On Minimal X-ss-Semipermutable Subgroups of Finite Groups

Fengyan Xie

Humanistic Management College, Anyang Normal University
Anyang 455000, P.R. China

Zhina Zhang

Humanistic Management College, Anyang Normal University
Anyang 455000, P.R. China

Yongyan Yang

Humanistic Management College, Anyang Normal University
Anyang 455000, P.R. China

Abstract

In this paper, we investigate the influence of minimal X-ss-semipermutable subgroups on the structure of finite groups and give some new criteria of p-nilpotency of finite groups.

Mathematics Subject Classification: 20D10, 20D15, 20D20.

Keywords: X-ss-semipermutable subgroup, minimal subgroup, p-nilpotent group

1 Introduction

Throughout the following, G always denotes a finite group. Most of the notation is standard and can be found in [2, 7].
Let A and B be subgroups of a group G. A is said to permute with B if $AB = BA$. It is known that AB is a subgroup of G if and only if A permutes with B. Some generalizations of permutable subgroups were introduced. For example, A is said to be s-semipermutable in G [9] if $AP = PA$ for any Sylow p-subgroup P of G with $(|A|, p) = 1$. Let X be a nonempty subset of G. Then A is said to be X-permutable with B [3] if there exists some element x in X such that $AB^x = B^x A$. A is said to be X-s-semipermutable in G [4] if A is X-permutable with every Sylow subgroup of some supplement T of A in G.

There were many papers related with the applications of partially permutable subgroups of various types (for example the work in [1, 3, 4, 6, 8, 9]). As a continuation, the concept of X-ss-semipermutability [10] was introduced:

Let X be a nonempty subset of a group G. Let H be a subgroup of a group G. Then we say that X-ss-semipermutable in G if H has a supplement T in G such that H is X-permutable with every Sylow p-subgroups of T with $(p, |H|) = 1$.

Obviously, the X-permutability and X-s-semipermutability imply the X-ss-semipermutability. However, the converse does not hold. For example, let $G = [C_5]C_4$, where C_5 is a group of order 5 and C_4 is the automorphism group of C_5 of order 4. Let $X = 1$ and H be a subgroup of C_4 of order 2. Then H is X-ss-semipermutable in G, but not X-s-semipermutable in G.

In this paper, we will analyze the structure of finite groups with minimal X-ss-semipermutable subgroups and give some new criteria of p-nilpotency of finite groups.

2 Preliminaries

Throughout this paper, we will use $X_{ss}(H)$ to denote the set of all such supplements T of H in G that H is X-permutable with every Sylow p-subgroups of T with $(p, |H|) = 1$.

Lemma 2.1 [10] Let A be a subgroup of a group G, X be a nonempty subset of G and let N be a normal subgroup of G.

1. If A is X-ss-semipermutable in G, then AN/N is XN/N-s-semipermutable in G/N.
2. If A is X-ss-semipermutable in G, $A \leq D \leq G$ and $X \subseteq D$, then A is X-ss-semipermutable in D.
3. If A is X-ss-semipermutable in G and $X \subseteq D$, then A is D-ss-semipermutable in G.
4. If $T \in X_{ss}(A)$ and $A \leq N_G(X)$, then $T^x \in X_{ss}(A)$ for any $x \in X$.

Lemma 2.2 Let P be a p-subgroup of G, Q a q-subgroup of G and $PQ \leq G$. If R is a subnormal subgroup of G, then $PQ \cap R = (P \cap R)(Q \cap R)$.
Proof. Since $(|PQ : P|, |PQ : Q|) = 1$, $(|PQ \cap R : P|, |PQ \cap R : Q|) = 1$. By [2, Lemma 3.8.2], $PQ \cap R = (PQ \cap R \cap P)(PQ \cap R \cap Q) = (P \cap R)(Q \cap R)$.

Lemma 2.3 [9] Let A be a subgroup of a group G. If A is s-semipermutable in G and $A \leq H \leq G$, then A is s-semipermutable in H.

3 Main results

Theorem 3.1 Let G be a group, p be the smallest prime dividing $|G|$ and X be a soluble normal subgroup of G. Suppose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is a non-abelian 2-group) is X-ss-semipermutable in G. Then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of minimal order. We prove the theorem by the following steps:

1. $O_p'(G) = 1$

 If $O_p'(G) \neq 1$. Since X is a soluble normal subgroup of G, $XO_p'(G)/O_p'(G)$ is a soluble normal subgroup of $G/O_p'(G)$. Let $K/O_p'(G)$ be a subgroup of $G/O_p'(G)$ of order p or 4 (if the Sylow p-subgroup of $G/O_p'(G)$ is a non-abelian 2-group), then there exists a subgroup L of G of order p or 4 (if Sylow p-subgroup of G is a non-abelian 2-group) such that $K = LO_p'(G)$. By Lemma 2.1, $G/O_p'(G)$ satisfies the hypothesis. The choice of G yields that $G/O_p'(G)$ is p-nilpotent. Consequently G is p-nilpotent, a contradiction. Hence $O_p'(G) = 1$.

2. $O_p(G) \neq 1$

 Suppose that $O_p(G) = 1$. Since $O_p'(G) = 1$, $X = 1$. Let R be a minimal subnormal subgroup of G. If $|R| = q$, where q is a prime divisor of $|G|$. Then $R \leq O_q(G)$, a contradiction. Therefore R is a non-abelian simple subgroup.

 Let H be a subgroup of G of order p, then H is X-ss-permutable in G. Set $T \in X_{ss}(H)$, then $G = HT$. Let $Q \in Syl_q(G)$ and $M \in Syl_q(T)$, where $q \neq p$. Then there exists an element g of G such that $Q = M^g$. Since $H \leq G = N_G(X)$, $T^g \in X_{ss}(H)$. Thus $HQ = QH$. Hence H is s-semipermutable in G. For any $a \in R$, $HQ^a \leq G$. By Lemma 2.2, $HQ^a \cap R = (H \cap R)(Q^a \cap R) = (H \cap R)(Q \cap R)^a$. Since $HQ^a \cap R$ is a pq-group, $(H \cap R)(Q \cap R)^a$ is solvable. It follows that $(H \cap R)(Q \cap R)^a \neq R$. Hence R is not a simple subgroup by [5, Theorem 3]. This contradiction shows that $O_p(G) \neq 1$.

3. $O_p(G) \leq Z_\infty(G)$

 Since p is the smallest prime dividing $|G|$, it is equivalent to prove that every G-chief factor L/K in $O_p(G)$ is of prime order. Assume that the assertion is not true and let L/K be a counterexample with $|K|$ minimal, that is, L/K is non-cyclic but for every chief factor U/V of G below $O_p(G)$ with $|V| < |K|$, U/V is cyclic. Let R/K be a chief factor of P/K, where P is a Sylow p-subgroup of G and $R \leq L$. Then $R = \langle a \rangle$ for any $a \in R \setminus K$. Let $H = \langle a \rangle$.

If $|H| = p$ or 4 (if P is non-abelian 2-group). Then by the hypothesis, H is X-ss-semipermutable in G. Set $T \in X_{ss}(H)$, then $G = HT$. Let $Q \in Syl_{q}(T)$, where $q \neq p$. Then $HQ^x = Q^xH$ for some $x \in X$. Since Q^x is a Sylow q-subgroup of G, $HQ^x \cap L = (H \cap L)(Q^x \cap L) = H$ by Lemma 2.2. Thus H is normal in HQ^x. It follows that R/K is normal in HQ^xK/K. Since R/K is a chief factor of P/K, R/K is normal in G/K. The choice of L/K shows that $L/K = R/K$ is cyclic. This contradiction means that all elements of $R \setminus K$ of order p and order 4 (if P is a non-abelian 2-group) are contained in K. Since $L/K = (R/K)^{G/K} = R^{G}/K$, we have that all elements of L of order p and 4 (if P is a non-abelian 2-group) are contained in K. Let U/V be any chief factor of G below K. Then, by the choice of L/K, U/V is of order p and so $G/C_{G}(U/V)$ is abelian of exponent dividing $p - 1$. Put $W = \cap_{U \leq K}C_{G}(U/V)$, where U/V is a G-chief. Then W is normal in G and G/W is abelian of exponent dividing $p - 1$. Let Q be any Sylow q-subgroup of W, where $q \neq p$. Then by [2, A(12.3)], Q acts trivially on K. Moreover, since all elements of L of order p and 4 (if P is a non-abelian 2-group) are contained in K, Q acts trivially on L/K by the well-known Blackburn’s theorem, from which we conclude that $W/C_{W}(L/K)$ is a p-group. It follows that $W \leq C_{G}(L/K)$ by [2, Lemma 1.7.11]. Since $G/W = G/\cap_{U \leq K}C_{G}(U/V)$ is abelian of exponent dividing $p - 1$, also $G/C_{G}(L/K)$ is. Now, by [7, I, Lemma 1.3], we have that L/K is of order p. This contradiction shows that (3) holds.

(4) $F^{*}(G) = F(G) = O_{p}(G)$.

Let $F = F^{*}(G)$. By (1), $F(G) = O_{p}(G)$ and $O_{p}(F) = 1$. Then by F is a quasinilpotent normal subgroup of G, $O_{p}(F) = O_{p}(G)$ is the maximal normal subgroup of F. Thus the soluble normality of X shows that $X \cap F \leq O_{p}(F)$. Set $\overline{X} = XO_{p}(F)/O_{p}(F), \overline{F} = F/O_{p}(F)$. Then $\overline{X} \cap \overline{F} = 1$ and hence $\overline{F} \leq C_{G}\overline{X}$. If $F \neq F(G)$. Let $R/O_{p}(F)$ be a minimal subnormal subgroup of $G/O_{p}(F)$ and $R \leq F$. We assume that R is not p-nilpotent. If not, let S be a normal Hall p'-subgroup. Since p is the smallest prime diving $|G|$, S is soluble. Then the minimal subnormal subgroup of S is prime order and contained in $O_{p'}(G)$. By $O_{p'}(G) = 1$, $S = 1$. It follows that R is p-group and therefore $R \leq O_{p}(F)$. This contraction shows that R is not p-nilpotent. Let $\overline{G} = G/O_{p}(F), \overline{R} = R/O_{p}(F)$ Since \overline{R} is the minimal subnormal subgroup of \overline{G}, \overline{R} is a non-abelian simple subgroup. Let M be a minimal non-p-nilpotent subgroup of R. Thus $M = [A]B$, where A is a Sylow p-subgroup of M, $exp(A) = p$ or 4 and B is a p'-subgroup of M. If $A \leq O_{p}(F)$, then by (3) M is p-nilpotent. If $A \notin O_{p}(F)$, then there exists an element a of A such that $a \in A \setminus O_{p}(F)$. Let $H = \langle a \rangle$, then $|H| = p$ or $|H| = 4$. By the hypothesis, H is X-ss-semipermutable in G. Let $\overline{H} = HO_{p}(F)/O_{p}(F)$. Hence \overline{H} is \overline{X}-ss-permutable in \overline{G}. Set $T \in X_{ss}(\overline{H})$, then $G = \overline{H} T$. Let $\overline{Q} \in Syl_{q}(\overline{G})$ and $\overline{M} \in Syl_{q}(T)$, where $q \neq p$. Then there exists an element \overline{g} of \overline{G} such that $\overline{Q} = \overline{M}^{\overline{g}}$. Since $\overline{H} \leq \overline{F} \leq C_{\overline{G}}\overline{X}, \overline{T}^{\overline{g}} \in X_{ss}(\overline{H})$. Thus $\overline{H} \overline{Q} = \overline{Q} \overline{H}$. Hence \overline{H} is
On minimal X-ss-semipermutable subgroups of finite groups

Since $H \leq R$, H is s-semipermutable in R by Lemma 2.3. Let $K \in Syl_pR$. For any $\alpha \in R$, $H K^{\alpha}$ is pq-subgroup of R. Since R is a non-abelian simple subgroup, $H K^{\alpha} \neq R$. Hence R is not a simple subgroup by [5, Theorem 3]. This contradiction shows that $F \neq F(G)$.

(5) Final contradiction.

Put $W = \cap_{U \leq K} C_G(U/V)$, where U/V is a G-chief in $O_p(G)$. Since $F(G) \leq C_G(U/V)$, $F(G) \leq W$. Suppose that $F(G) \neq W$ and let $R/F(G)$ be a minimal normal subgroup of $G/F(G)$ with $R \leq W$. Thus $R/F(G)$ is quasinilpotent and so is R. It follows that $R \leq F(G)$, a contradiction. Thus, $F(G) = W$. Since $G/C_G(U/K)$ is abelian of exponent dividing $p - 1$ by the preceding argument (3), $G/F(G) = G/W$ is abelian of exponent dividing $p - 1$. By (3), G is p-nilpotent. Thus the proof is complete.

Corollary 3.2 Let G be a group and p be the smallest prime diving $|G|$. Suppose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is a non-abelian 2-group) is s-semipermutable in G. Then G is p-nilpotent.

Corollary 3.3 Let G be a soluble group and p be the smallest prime diving $|G|$. Suppose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is a non-abelian 2-group) is G-permutable in G. Then G is p-nilpotent.

Corollary 3.4 Let G be a group and p be the smallest prime diving $|G|$. Suppose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is a non-abelian 2-group) is $F(G)$-permutable in G. Then G is p-nilpotent.

Corollary 3.5 Let G be a group, p be the smallest prime diving $|G|$ and X be a soluble normal subgroup of G. Suppose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is a non-abelian 2-group) is X-ss-semipermutable in G. Then G is p-nilpotent.

Corollary 3.6 Let G be a group and X be a soluble normal subgroup of G. Suppose that every primary cyclic subgroup of G (if the Sylow 2-subgroup of G is a non-abelian 2-group) is X-ss-semipermutable in G. Then G is a Sylow Tower group.

Acknowledgements. The research is supported by the Key Scientific Research Foundation of Higher Education Institutions of Henan Province (No: 15A110048).

References

[1] Bahaa edeen A. Al-joher, Semipermutability and sylow permutability of

Received: March 10, 2016; Published: April 30, 2016