The Generator of Second Homotopy Module of

\[\langle x, y ; xyx = yxy \rangle \quad \text{and} \quad \langle a, b ; a^2, b^3 \rangle \]

Yanita and Dedi Mardianto

Department of Mathematics, Faculty of Mathematics and Natural Science
Universitas Andalas, Kampus Unand Limau Manis Padang 25163, Indonesia

Copyright © 2016 Yanita and Dedi Mardianto. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper discuss about generator of second homotopy module of \(\langle x, y ; xyx = yxy \rangle \) and second homotopy module of \(\langle a, b ; a^2, b^3 \rangle \). It is shown that using Tietze transformation and operations on picture there are sequence of generators between their.

Mathematics Subject Classification: 14F35, 14H30, 20F05, 20M05, 57M05

Keywords: second homotopy module, Tietze Transformation, generator

1. Introduction

A picture over \(\mathcal{P} = \langle x ; r \rangle \) is called a set of generator second homotopy module \(\pi_2(\mathcal{P}) \) if \(\{ [P] ; P \in \mathcal{P} \} \) generate \(\mathbb{Z}G \) module \(\pi_2(\mathcal{P}) \) [1]. Therefore, set generator \(\mathcal{P} \) is generator iff each spherical picture over \(\mathcal{P} \) can be transformed to empty picture by using operation on picture [2].

Calculation generator of second homotopy module performed by [2] only to describe the generators of second homotopy module from one group presentation and [8] provides a simple application from [7].

This article discuss about generator of second homotopy module of \(\langle x, y ; xyx = yxy \rangle \) and second homotopy module of \(\langle a, b ; a^2, b^3 \rangle \) using [6]. In line with this, theory of Tietze transformation can be seen in [3] and [4]. In this transformation, the operations on picture used to get the generator of these second homotopy module. Operations on picture can be seen in [6].

We are going to prove the following lemma:
Lemma 1.1 Group presentation \(\langle x, y; xyx = yxy \rangle \) isomorphic to \(\langle a, b; a^2, b^3 \rangle \), and there are sequence of generator from \(\pi_2(\langle x, y; xyx = yxy \rangle) \) to \(\pi_2(\langle a, b; a^2 = b^3 \rangle) \).

2. Basic Theory

In this section we will introduce the basic concept which is needed in all articles. The reference to this basic theory such as [2, 3, 4].

Let \(x \) be a set (alphabet). A word \(W \) on \(x \) is the form \(x_1^{\varepsilon_1}x_2^{\varepsilon_2} \ldots x_n^{\varepsilon_n} \) where \(n \geq 0 \), \(x_i \in x \) and \(\varepsilon_i = \pm 1 \), \(i = 1, 2, \ldots, n \). Inverse of \(W \), denoted \(W^{-1} \) is word \(x_n^{-\varepsilon_n}x_{n-1}^{-\varepsilon_{n-1}} \ldots x_2^{-\varepsilon_2}x_1^{-\varepsilon_1} \). If \(x_i^{\varepsilon_i} \neq x_{i+1}^{-\varepsilon_{i+1}}, i = 1, \ldots, n - 1 \), then we say that it is reduced. Furthermore it is cyclically reduced if in addition \(x_1^{\varepsilon_1} \neq x_n^{-\varepsilon_n} \). Then we have a presentation \(\mathcal{P} = \langle x; r \rangle \), where \(r \) is a set of non-empty cyclically reduced words on \(x \). We say that \(\mathcal{P} \) is finite if \(x \) and \(r \) are both finite.

If \(F(x) \) is the free group on \(x \) and \(N = \langle \langle r \rangle \rangle \) is normal closure of \(r \) in \(F(x) \), then the quotient group \(G(\mathcal{P}) = F(x)/N \) is the group defined by \(\mathcal{P} \). Denote a typical of \(G(\mathcal{P}) \) by \(\tilde{W} = [W]N \) where \(W \) is a word on \(x \) and \([W]\) is the free equivalence class of \(W \). A group \(G \) is said to be finitely presented if \(G \) can be defined by a finite presentation (that is \(G = G(\mathcal{P}) \) for some finite presentation \(\mathcal{P} \)).

We may regard \(\mathcal{P} \) as a 2-complex. This complex has a single 0-cell the 1-cell are in bijective correspondence with \(x \), and the 2-cell are in bijective correspondence with \(r \) and are attached by the boundary path determined by the spelling of the corresponding member of \(r \). Thus there are homotopy group \(\pi_1(\mathcal{P}) \) and \(\pi_2(\mathcal{P}) \).

The element of the second homotopy module \(\pi_2(\mathcal{P}) \) can be represented by geometric configurations called spherical pictures.

A picture \(\mathcal{P} \) over \(\mathcal{P} \) is a geometric configuration consisting of the following:

a. A disc \(D^2 \) with basepoint \(0 \) on \(\partial D^2 \).

b. Disjoint discs \(\Delta_1, \Delta_2, \ldots, \Delta_n \) in the interior of \(D^2 \). Each \(\Delta_i \) has a basepoint \(0_i \) on \(\partial \Delta_i \).

c. A finite number of disjoint arcs \(\alpha_1, \alpha_2, \ldots, \alpha_m \) where each arc lies in the closure of \(D^2 - \bigcup_{i=1}^{n} \Delta_i \) and is either simple closed curve having trivial intersection with \(\partial D^2 \cup (\bigcup_{i=1}^{n} \partial \Delta_i) \), or is a simple non-closed curve which join two points of \(\partial D^2 \cup (\bigcup_{i=1}^{n} \partial \Delta_i) \), neither point being a basepoint. Each arc has a normal orientation, indicated by a short arrow meeting with the arc transversely and is labelled by an element of \(x \cup x^{-1} \).

d. If we travel around \(\partial \Delta_i \) once in clockwise direction starting from \(0_i \) and read off the labels on arcs encountered (if we cross an arc, labelled \(x \) say, in the
direction of its normal orientation, then we read x^{-1}, then we obtain a word which belongs to $r \cup r^{-1}$. We call this word the label of Δ_i.

We define ∂P to be ∂D^2 and label on P (denoted by $W(P)$) is word read off by traveling around ∂P once in the clockwise direction starting from O. We say that P is spherical picture if no arcs meet ∂P. If P is spherical picture, we often omit ∂P.

Certain basic operation can be applied to a picture (spherical picture) \mathcal{P} as follows: (D) deletion and (I) insertion floating circle, (D') deletion and insertion floating semicircle, (D'') deletion and insertion folding pair and (B) bridge move (see [6]).

Two pictures will be said to be equivalent if one can be transformed to the other by a finite number of operation D, I, D', D'' and B. We let $[P]$ denote the equivalence class containing P. Note that the set of equivalence of all spherical picture over \mathcal{P} form an abelian group, denoted by $\pi_2(\mathcal{P})$ under the binary operation $[P_1] + [P_2] = [P_1 + P_2]$. The identity is the equivalence class containing the empty picture and the inverse of $[P]$ is $[-P]$. Then we can consider $\pi_2(\mathcal{P})$ as a left $\mathbb{Z}G(\mathcal{P})$-module where the $G(\mathcal{P})$-action is given by $\overline{W}. [P] = [P^W]$, $\overline{W} \in G$ and P^W is the spherical picture obtained from spherical picture P by surrounding it by a collection of concentric closed arcs with total label W. Then, we call $\pi_2(\mathcal{P})$ the second homotopy module of \mathcal{P}.

3. Proof of Lemma 1.1

By [2], generator of $\pi_2(\langle x, y; xyx = yxy \rangle)$ is

![Diagram]

and generator of $\pi_2(\langle a, b; a^2 = b^3 \rangle)$ is
Consider that $\pi_2((x,y;xyx = yxy))$ is generated by single picture, and $\pi_2((a, b; a^2 = b^3))$ as well. Thus, is obtained a different generator for each second homotopy module. However, there are sequence of generators of $\pi_2((x,y;xyx = yxy))$ to $\pi_2((a, b; a^2 = b^3))$.

By [3] and [5], we have sequence of Tietze transformation from $(a, b; a^2 = b^3)$ to $(x,y; xyx = yxy)$, i.e.,

\[
\langle x, y; xyx = yxy \rangle \cong \langle x, y, a; xyx = yxy, a = xyx \rangle \\
\cong \langle x, y, a, b; xyx = yxy, a = xyx, b = xy \rangle \\
\cong \langle x, y, a, b, xyx = yxy, a = xyx, b = xy, a^2 = b^3 \rangle \\
= \langle x, y, a, b, xyxy^{-1}x^{-1}y^{-1}, a^{-1}xyx, b^{-1}xy, a^2b^{-3} \rangle \\
\cong \langle a, b, x, y; a^{-1}xyx, b^{-1}xy, a^2b^{-3}, x = b^{-1}a, y = a^{-1}b^2 \rangle \\
\cong \langle a, b, x, y; a^2b^{-3}, x = b^{-1}a, y = a^{-1}b^2 \rangle \\
\cong \langle a, b; a^2b^{-3} \rangle \\
= \langle a, b; a^2 = b^3 \rangle
\]

Furthermore, we have sequence generator by [7], namely $P_1, P_2, P_3, P_4, P_5, P_6, P_7$ and P_8 respectively.
References

http://dx.doi.org/10.12988/ija.2015.515

Received: March 14, 2016; Published: June 16, 2016