each of the spectral manifold HS({λ0}), HTS({λ0}), HST ({λ0}),
and HS({λ}) are finite dimensional

Theorem 3.8. suppose that S or S∗ is polynomial root of dominant operator.
Then f(A) ∈ gW for each f ∈ H(σ(A)),where A ∈ {ST, TS, T}
Proof. suppose that S is a polynomial root of dominant operator and let A ∈
{ST, TS, T} we must show that A satisfies generalized Weyl’s theorem
suppose that λ ∈ σ(A)\σBW (A) then A− λ is B-Weyl but not invertible then
by [3, lemma 4.1] that we can act A− λ as the direct sum

T − λ = A1 ⊕ A2 where A1 is Weyl and A2 nilpotent

since S is polynomial root of dominant operator then by [7, Theorem 2.1] A
has SV EP that implies A1 has SV EP at 0 therefore A1 is Weyl then A1

has finite ascent and descent that is A − λ has finite ascent and descent . so
λ ∈ π0(A)
conversely, let λ ∈ π0(A),then thenλ ∈ π0(S) by lemma(3.6) but S is poly-
nomial root of dominant operator then S ∈ gB by [4] then λ is pole of the
resolvent of S, then from [7, Theorem 2.11] A− λ is Drazin invertible then we
can act A− λ as the direct sum

A− λ = A1 ⊕ A2 where A1 is invertible and A2 is nilpotent

therefore A − λ is B-Weyl’s , that is λ ∈ σ(A)\σBW (A) so σ(A)\σBW (A) =
π0(A) hence A ∈ gW . We claim that σBW (f(A)) = f(σBW (A)) for every
F ∈ H(σ(A)).since A ∈ gW then A ∈ gW then by [4, Theorem 2.1] that is
σBW (A) = σD(A). since S is polynomial root of dominant operators ,A has
SV EP so f(A) has SV EP by [7, Theorem 3.3.9] for every f ∈ H(σ(A)). then
f(A) ∈ gB by [4, Theorem 2.9] then

σBW (f(A)) = σD(f(A)) = f(σD(A)) = f(σBW (A))

since S is polynomial root of dominant operators then by [lemma 3.4] that is
S is isoloid hence A is isoloid by [lemma 3.6] so for every f ∈ H(σ(A))

σ(f(A))\π0(f(A)) = f(σ(A)\π0(A))

since A ∈ gW we have

σ(g(A))\π0(f(A)) = f(σ(A)\π0(A)) = f(σBW (A)) = σBW (f(A))
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that is f(A) ∈ gW

We suppose that S∗ is polynomial root of dominant operator .we must show
that A ∈ gW .Let λ ∈ σ(A)\σBW (A) hence σ(A∗) = σ(A) and σBW (A∗) =

σBW (A). So λ ∈ σ(A∗)\σBW (A∗), But S∗T ∗S∗ = S∗
2
and T ∗S∗T ∗ = T ∗

2
there-

fore A∗ ∈ gW hence λ ∈ P0(A
∗) which is implies that λ ∈ P0(S

∗). Since S∗ is
polynomial root of dominant then λ is pole of the resolvent of S∗ equivalently,
λ is pole of the resolvent of A hence λ ∈ π0(A)

Conversely, suppose λ ∈ π0(A). Then λ ∈ π0(S). Since λ ∈ isoσ(S∗)
and S∗ is a polynomial root of dominant operators then λ is a pole of the
resolvent of S hence A − λ is Drazin invertible. Therefore λ ∈ σ(A)\σBW (A)
thus σ(A)\σBW (A) = π0(A) so that A ∈ gW . If S∗ is a polynomial root of
dominant operators then A is isoloid by lemma(3.6) hence f(A) ∈ gW �

Corollary 3.9. Let S is compact dominant operator which is normoloid and
suppose that (S, T ) ∈ δ then we have

TS = I ⊕Q on N(TS − I)⊕N(TS − I)⊥

where Q is quasinilpotent

Proof. suppose that S is compact operator and dominant .then by theorem(3.8)
TS satisfies generalized Weyl’s theorem. and isoσ(TS) ⊆ {0, 1} by corol-
lary(2.8) then we have

σ(TS)\σBW (TS) ⊆ {0, 1}
Assume that σBW (TS) is not finite . then σ(TS)is finite. but S is com-

pact that is σ(TS) is countable set σ(TS) = {0, λ1, λ2, ...},where λj 6= 0
for j = 1, 2, ..., λi 6= λj for eachI 6= j,andλi → 0 as  → ∞, then from
corollary(2.8) {λ1, λ2, ...} ⊆ isoσ(TS)\{0} ⊆ {1} but this is a contradiction.
Hence σBW (TS) is finite. That is every point is σBW (TS) is isolated therefore
σ(TS) ⊆ {0, 1}. If 1 /∈ σ(TS),then σ(TS) = {0} since S is dominant then
by lemma(2.4) that S = 0 hence TS = 0. If 1 ∈ σ(TS), then from proposi-
tion(2.11)that is
TS = I⊕Q on H = N(TS− I)⊕N(BA− I)⊥ , where Q is quasinilpotent �

Theorem 3.10. Let S is polynomial root of dominant operator then f(A)
satisfies a-Browder’s theorem for each f ∈ H(σ(A)), where A ∈ {ST, TS, T}.
Proof. First we must show that σea(f(A)) = f(σea(A)) and σw(f(A)) = f(σw(A)).
Let f ∈ H(σ(A)) since the inclusion σea(f(A)) ⊆ f(σea(A)) hold for each op-
erator, suppose that λ /∈ σea(f(A)) then f(A)−λ is upper semi-Fredholm and
i(f(A)− λ) ≤ 0 put

f(A)− λ = c(A− µ1)(T − µ2)...(A− µn)g(A)

where c, µ1, µ2, ..., µn ∈ C and g(A) is invertible, since S is polynomial root
of dominant S is has SV EP [12] and [14, Proposition 3.3.9] therefore A has
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SV EP [7, Theorem2.1]. Since A−µi is upper semi-Fredholm then i(A−µi) ≤ 0
for every i = 1, 2, ..., n [13, Proposition2.2], so that λ 6= f(σea(A))
Now,suppose that S∗ is polynomial root of dominant. since S∗T ∗S∗ = S∗2

and T ∗S∗T ∗ = T ∗2 and A∗ has SV EP therefore i(A − µi) ≥ 0 for every
i = 1, 2, ..., n by the classical index product theorem, A− µi is Weyl for every
i = 1, 2, ..., n.hence λ /∈ f(σea(A)) that is σea(f(A)) = f(σea(A) by the same
way we prove σw(f(A)) = f(σw(A)). Since S and S∗ is root of dominant
operators then A andA∗ has SV EP so that a-Browder’s holds forA hence

f(σab(A)) = σab(f(A)) = σea(f(A)) = f(σea(A))

for each f ∈ H(σ(A)) �
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