On Finite Groups with Some Non-nilpotent Subgroups Being TI-Subgroups

Zhengfei Wu

Xingjian College of Science and Liberal Arts
Guangxi University, Nanning 530004, China

Jiangtao Shi

School of Mathematics and Information Sciences
Yantai University, Yantai 264005, China

Abstract

Let G be a finite non-nilpotent group. We prove that if there exists a non-nilpotent subgroup H of G such that for every non-nilpotent subgroup K of G satisfying $K \cap H \neq 1$ we always have that K is a TI-subgroup, then all non-nilpotent subgroups of G are TI-subgroups.

Mathematics Subject Classification: 20D10

Keywords: non-nilpotent group; TI-subgroup; Frobenius group

1 Introduction

Let G be a finite group and H a subgroup of G. If $H^g \cap H = 1$ or H for every $g \in G$, then H is said to be a TI-subgroup of G.

1Z. Wu was supported by the Scientific Research Foundation of Guangxi University Xingjian College of Science and Liberal Arts (Grant No. 2014ZKLX02).

2J. Shi was supported in part by NSFC (11201401, 11361075 and 11561021). Corresponding author
In [4] G. Walls described finite groups with all subgroups being TI-subgroups. As generalizations, S. Li [1] determined non-nilpotent finite groups with all second maximal subgroups being TI-subgroups. In [3] the second author of this paper and C. Zhang investigated non-nilpotent finite groups with all non-nilpotent subgroups being TI-subgroups.

Theorem 1.1 [3] Let G be a non-nilpotent group. If all non-nilpotent subgroups of G are TI-subgroups, then G is solvable, and all non-nilpotent subgroups of G are normal.

By Theorem 1.1, we can easily get the following fact for a non-nilpotent group, here we omit its proof.

Proposition 1.2 Let G be a non-nilpotent group having exactly n non-nilpotent subgroups. Suppose that G has exactly $\delta(G) > 1$ non-normal non-nilpotent TI-subgroups. Then $\delta(G) \leq n - 2$.

The following example can show that there exists a finite group G satisfying $\delta(G) = n - 2$:

Let $G = D_{24}$ be a dihedral group of order 24. One has $n = 4$ and $\delta(G) = 2$. Then $\delta(G) = n - 2$.

In this paper, our main goal is to investigate non-nilpotent finite groups with some particular non-nilpotent subgroups being TI-subgroups.

We have the following result, the proof of which is given in Section 3.

Theorem 1.3 Let G be a non-nilpotent group. If there exists a non-nilpotent subgroup H of G such that for every non-nilpotent subgroup K of G satisfying $K \cap H \neq 1$ we always have that K is a TI-subgroup, then all non-nilpotent subgroups of G are TI-subgroups.

For proof of Theorem 1.3, the following lemma is essential, the proof of which is given in Section 2.

Lemma 1.4 Let G be a non-nilpotent group. If there exists a non-nilpotent subgroup H of G such that for every non-nilpotent subgroup K of G satisfying $K \cap H \neq 1$ we always have that K is a TI-subgroup, then $H \unlhd G$.

The following properties of the Frobenius group are needed to be introduced.

Lemma 1.5 [2] Let G be a Frobenius group with the kernel N and complement K. Then

1. N is nilpotent;
2. If $R \unlhd G$, then either $R \leq N$ or $N < R$.

2 Proof of Lemma 1.4

Lemma 2.1 Let G be a non-nilpotent group and H a subnormal non-nilpotent subgroup of G. If for every non-nilpotent subgroup K of G satisfying $H \leq K$ we always have that K is a TI-subgroup, then $H \leq G$.

Proof. Assume that H is not normal in G. Then $H^g \cap H = 1$ for every $g \in G \setminus N_G(H)$. Since H is subnormal in G. Let $H = G_r \leq G_{r-1} \leq \ldots \leq G_1 \leq G_0 = G$ be a composition series from H to G. For every subgroup M of G satisfying $H \leq M$, by the hypothesis, one has that M is a TI-subgroup of G. By induction on r, we have $G_{r-1} \leq G$. Then $H^g \leq G_{r-1}^g = G_{r-1}$.

(1) Suppose that G_{r-1}/H is a non-abelian simple group. Since $HH^g/H \leq G_{r-1}/H$ and $HH^g/H \cong H^g \neq 1$, one has $HH^g/H = G_{r-1}/H$. Then $G_{r-1} = HH^g$. It follows that $H \cong H^g \cong G_{r-1}/H$ is a non-abelian simple group. Let K/H be a maximal subgroup of G_{r-1}/H. Then K is a maximal subgroup of G_{r-1}. Since K is a TI-subgroup of G and $K \nleq G_{r-1}$, one has $Kx \cap K = 1$ for every $x \in G_{r-1} \setminus K$. Then G_{r-1} is a Frobenius group with complement K. Let N be the Frobenius kernel of G_{r-1}. By Lemma 1.5 (2), one has either $H \leq N$ or $N < H$.

(i) Suppose $H \leq N$. By Lemma 1.5 (1), one has that N is nilpotent. It follows that H is nilpotent, a contradiction.

(ii) Suppose $N < H$. Since H is a non-abelian simple group, it follows that $N = 1$, a contradiction.

(2) Suppose that G_{r-1}/H is an abelian simple group. Let $|G_{r-1}/H| = p$, where p is a prime. It follows that H is a maximal subgroup of G_{r-1}, then $G_{r-1} = HH^g$. Since $H^g \cap H = 1$, we can get that H is a cyclic group of order p, a contradiction.

By (1) and (2), our assumption is not true and so $H \leq G$. □

Next we give the proof of Lemma 1.4.

Proof of Lemma 1.4 Suppose $H \nleq G$. Consider the series: $H = H_1 \leq N_G(H_1) = H_2 \leq N_G(H_2) = H_3 \leq \ldots \leq N_G(H_{r-1}) = H_r \leq N_G(H_r) \leq G$. If there exists a positive integer r such that $N_G(H_r) = G$, then H is subnormal in G. By Lemma 2.1, one has $H \leq G$, a contradiction. Then $N_G(H_r) < G$ for every positive integer r. It follows that there must exist a positive integer r such that $H_r = N_G(H_r)$. By the hypothesis, one has $H_r^g \cap H_r = 1$ for every $g \in G \setminus N_G(H_r) = G \setminus H_r$. Then G is a Frobenius group with complement H_r.

Let N be the Frobenius kernel of G. It is easy to see that $N \rtimes H$ is still a Frobenius group. For every maximal subgroup L of H, NL is non-nilpotent and $NL \cap H = L(N \cap H) = L \neq 1$. Thus, by the hypothesis, NL is a TI-subgroup. However, since $(NL)^g \cap NL = NL^g \cap NL \geq N \neq 1$ for every $g \in G$, we have $NL \leq G$. It follows that $L = L(N \cap H) = NL \cap H \leq H$. By the
choice of L, one has that H is nilpotent, a contradiction. It implies that our assumption is not true and so $H \leq G$. \hfill \Box

\section{Proof of Theorem 1.3}

\textbf{Proof.} Suppose that the theorem is not true. Let M be a non-nilpotent subgroup of G and M not a TI-subgroup. By the hypothesis, one has $M \cap H = 1$. Note that $H \leq G$ by Lemma 1.4. Consider the group $H \times M$. For every maximal subgroup L of M, one has $L \neq 1$. By the hypothesis, one has that $H \times L$ is a TI-subgroup of G. Since $(HL)^g \cap HL = HL^g \cap HL \geq H \neq 1$ for every $g \in G$, one has $HL \leq G$. Then $L = L(H \cap M) = HL \cap M \leq M$. By the choice of L, we have that M is nilpotent, this contradicts that M is non-nilpotent. So all non-nilpotent subgroups of G are TI-subgroups. \hfill \Box

\section{References}

http://dx.doi.org/10.1007/978-1-4419-8594-1

http://dx.doi.org/10.1142/s1005386714000297

http://dx.doi.org/10.1007/bf01238459

Received: February 1, 2016; Published: March 15, 2016