Spectrum-Preserving Mapping on $C(X)$ Banach Algebras

Hakan Avcı and Saime Şeyma Danayiyen

Ondokuz Mayıs University, Faculty of Sciences and Arts
Department of Mathematics, Atakum, Samsun, Turkey

Copyright © 2016 Hakan Avcı and Saime Şeyma Danayiyen. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we showed that $\Delta(C(X))$ can be extended to $\Delta(W)$ where W is a commutative unital Banach algebra including $C(X)$, the space of all continuous functions on X. Also it is showed that $\Psi : C(X) \to Y$ is a spectrum-preserving mapping if and only if $\Psi^* (\Delta(Y)) = \Delta(C(X))$.

Keywords: Banach algebra, spectrum, complex homomorphism, spectrum-preserving map

1 Introduction

Let A be a unital Banach algebra. For any element $x \in A$, the spectrum and spectral radius are defined in [5]

$$\sigma_A(x) = \{ \lambda \in \mathbb{C} : (x - \lambda 1) \in A^{-1} \}$$

$$r_A(x) = \text{Sup} \{ ||\lambda|| : \lambda \in \sigma_A(x) \}$$

respectively. Some properties such as $r_A(x) \leq ||x||_A$ and $r_A(x + y) \leq r_A(x) + r_A(y)$ can be found in [2, 6, 7].

Let A and B be Banach algebras and f be a homomorphism from A to B. If $\sigma_A(a) = \sigma_B(f(a))$ for each $a \in A$, then f is called a spectrum-preserving mapping [3, 6]. Also f is a spectrum-preserving mapping if $f^{-1}(U_n(B)) =$
$U_n(A)$ where $U_n(A)$ and $U_n(B)$ are the set of unimodular elements of A and B, respectively [3].

Let $\Delta(A)$ and $M(A)$ be the set of non-zero complex homomorphisms and the set of all maximal ideals of Banach algebra A, respectively. According to [7], there exists a one to one correspondence between the elements of $\Delta(A)$ and $M(A)$ such that $\varphi = \text{Ker}I$ where $\varphi \in \Delta(A)$ and $I \in M(A)$.

Let $\varepsilon > 0$ and $\varphi \in \Delta(A)$. According to Gelfand topology defined on $\Delta(A)$, the neighbourhood of φ is the set

$$U_\varepsilon (\varphi ; x_1, x_2, ..., x_n) = \{ \varphi' \in \Delta(A) : |\widehat{x}_i(\varphi) - \widehat{x}_i(\varphi')| < \varepsilon, x_i \in A \} \text{ for } i = 1, 2, ..., n.$$

Let A be a commutative Banach algebra without order. Then $\Delta(A) = \Delta(T) \cup \Delta_0(T)$ where T is a multiplier on A. Nevertheless, for any mapping on Banach algebras from X to Y, we know that $f^*(\Delta(Y)) \subset \Delta(X)$ by [4].

In this paper, $\Psi : C(X) \rightarrow Y$ will be taken as a continuous homomorphism such that $\Psi(1) = 1$ where X is compact set, $C(X)$ is the set of all continuous functions on X and Y is any commutative unital Banach algebra.

2 Main Results

Theorem 2.1 Let A and B be to discrete, closed subsets of the space $\Delta(C(X))$. Then, there exist $f, g \in C(X)$ such that $\widehat{f}(A) = 1$, $\widehat{g}(B) = 1$ and $fg = 0$.

Proof. For discrete, closed subsets A and B, there exists open neighbourhoods $U \in N(A)$ and $V \in N(B)$ such that $U \cap V = \emptyset$. Thus, we have $(\Delta(C(X)) - U) \cap A = \emptyset$ and $(\Delta(C(X)) - V) \cap B = \emptyset$. Using the regularity of the algebra $C(X)$, there exists $f, g \in C(X)$ such that

$$\widehat{f}(\Delta(C(X)) - U) = 0, \widehat{f}(A) = 1$$

and

$$\widehat{g}(\Delta(C(X)) - V) = 0, \widehat{g}(B) = 1.$$

For all $\varphi \in \Delta(C(X))$ only one of $\varphi \in A, \varphi \in B, \varphi \in \Delta(C(X)) - U$ or $\varphi \in \Delta(C(X)) - V$ is true. As Banach algebra $C(X)$ is semisimple and $U \cap V = \emptyset$, we can show the followings:

Let $\varphi \in A$. So, we have $\widehat{f}(\varphi) = 1, \widehat{g}(\varphi) = 0$ and $\widehat{f}g(\varphi) = \widehat{f}(\varphi)\widehat{g}(\varphi) = \varphi(f)\varphi(g) = \varphi(fg) = 0$ which implies $fg = 0$.

If $\varphi \in B$, then $\widehat{f}(\varphi) = 0, \widehat{g}(\varphi) = 1$ and $fg = 0$.

Let $\varphi \in \Delta(C(X)) - U$. Then $\widehat{f}(\varphi) = 0, \widehat{g}(\varphi) = 1$ and $fg = 0$.

Suppose that $\varphi \in \Delta(C(X)) - V$. This implies that $\widehat{f}(\varphi) = 1, \widehat{g}(\varphi) = 0$ and $fg = 0$. ■
Theorem 2.2 Let \(W \) be a commutative Banach algebra with unity and \(C(X) \subset W \). Then every element of \(\Delta(C(X)) \) can be extended to an element of \(\Delta(W) \). That is, there exist \(g \in \Delta(W) \) such that \(g|_{C(X)} = f \), for all \(f \in \Delta(C(X)) \).

Proof. Let \(f \in \Delta(C(X)) \) be arbitrary. There exist \(I \in M(C(X)) \) such that \(I = K \text{erf} \). Denote the minumum ideal containing the ideal \(I \) of algebra \(W \) by \(J_0 \). If \(J_0 = W \), then there exist \(f_1, f_2, \ldots, f_n \in I, g_1, g_2, \ldots, g_n \in W \) such that \(\sum_{i=1}^{n} f_i g_i = 1 \). So, one can take \(\|f_i\| = 1 \) for all \(i = 1, 2, \ldots, n \). Let \(A = \max_{1 \leq i \leq n} |g_i| \) and let us choose a neighbourhood \(U \) of \(f \in \Delta(C(X)) \) according to Gelfand topology such that

\[
U = \left\{ h \in \Delta(C(X)) : \left| \hat{f}_i(h) - \hat{f}_i(f) \right| < \frac{1}{3An}, i = 1, 2, \ldots, n \right\}.
\]

As \(\hat{f}_i(f) = 0 \) for all \(i = 1, 2, \ldots, n \), we have

\[
U = \left\{ h \in \Delta(C(X)) : \left| \hat{f}_i(h) \right| < \frac{1}{3An}, i = 1, 2, \ldots, n \right\}.
\]

Since \(C(X) \) is a regular Banach algebra there exist \(F \in C(X) \) such that

\[
\hat{F}(h) = \begin{cases}
1, & h = f \\
0, & h \in \Delta(C(X)) - U \\
\leq 1, & \text{otherwise}
\end{cases}
\]

using \(\left| \left(F \hat{f}_i \right)(h) \right| = \left| \hat{F}(h) \hat{f}_i(h) \right| = \left| \hat{f}_i(h) \right| < \frac{1}{3An} \) and \(\sum_{i=1}^{n} (Ff_i) g_i = F \) we get \(\hat{F}(h) = \sum_{i=1}^{n} \left(F \hat{f}_i \right)(h) \hat{g}_i(h) \). Thus, we obtain \(\left| \hat{F}(h) \right| \leq \sum_{i=1}^{n} \left| \hat{f}_i(h) \right| \left| \hat{g}_i(h) \right| < \frac{1}{3} \) which contradicts \(\max_{h \in \Delta(C(X))} \left| \hat{F}(h) \right| = 1 \). So, we should have \(J_0 \neq W \).

In this case, for \(J \in M(W), J_0 \subset J, g \in \Delta(W) \) we have \(J = K \text{erg} \). As a result, for all \(h \in C(X) \) there exist \(\lambda \in \mathbb{C}, k \in I \) such that \(h = \lambda 1 + k \). Using this, we get \(h = \lambda 1 + k = f(h).1 + k \). Hence, we have \(g(h) = f(h) \) which implies \(g|_{C(X)} = f \).

Corollary 2.3 For the unit embedding \(\varphi : C(X) \to W, \varphi(g) = g \), we have \(\varphi^*(\Delta(W)) = \Delta(C(X)) \).

Proof. Using \(\varphi^*(\Delta(W)) \subset \Delta(C(X)) \) and Theorem 2.2, it is straightforward.

Corollary 2.4 For the map \(\varphi : C(X) \to W, g \to \varphi(g) = g \) all elements of \(\Delta(C(X)) \) can be extended to an element of \(\Delta(W) \).
Proof. Let \(h \in \Delta(C(X)) \) be arbitrary. There exist \(k \in \Delta(W) \) such that \(\varphi^*k = h \). Using this, we have \(h(g) = (\varphi^*k)(g) = k(\varphi(g)) = k(g) \) for all \(g \in C(X) \) which completes the proof.

Theorem 2.5 For all \(h \in C(X) \) if \(r(h) = r(\varphi(h)) \), then \(\Psi^*(\Delta(Y)) = \Delta(C(X)) \).

Proof. Let \(g \in \Delta(C(X)) \). Then, there exist \(I \in M(X) \) such that \(I = \text{Ker}g \). Let \(J_0 \) be the minimal ideal of Banach algebra \(Y \) containing the ideal \(\Psi(I) \). Assume that \(J_0 = Y \). Since \(r(x + y) \leq r(x) + r(y), r(x) \leq \|x\| \) using similar argument in Theorem 1.2 we get \(r(\varphi(F)) = r(\sum_{i=1}^{n} f_i \varphi(g_i F)) \leq \sum_{i=1}^{n} r(f_i)r(\varphi(g_i F)) \leq \sum_{i=1}^{n} \|f_i\| r(\varphi(g_i F)) \leq A\sum_{i=1}^{n} \frac{\varepsilon}{A_n} = \varepsilon \) thus, \(r(\varphi(F)) < \varepsilon < 1 \). On the other hand, as \(r(F) = \text{Sup} \{ \tilde{F}(h) : h \in \Delta(C(X)) \} \) = 1 this contradicts with \(r(\varphi(F)) = r(F) < 1 \). Hence, \(J_0 \neq Y \). There exist \(J \in M(Y) \) such that \(J_0 \subset J \) and \(h \in \Delta(Y) \) such that \(I = \text{Ker}h \). As \(C(X)/I \approx \mathbb{C} \), for all \(k \in C(X) \) there exist \(\lambda \in \mathbb{C}, t \in I \) such that \(k = \lambda t \). As we have \(h(\varphi(t)) = 0 \), we get \((\varphi^*h)(k) = \lambda + h(\varphi(t)) = \lambda \) so, \(k = (\varphi^*h)(k) + t \). Since \(t \in I = \text{Ker}g \), then \(g(k) = g((\varphi^*h)(k)) + g(t) = (\varphi^*h)(k) \). Thus, as \(g = \varphi^*h \in \varphi^*(\Delta(Y)) \) we obtain \(\varphi^*(\Delta(Y)) = \Delta(C(X)) \).

Theorem 2.6 Let \(\varphi : C(X) \to Y \) be a 1-1 map and \(\overline{\varphi(C(X))} = W \). Then \(W \) is commutative and regular with unity.

Proof. As \(\varphi \) is 1-1 it is obvious that \(W \) has a unity. Let \(w_1, w_2 \in W \) there exist sequences \((f_n) \) and \((g_n) \) in \(C(X) \) such that \(\varphi(f_n) \to w_1, \varphi(g_n) \to w_2 \). Since \(\varphi(f_ng_n) = \varphi(f_n)\varphi(g_n) \to w_1w_2 \) and \(\varphi(g_nf_n) = \varphi(g_n)\varphi(f_n) \to w_2w_1 \), we get \(w_1w_2 = w_2w_1 \). So \(W \) is commutative. We have \(\varphi^*(\phi_W(f)) = \langle \varphi^*(\phi_W), f \rangle = \langle \phi_W, \varphi(f) \rangle = \phi_W(\varphi(f)) = 0 \) for all \(\phi_W \in \text{Ker}^c \varphi^* \) and for all non zero \(f \) in \(C(X) \). So we obtain \(f \neq 0 \) and \(\phi_W = 0 \) as \(\varphi \) is 1-1. This shows that the map \(\varphi^* : \Delta(W) \to \Delta(C(X)) \) is 1-1. Let \(K \) be any closed subset of \(\Delta(W) \). For \(f_0 \notin K \) we have \(\varphi^*K \subset \Delta(C(X)) \) and \(\varphi^*f_0 \in \Delta(C(X)) \). Since \(C(X) \) is a regular Banach algebra there exist \(f \in C(X) \) such that \(\varphi(f_0) \neq 0 \). As \(\langle \varphi^*f, K \rangle = 0 \) and \(\langle \varphi^*f_0, f \rangle \neq 0, W \) is regular.

Theorem 2.7 Let \(\varphi : C(X) \to Y \) be 1-1. Then, we have \(\sigma_{C(X)}(f) = \sigma_Y(\varphi(f)) \) for all \(f \in C(X) \).

Proof. Let \(\overline{\varphi(C(X))} = W \). Assume that \(\Delta(C(X)) \notin \varphi^*(\Delta(W)) \). So, there exist \(f_0 \in \Delta(C(X)) \) such that \(f_0 \notin \varphi^*(\Delta(W)) \). \(\{f_0\} \) is closed and by Theorem 1.1 there exist \(f, g \in C(X) \) such that \(\widehat{f}(f_0) = 1, \widehat{g}(\varphi^*(\Delta(W))) = 1 \)
and \(fg = 0 \). So, \(\phi_W(\Psi(g)) \neq 0 \) and \(\Psi(g) \in W^{-1} \) for all \(\phi_W \in \Delta(W) \). On the other hand, \(\Psi(f) = 0 \) as \(fg = 0 \) and \(\Psi(f) \Psi(g) = \Psi(fg) = \Psi(0) = 0 \). Thus we get \(f = 0 \) and this contradicts with \(\hat{f}(f_0) = 1 \). As a result, we obtain \(\Delta(C(X)) = \Psi^*(\Delta(W)) \). For all \(\phi_W \in \Delta(W) \) there exist \(\varphi_{C(X)} \in \Delta(C(X)) \) such that \(\Psi^*\phi_W = \varphi_{C(X)} \) so, for all \(f \in C(X) \) we have \(\Psi^*\phi_W(f) = \varphi_{C(X)}(f) \).

Using \(\varphi_{C(X)}(f) = \Psi^*\phi_W(f) = \phi_W(\Psi(f)) \) we get \(\sigma_Y(\Psi(f)) \) and \(\sigma_{C(X)}(f) \).

Corollary 2.8 The followings are equivalent:

i. \(\Psi : C(X) \to Y \) is 1-1,

ii. \(\sigma_{C(X)}(f) = \sigma_Y(\Psi(f)) \),

iii. \(r_{C(X)}(f) = r_Y(\Psi(f)) \),

iv. \(\Psi^*(\Delta(Y)) = \Delta(C(X)) \).

References

Received: April 18, 2016; Published: May 4, 2016