Inequalities for Certain Means in Structural Mechanics1

Hong-Hu Chu

School of Civil Engineering and Architecture
Changsha University of Sciences & Technology
Changsha, Hunan, 410014, P. R. China

Yu-Ming Chu2

School of Mathematics and Computation Sciences
Hunan City University
Yiyang, Hunan, 413000, P. R. China

Copyright © 2016 Hong-Hu Chu and Yu-Ming Chu. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In the article, we prove that the inequality
\[A^\alpha(a, b) I^{1-\alpha}(a, b) \leq M_{(2+\alpha)/3}(a, b) \]
holds for all \(a, b > 0 \) if \(\alpha \in \left[\frac{(3 \log 2 - 2)}{(1 - \log 2)}, 1\right) \) and the inequality is reversed if \(\alpha \in (0, \frac{3\sqrt{145} - 35}{10}] \), where \(A(a, b) \), \(I(a, b) \) and \(M_p(a, b) \) are respectively the arithmetic, identric and \(p \)th power means of \(a \) and \(b \).

Mathematics Subject Classification: 26E60

Keywords: structural mechanics, power mean, identric mean, geometric mean, arithmetic mean

1This research was supported by the Natural Science Foundation of China under Grant 61374086 and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

2Corresponding author
1. Introduction

For \(p \in \mathbb{R} \), the power mean \(M_p(a, b) \) of order \(p \) and the identric mean \(I(a, b) \) of two positive numbers \(a \) and \(b \) are defined by

\[
M_p(a, b) = \begin{cases}
\left(\frac{a^p + b^p}{2} \right)^{1/p}, & p \neq 0, \\
\sqrt{ab}, & p = 0,
\end{cases}
\]

and

\[
I(a, b) = \begin{cases}
\frac{1}{e} \left(\frac{b^b}{a^a} \right)^{1/(b-a)}, & a \neq b, \\
\frac{a}{a}, & a = b,
\end{cases}
\]

respectively.

It is well-known that there are many practical problems in structural mechanics need to deal the power mean \(M_p(a, b) \), identric mean \(I(a, b) \) and other bivariate means. \(M_p(a, b) \) is continuous and strictly increasing with respect to \(p \in \mathbb{R} \) for fixed \(a, b > 0 \) with \(a \neq b \). In the recent past, both mean values have been the subject of intensive research. In particular, many remarkable inequalities for \(M_p(a, b) \) and \(I(a, b) \) can be found in literature [1-14].

Let \(A(a, b) = (a + b)/2, \ L(a, b) = (b - a)/(\log b - \log a) \) \(a \neq b \) and \(L(a, a) = a, \ G(a, b) = \sqrt{ab} \) and \(H(a, b) = 2ab/(a + b) \) be the arithmetic mean, logarithmic mean, geometric mean and harmonic mean of two positive numbers \(a \) and \(b \), respectively. Then

\[
\min\{a, b\} \leq H(a, b) = M_{-1}(a, b) \leq G(a, b) = M_0(a, b) \leq L(a, b) \leq I(a, b) \leq A(a, b) = M_1(a, b) \leq \max\{a, b\},
\]

and each inequality in (1.3) holds equality if and only if \(b = a \).

In [15], Alzer and Janous established the following sharp double inequality (see also [11, p. 350])

\[
M_{\log 2/\log 3}(a, b) \leq \frac{2}{3} A(a, b) + \frac{1}{3} G(a, b) \leq M_{2/3}(a, b)
\]

for all \(a, b > 0 \).

For any \(\alpha \in (0, 1) \), Janous [16] found the greatest value \(p \) and the least value \(q \) such that

\[
M_p(a, b) \leq \alpha A(a, b) + (1 - \alpha)G(a, b) \leq M_q(a, b)
\]

for all \(a, b > 0 \).
Inequalities for certain means in structural mechanics

In [17-19], the authors presented the bounds for \(L \) and \(I \) in terms of \(A \) and \(G \) as follows

\[
G^{2/3}(a,b)A^{1/3}(a,b) \leq L(a,b) \leq \frac{2}{3}G(a,b) + \frac{1}{3}A(a,b)
\]

and

\[
\frac{1}{3}G(a,b) + \frac{2}{3}A(a,b) \leq I(a,b)
\]

for all \(a,b > 0 \).

The following companion of (1.3) provides inequalities for the geometric and arithmetic means of \(L \) and \(I \), the proof can be found in [20].

\[
G^{1/2}(a,b)A^{1/2}(a,b) \leq L^{1/2}(a,b)I^{1/2}(a,b) \leq \frac{1}{2}L(a,b) + \frac{1}{2}I(a,b) \leq \frac{1}{2}G(a,b) + \frac{1}{2}A(a,b)
\]

for all \(a,b > 0 \).

The following sharp bounds for \(L, I, (LI)^{1/2}, \) and \((L+I)/2\) in terms of power means \(M_p(a,b) \) are proved in [13, 20-25].

\[
L(a,b) \leq M_{1/3}(a,b), \quad M_{2/3}(a,b) \leq I(a,b) \leq M_{\log 2}(a,b),
\]

\[
M_0(a,b) \leq \sqrt{L(a,b)I(a,b)} \leq M_{1/2}(a,b)
\]

and

\[
\frac{1}{2}(L(a,b) + I(a,b)) < M_{1/2}(a,b)
\]

for all \(a,b > 0 \).

Alzer and Qiu [26] proved

\[
M_c(a,b) \leq \frac{1}{2}L(a,b) + \frac{1}{2}I(a,b)
\]

for all \(a, b > 0 \) with the best possible parameter \(c = \log 2/(1 + \log 2) \), and

\[
\alpha A(a,b) + (1 - \alpha)G(a,b) \leq I(a,b) \leq \beta A(a,b) + (1 - \beta)G(a,b)
\]

for \(\alpha \leq 2/3, \beta \geq 2/e = 0.73575... \) and \(a,b > 0 \).

The main purpose of this paper is to give the sharp bounds for \(A^\alpha I^{1-\alpha} \) in terms of power means for some \(\alpha \in (0, 1) \).

2. Lemmas

In order to establish our main results, we need a lemma, which we present in this section.
Lemma 2.1. Let \(g(t) = (1 - r)(t^{2 + r} + t^{2 + r} + t + 1) \log t + (2r - 1)t^{2 + r} + 2rt^{2 + r} + t^{2} + 2rt + 1 - 2r. \) Then the following statements are true:

1. If \(r \in \left[\frac{3\log 2 - 2}{1 - \log 2}, 1\right), \) then there exists \(\lambda \in (1, +\infty), \) such that \(g(t) > 0 \) for \(t \in (1, \lambda) \) and \(g(t) < 0 \) for \(t \in (\lambda, +\infty). \)

2. If \(r \in (0, \frac{3\sqrt{145} - 35}{10}], \) then \(g(t) < 0 \) for \(t \in (1, +\infty). \)

Proof. Let \(r \in (0, 1), \) \(p = \frac{2 + r}{3}, \) \(g_1(t) = t^{1-p}g'(t), \) \(g_2(t) = t^pg_1'(t), \) \(g_3(t) = t^{1-p}g_2'(t), \) \(g_4(t) = t^3g_3'(t), \) \(g_5(t) = t^{p-2}g_4'(t), \) \(g_6(t) = t^3g_5'(t), \) \(g_7(t) = t^{1-p}g_6'(t), \) and \(g_8(t) = t^pg_7'(t). \) Then simple computation leads to

\[
\begin{align*}
g(1) &= 0, \\
\lim_{t \to +\infty} g(t) &= -\infty, \\
g_1(t) &= (1 - r)[t^{1-p} + (1 + p)t + p] \log t - 2t^{2-p} + (1 + r)t^{1-p} \\
&\quad + (1 - r)t^{1-p} + (2pr - p + r)t - (1 - p)t^{-1} - 2pr - r + 1, \\
g_1(1) &= 0, \\
\lim_{t \to +\infty} g_1(t) &= -\infty, \\
g_2(t) &= (1 - r)[(1 + p)t^p + 1 - p] \log t + (pr + 1)t^p + p(1 - r)t^{p-1} \\
&\quad + (1 - p)t^{p-2} - 2(2 - p)t - p(1 - r)t^{-1} - pr - p + 2, \\
g_2(1) &= 0, \\
\lim_{t \to +\infty} g_2(t) &= -\infty. \\
g_3(t) &= p(1 + p)(1 - r) \log t - 2(2 - p)t^{1-p} + (1 + p)(1 - r)t^{-p} \\
&\quad + p(1 - r)t^{-1-p} - p(1 - p)(1 - r)t^{-1} - (1 - p)(2 - p)t^{-2} \\
&\quad + p^2r - pr + 2p - r + 1, \\
g_3(1) &= 6p - 4 - 2r = 0, \\
\lim_{t \to +\infty} g_3(t) &= -\infty, \\
g_4(t) &= p(1 - r)[(1 + p)t^2 + (1 - p)t - (1 - p)t^{2-p} - (1 + p)t^{1-p}] \\
&\quad - 2(1 - p)(2 - p)(t^{3-p} - 1),
\end{align*}
\]
Inequalities for certain means in structural mechanics

\[g_4(1) = 0, \quad \lim_{t \to +\infty} g_4(t) = -\infty, \quad \text{(2.9)} \]

\[g_5(t) = p(1 - r)[2(1 + p)t^{p-1} + (1 - p)t^{p-2} - (1 - p)(2 - p)t^{-1} \]
\[- (1 - p)(1 + p)t^{-2}] - 2(1 - p)(2 - p)(3 - p), \]
\[g_5(1) = 4(1 - r)p^2 - 2(1 - p)(2 - p)(3 - p), \]
\[= \frac{2}{27}(1 - r)(5r^2 + 35r - 4), \quad \text{(2.11)} \]

\[\lim_{t \to +\infty} g_5(t) = -2(1 - p)(2 - p)(3 - p) < 0, \quad \text{(2.12)} \]

\[g_6(t) = p(1 - r)[-2(1 + p)(1 - p)t^{p+1} - (1 - p)(2 - p)t^p \]
\[+ (1 - p)(2 - p)t + 2(1 + p)(1 - p)], \]
\[g_6(1) = 0, \quad \text{(2.13)} \]

\[g_7(t) = p(1 - p)(1 - r)[(2 - p)t^{1-p} - 2(1 + p)^2t - (2 - p)], \]
\[g_7(1) = -p^2(1 - p)(7 + p)(1 - r) < 0, \quad \text{(2.14)} \]

\[g_8(t) = p(1 - p)(1 - r)[-2(1 + p)^2t^p + (1 - p)(2 - p)], \quad \text{(2.15)} \]

and

\[g_8(1) = -p^2(1 - p)(7 + p)(1 - r) < 0. \quad \text{(2.16)} \]

(1) If \(r \in \left[\frac{3\log 2 - 2}{1 - \log 2}, 1 \right) \), then from (2.11) and \(\frac{3\log 2 - 2}{1 - \log 2} = 0.258891... > \frac{3\sqrt{15} - 35}{10} = 0.112478... \) we get

\[g_5(1) > 0. \quad \text{(2.17)} \]

From (2.15) we clearly see that \(g_8(t) \) is strictly decreasing in \([1, +\infty)\), then (2.16) implies that \(g_8(t) < 0 \) for \(t \in [1, +\infty) \). Hence \(g_7(t) \) is strictly decreasing in \([1, +\infty)\).

From (2.14) and the monotonicity of \(g_7(t) \), we know that \(g_7(t) < 0 \) for \(t \in [1, +\infty) \). Hence \(g_6(t) \) is strictly decreasing in \([1, +\infty)\).

(2.13) and the monotonicity of \(g_6(t) \) imply that \(g_6(t) < 0 \) for \(t \in [1, +\infty) \). Hence that \(g_6(t) \) is strictly decreasing in \([1, +\infty)\).

From (2.12) and (2.17) together with the monotonicity of \(g_5(t) \), we know that there exists \(t_0 \in (1, +\infty) \), such that \(g_5(t) > 0 \) for \(t \in (1, t_0) \), and \(g_5(t) < 0 \) for \(t \in (t_0, +\infty) \). Hence \(g_4(t) \) is strictly increasing in \([1, t_0]\), and \(g_4(t) \) is strictly decreasing in \([t_0, +\infty)\).

From (2.9), (2.10) and the monotonicity of \(g_4(t) \), we obtain that there exists \(t_1 \in (1, +\infty) \), such that \(g_4(t) > 0 \) for \(t \in (1, t_1) \), and \(g_4(t) < 0 \) for \(t \in [t_1, +\infty) \). Hence \(g_3(t) \) is strictly increasing in \([1, t_1]\), and \(g_3(t) \) is strictly decreasing in \([t_1, +\infty)\).
From (2.7) and (2.8) together with the monotonicity of $g_3(t)$ we clearly see that there exists $t_2 \in (1, +\infty)$, such that $g_3(t) > 0$ for $t \in (1, t_2)$, and $g_3(t) < 0$ for $t \in (t_2, +\infty)$. Hence $g_3(t)$ is strictly increasing in $[1, t_2]$, and $g_2(t)$ is strictly decreasing in $[t_2, +\infty)$.

From (2.5), (2.6) and the monotonicity of $g_2(t)$, we obtain that there exists $t_3 \in (1, +\infty)$, such that $g_2(t) > 0$ for $t \in (1, t_3)$, and $g_2(t) < 0$ for $t \in (t_3, +\infty)$. Hence $g_1(t)$ is strictly increasing in $[1, t_3]$, and $g_1(t)$ is strictly decreasing in $[t_3, +\infty)$.

From (2.3) and (2.4) together with the monotonicity of $g_1(t)$ we know that there exists $t_4 \in (1, +\infty)$, such that $g_1(t) > 0$ for $t \in (1, t_4)$, and $g_1(t) < 0$ for $t \in (t_4, +\infty)$. Hence $g(t)$ is strictly increasing in $[1, t_4]$, and $g(t)$ is decreasing in $[t_4, +\infty)$.

Therefore, Lemma 2.1 (1) follows from (2.1) and (2.2) together with the monotonicity of $g(t)$.

(2) If $r \in (0, \frac{3\sqrt{145}-35}{10}]$, then from (2.11) we clearly see that $g_5(1) \leq 0$. (2.18)

From (2.15) we know that $g_8(t)$ is strictly decreasing. Therefore, Lemma 2.1 (2) follows from the monotonicity of $g_8(t)$, (2.16), (2.14), (2.13), (2.18), (2.9), (2.7), (2.5), (2.3) and (2.1). □

3. Main Results

Theorem 3.1. For all $a, b > 0$, we have

$$A^\alpha(a, b)I^{1-\alpha}(a, b) \leq M_{2^{+\alpha}}(a, b)$$

(3.1)

for $\alpha \in (\frac{3\log 2-2}{1-\log 2}, 1)$, and

$$M_{2^{+\alpha}}(a, b) \leq A^\alpha(a, b)I^{1-\alpha}(a, b)$$

(3.2)

for $\alpha \in (0, \frac{3\sqrt{145}-35}{10}]$. Inequality (3.1) or (3.2) holds equality if and only if $a = b$, and the parameter $\frac{2^{+\alpha}}{3}$ in inequalities (3.1) and (3.2) cannot be improved.

Proof. If $a = b$, then from (1.1) and (1.2) we clearly see that $A^\alpha(a, b)I^{1-\alpha}(a, b) = M_{2^{+\alpha}}(a, b) = a$ for any $\alpha \in (0, 1)$.

If $a \neq b$, without loss of generality, we assume that $a > b$. Let $t = \frac{a}{b} > 1$ and $p = \frac{2^{+\alpha}}{3}$, then (1.1) and (1.2) leads to

$$M_p(a, b) - A^\alpha(a, b)I^{1-\alpha}(a, b) = b \left[\left(\frac{t^p + 1}{2} \right)^{\frac{1}{p}} - \left(\frac{t + 1}{2} \right)^{\alpha} \left(\frac{1}{e}, t^t \right)^{1-\alpha} \right].$$

(3.3)
Inequalities for certain means in structural mechanics

Let

\[f(t) = \frac{1}{p} \log \frac{1 + tp}{2} - \alpha \log \frac{t + 1}{2} - (1 - \alpha) \frac{t}{t - 1} \log t + (1 - \alpha), \]

then

\[\lim_{t \to 1} f(t) = 0, \quad (3.4) \]

\[\lim_{t \to \infty} f(t) = (1 - \alpha) + (\alpha - \frac{1}{p}) \log 2 \quad (3.5) \]

and

\[f'(t) = \frac{g(t)}{(t + 1)(t - 1)^2(t^p + 1)}, \quad (3.6) \]

where

\[g(t) = (1 - \alpha)(t^{p+1} + t^p + t + 1) \log t \\
+ (2\alpha - 1)t^{p+1} - 2\alpha t^p + t^{p-1} - t^2 + 2\alpha t + 1 - 2\alpha. \]

If \(\alpha \in \left[\frac{3 \log 2 - 2}{1 - \log 2}, 1 \right) \), then (3.5) leads to

\[\lim_{t \to \infty} f(t) = \frac{(1 - \alpha)(\alpha + 3)}{\alpha + 2} \left(\frac{\alpha + 2}{\alpha + 3} - \log 2 \right) \geq 0. \quad (3.7) \]

Therefore, \(A^\alpha(a,b)I^{1-\alpha}(a,b) < M_{2+\alpha}^2(a,b) \) for \(a \neq b \) follows from (3.3), (3.4), (3.6), (3.7) and Lemma 2.1 (1).

If \(\alpha \in (0, \frac{3\sqrt{15} - 35}{10}] \), then \(A^\alpha(a,b)I^{1-\alpha}(a,b) > M_{2+\alpha}^2(a,b) \) for \(a \neq b \) follows from (3.3), (3.4), (3.6) and Lemma 2.1 (2).

Next, we prove that the parameter \(\frac{2+\alpha}{3} \) in inequalities (3.1) and (3.2) cannot be improved.

Case 1. If \(\alpha \in (\frac{3\log 2 - 2}{1 - \log 2}, 1] \), then for any \(0 < \varepsilon < \frac{2+\alpha}{3} \), let \(0 < x < 1 \) and \(x \to 0 \), making use of the Taylor expansion, we have

\[\log \left[A^\alpha(1,1+x)I^{1-\alpha}(1,1+x) \right] - \log M_{2+\alpha}^{2+\alpha-\varepsilon}(1,1+x) \]
\[= \alpha \log(1 + \frac{x}{2}) + \frac{(1 - \alpha)(1+x)}{x} \log(1 + x) - (1 - \alpha) \]
\[- \frac{3}{2 + \alpha - 3\varepsilon} \log \frac{1 + (1 + x)^{2+\alpha-3\varepsilon}}{2} \]
\[= \frac{\varepsilon}{8} x^2 + o(x^2). \quad (3.8) \]
Equation (3.8) implies that for any $\alpha \in \left[\frac{3\log 2 - 2}{1 - \log 2}, 1\right)$ and $0 < \varepsilon < \frac{2 + \alpha}{3}$, there exists $0 < \delta_1 = \delta_1(\varepsilon, \alpha) < 1$, such that

$$A^\alpha(1, 1 + x)I^{1-\alpha}(1, 1 + x) > M_{\frac{2 + \alpha}{3} + \varepsilon}(1, 1 + x)$$

for $x \in (0, \delta_1)$.

Case 2. If $\alpha \in (0, \frac{3\sqrt{145} - 35}{10}]$, then for any $0 < \varepsilon < \frac{2 + \alpha}{3}$, let $0 < x < 1$ and $x \to 0$, making use of the Taylor expansion, we have

$$\log \left[A^\alpha(1, 1 + x)I^{1-\alpha}(1, 1 + x) \right] - \log M_{\frac{2 + \alpha}{3} + \varepsilon}(1, 1 + x) = \alpha \log \left(1 + \frac{x}{2}\right) + \frac{(1 - \alpha)(1 + x)}{x} \log(1 + x) - (1 - \alpha)$$

$$- \frac{3}{2 + \alpha + 3\varepsilon} \log \left(1 + \frac{(1 + x)^{2 + \alpha + 3\varepsilon}}{2}\right)$$

$$= -\frac{\varepsilon}{8} x^2 + o(x^2). \quad (3.9)$$

Equation (3.9) implies that for any $\alpha \in (0, \frac{3\sqrt{145} - 35}{10}]$ and $0 < \varepsilon < \frac{2 + \alpha}{3}$, there exists $0 < \delta_2 = \delta_2(\varepsilon, \alpha) < 1$, such that

$$A^\alpha(1, 1 + x)I^{1-\alpha}(1, 1 + x) < M_{\frac{2 + \alpha}{3} + \varepsilon}(1, 1 + x)$$

for $x \in (0, \delta_2)$. □

References

Received: March 28, 2016; Published: May 16, 2016