Idempotent and Inverse Elements in
Strong Ternary Semirings

Rabah Kellil

College of Science at Al-Zulfi, Majmaah University, Saudi Arabia
&
Faculty of Sciences of Monastir Tunisia

Copyright © 2015 Rabah Kellil. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In continuation of a previous works on semirings [5], in the present paper we introduce the notions of a strong ternary semiring (ST-semiring) (that is a ternary semirings with an additional condition called the left invertive law). We prove that many results obtained in [5] for semirings are still valid in the present case. We establish some relationships between the idempotents for both the addition and the multiplication. We prove in the case of ST-semiring, that the set of multiplicative idempotent; $E^*(S)$ is closed under the multiplication and so $(S, +, .)$ is an orthodox ST-semiring.

Mathematics Subject Classification: 15A09, 16A78, 20M07, 20M18

Keywords: Ternary operation, semiring, regular semiringss, inverse semirings, idempotents, orthodox semiring, medial law, left invertive law, strong ternary semiring

1 Introduction and Preliminaries

The ring of integers \mathbb{Z} has a great role in the theory of rings and as we can remark the two subsets \mathbb{Z}^+ and \mathbb{Z}^- have distinct nature. They are both semigroups but the first is closed under the ring product and the second is not. If
we define the triple product; we then make \(\mathbb{Z}^- \) closed under this product. So ternary semirings arise naturally.

The ternary operations are used to study the static hazards in combinatorial switching circuits by means of a suitable ternary switching algebra. The ternary operations appear also in the study of Quark model to explain the non-observability of isolated quarks as a phenomenon of algebraic confinement [8].

In this paper and in continuation of our previous works on semirings [5], we introduce the notions of a strong ternary semiring (ST-semiring) (that is a ternary semirings with an additional condition called the left invertive law). We prove that many results obtained in [5] for semirings are still valid in the present case. We establish some relationships between the idempotents for both the addition and the multiplication. We prove in the case of ST-semiring, that the set of multiplicative idempotent; \(E^*(S) \) is closed under the multiplication and so \((S, +, \cdot) \) is an orthodox ST-semiring.

As pointed in [5]; the references [9], [3], [4], [11] and [12] can be used as a background for the subject.

Definition 1.1. Let \(S \) be a non-empty set endowed with a binary operation "+" and a ternary operation "\(*\)". \(S \) is called an ST-semiring (i.e. strong ternary semiring) if:

1. \((S, +) \) is a semigroup,
2. \(\forall x, y, z, t, v \in S; \quad (x \cdot y \cdot z) \cdot t \cdot v = x \cdot (y \cdot z \cdot t) \cdot v = x \cdot y \cdot (z \cdot t \cdot v), \)
3. \(\forall x, y, z, t \in S; \quad x \cdot (y + z) \cdot t = x \cdot y \cdot t + x \cdot z \cdot t, \)
4. \(\forall x, y, z, t \in S; \quad x \cdot y \cdot (z + t) = x \cdot y \cdot z + x \cdot y \cdot t \)
5. \(\forall x, y, z, t \in S; \quad (z + t) \cdot x \cdot y = z \cdot x \cdot y + t \cdot x \cdot y, \)
6. \(x \cdot y \cdot z = z \cdot y \cdot x \) for all \(x, y, z \in S \); called the left invertive law.

Definition 1.2.

1. A non-empty subset \(U \) of a ST-semiring \(S \) is said to be a ST-subsemiring \(S \) if \((U, +) \) is subsemigroup and \(U \cdot U \cdot U \subset U \).
2. A left (resp. right) additive ideal \(I \) of a ST-semiring \(S \) is a non-empty subset \(I \) of \(S \) such that \(I + S \subset I \) (resp. \(S + I \subset I \)).
3. A left (resp. right, lateral) multiplicative ideal \(I \) of a ST-semiring \(S \) is a non-empty subset \(I \) of \(S \) such that \(I \cdot S \cdot S \subset I \) (resp. \(S \cdot I \cdot S \subset I \)).
4. A left (resp. right, lateral) ideal I of an ST-semiring S is a non-empty subset I of S such that $I + I \subset I$ and $I \ast S \ast S \subset I$ (resp. $S \ast S \ast I \subset I$, $S \ast I \ast S \subset I$).

5. If I is both a left and a right ideal (resp. additive ideal, multiplicative ideal) of an ST-semiring S, then we say that I is an ideal (resp. additive ideal, multiplicative ideal) of S.

6. If I is such that $S + I \subset I, I + S \subset I, S \ast S \ast I \subset I, I \ast S \ast S \subset I, S \ast I \ast S \subset I$, we say that I is a strong two sided ideal of S.

Definition 1.3.

An element a of a ST-semiring S is multiplicative regular if there exists a^* in S such that

$$a \ast a^* \ast a = a; \quad \text{and} \quad a^* \ast a \ast a^* = a^*.$$

The element a^* is called a multiplicative inverse of a.

Definition 1.4.

An element a of a semigroup $(S, +)$ is called regular if there exists a' in S such that

$$a + a' + a = a; \quad \text{and} \quad a' + a + a' = a'.$$

The element a' is called an additive inverse or simply an inverse of a in the semigroup S.

Definition 1.5.

An additive (resp. multiplicative) inverse ST-semiring S is a ST-semiring such that any element of S has a unique additive (resp. multiplicative) inverse.

Definition 1.6.

Let S be an additive inverse ST-semiring and x' denotes the unique inverse of the element x. We say that S satisfies the conditions (A), (B) or (C) if for all $a, b \in S$

1. (A) $a \ast (a + a') \ast a = a + a'$,
2. (B) $a \ast a \ast (b + b') = (b + b') \ast a \ast a = a \ast (b + b') \ast a$,
3. (C) $a + a \ast (b + b') \ast a = a$.

Definition 1.7.

Let S be a ST-semiring, we denote by $E^+(S) = \{a \in S \mid a + a = a\}$ the set of additive idempotents and by $E^*(S) = \{e \in S \mid e \ast e \ast e = e\}$ the set of multiplicative idempotents.

Note that $E^+(S)$ is a multiplicative ideal of S.

In the sequel the binary operation \ast will be simply denoted by ",".
2 Inverses in a ST-semiring

Lemma 2.1 Any ST-semiring S satisfies the medial law: for all \(a_i, b_i, c_i \in S\);
\[(a_1.a_2.a_3).(b_1.b_2.b_3).(c_1.b_1.c_3) = (a_1.b_1.a_3).(a_2.b_2.c_2).(c_1.b_3.c_3).\]

Proof. For all \(a_i, b_i, c_i \in S\) one has
\[(a_1.a_2.a_3).(b_1.b_2.b_3).(c_1.c_2.c_3) = a_1.[a_2.a_3(b_1.b_2.b_3)].(c_1.c_2.c_3) =\]
\[(a_1.a_2.a_3).(b_1.a_3.b_2.b_3).(c_1.c_2.c_3) = a_1.[(b_1.a_3.a_2).b_2.b_3].(c_1.c_2.c_3) =\]
\[(a_1.b_1.a_3).(a_2.b_2.b_3).(c_1.c_2.c_3) = (a_1.b_1.a_3).[(a_2.b_2.b_3).c_1.c_2].c_3 =\]
and the result follows. ■

Proposition 2.2 Let S be an additive inverse ST-semiring.

1. If \(e \in E^*(S)\) then \(e' \in E^*(S)\) and \(e + e' \in E^+(S)\).

2. \(E^*(S).E^*(S).E^*(S) \subset E^*(S)\). in this case S is called a ST-orthodox semiring.

Proof.

1. \(e'.e'.e' = e'.e'.(e' + e + e')' = e'.e'.e' + e'.e'.e + e'.e'.e' + e'.e'.e = e'.e'(e + e' + e) = e'.e'e\) so \(e'.e'.e\) is an additive inverse of \(e'.e'.e'\) and since S is an additive inverse ST-semiring; \((e'.e'.e')' = e'.e'.e\). In another hand \(e'.e'.e = e'.(e' + e + e')e = e'.e'.e + e'.e.e + e'.e.e\) and then \((e'.e'.e)' = e'.e.e\). Using the unicity; \((e'.e'.e)' = e'.e'.e = (e'.e.e)'\). Finally using the same expansion we get \((e.e.e)' = e'.e'.e'\) but as \(e \in E^*(S)\);
\((e + e') + (e + e') = (e + e' + e) + e' = e + e'.\)

2. Let \(e, f, g \in E^*(S)\). From the lemma 2.1;
\[(e.f.g).(e.f.g).(e.f.g) = (e.e.g).(f.f.f).(e.g.g) = (e.e.g).(f.f.f).(e.g.g) =\]
\[(e.e.g).f.(e.g.g) = e.e[(g.f.e).g.g] = e.e[(e.f.g).g.g] = (e.e.e).f.(g.g.g) = e.f.g;\]
and then \(e.f.g \in E^*(S)\). ■
Proposition 2.3 Let S be a ST-semiring. If $a', b', c' \in S$ denote additive inverses of a, b and c then $a'b'c'$ is an additive inverse of $a'b'c'$.

Proof. $a'b'.c' + a'b'.c' + a'b'.c = a'b.(c + c' + c) = a'b'.c$ and $a'b'.c' + a'b'.c' + a'b'.c' = a'b'(c' + c + c') = a'b'.c'$ and the conclusion follows. ■

Corollary 2.4 Let S be an additive inverse ST-semiring. Then for any elements a, b and c in S;

1. $a'b'.c = a'b'.c' = a'b'.c$

2. $(a,b,c)' = a'b'.c = a'b'.c

Proof.

1. As made in the previous lemma we prove that $a'b'.c'$ and $a'b'.c'$ are also two additive inverses of $a'b'.c'$ and the conclusion follows from the uniqueness of additive inverse of any element of S.

2. The proof is trivial.

■

Corollary 2.5 Let S be an additive inverse ST-semiring. For any elements x in S, the following equalities hold

1. $(x')^*(x)^*$.

2. $(x + x' + x)^* = x^* + (x')^* + x^*$

Proof.

1. $(x')^*.x'.(x^*)' = [[[x^*.x^*]'']]' = [[[x^*]'']]' = [x^*]'$ by using the uniqueness.

 In the other hand $x'.[x^*]' = [[[x^*.x^*]'']]' = [[[x^*]'']]' = x'$ so the result follows.

2. $(x + x' + x)^* = x^* = x^* + (x')^* + x^*$ from the previous equality.

■

Proposition 2.6 1. If a ST-semiring S satisfies the conditions (A) and (C), then for any additive inverse a' of $a \in S$, we have $a + a + a' = a$.

2. If in addition $a \in E^*(S)$ and is has a multiplicative inverse then $3a = a$.

Proof.
1. From (C), one has \(a + a(a + a')a = a\). But from (A) as \(a(a + a').a = a + a'\), we deduce that \(a + a(a + a').a = a + (a + a') = a + a + a'\) and then \(a + a + a' = a\).

2. From (C) we also have \(a = a + a(a + a^*)a \iff a + a.a + a.a^*.a = a + a.a + a = a + a + a\) since \(a.a.a = a\) and then \(3a = a\).

Definition 2.7

Let \(S\) be a ST-semiring and \(A\) a subset of \(S\). We define,

\[
A^l = \{y \in S \mid yzt \in E^+(S), \forall z, t \in A\}
\]

and

\[
A^r = \{y \in S \mid zty \in E^+(S), \forall z, t \in A\}.
\]

Remark 2.8 It is easy to show that \(E^+(S) \subset A^l \cap A^r\).

Definition 2.9

A ST-semiring \(S\) is said to be a cyclic ST-semiring if in the definition 1.1 the condition (6) is replaced by

\[(6')\quad a.b.c = b.c.a.\]

Proposition 2.10 Let \(S\) be a cyclic ST-semiring. If \(I\) is a left ideal, then

\[S.S.I^l \subset I^r, \quad I^r.S.S \subset I^l.\]

Proof. Let \(a \in I^l, s, s' \in S\) and \(x, y \in I\).

\[x.y.(s.s'.a) = a.x.(y.s.s') = a.x.(s.s'.y).\]

But since \(I\) is a left ideal \(s.s'.y \in I\) and as \(a \in I^l, x \in I\) then \(a.x.(y.s.s') \in E^+(S)\) and so \(s.s'.a \in I^r\).

Now let \(a \in I^r, s, s' \in S\) and \(x, y \in I\).

\[(a.s.s').x.y = x.y.(a.s.s') = (x.y.a).s.s' = [x.y.a+x.y.a].s.s' = (a.s.s').x.y+(a.s.s').x.y\]

since \(a \in I^r\) and then \(x.y.a \in E^+(S)\). Finally \((a.s.s') \in I^l\).

Proposition 2.11 Let \(S\) be a cyclic ST-semiring. If \(+\) is commutative and \(I\) is an ideal then \(I^l \cap I^r\) is an ideal.
Idempotent and inverse elements in strong ternary semirings

Proof. Let $y \in I^l \cap I^r$, $s, s' \in S$ and $a, b \in I$.

$$(y.s.s').a.b + (y.s.s').a.b = a.b.(y.s.s') + a.b.(y.s.s') = (a.b.y).s.s' + (a.b.y).s.s' =$$

$$(a.b.y + a.b.y).s.s' = (a.b.y).s.s' = a.b.(y.s.s') = (y.s.s').a.b;$$

since $a.b.y \in E^+(S)$. Then $y.s.s' \in I^l$. \hspace{1cm} (A)

$$a.b.(y.s.s') = (y.s.s').a.b = (s.s'a).b.y = s.s'(a.b.y) = s.s'(a.b.y + a.b.y)$$

since $aby \in E^+(S)$. So $a.b.(y.s.s') \in E^+(S)$ and then $y.s.s' \in I^r$. \hspace{1cm} (B)

In the other hand, as for all $y \in I^l \cap I^r$, $s, s' \in S$ one has $s.s'y = y.s.s'$ and using the previous facts we get

$$S.S.(I^l \cap I^r) = (I^l \cap I^r).S.S' \subset I^l \cap I^r.$$

Now let $a, b \in I^l \cap I^r$, $x, y \in I$. Then $(a + b).x.y + (a + b).x.y = a.x.y + b.x.y + a.x.y + b.x.y = (a.x.y + a.x.y) + (b.x.y + b.x.y) = a.x.y + b.x.y$ since $a, b \in I^l$ and so $(a + b) \in I^l$.

With the same arguments we can easily prove that $(a + b) \in I^r$.

Finally

$$I^l \cap I^r + I^l \cap I^r \subset I^l \cap I^r.$$

\[\rule{1cm}{0.1cm}\]

Remark 2.12 It is clear that if in addition; S has a multiplicative identity say 1 then

$$S.S.(I^l \cap I^r) = (I^l \cap I^r).S.S' = I^l \cap I^r.$$

Proposition 2.13 Let S be a multiplicative inverse ST-semiring. If $a \in E^+(S)$ then $a^* = a$ and so $a^* \in E^+(S)$.

Proof. For every $a \in E^+(S)$, we have:

$$(a.a.a).(a^*.a.a).(a.a.a) = a.a[(a.a.a).a.(a.a.a)] = a.a[a.a.(a.a.a)] = a.a.[a.a.a] = a.a.a.$$

In the other hand;

so the multiplicative inverse of $a.a.a$ is $a^*.a.a$ but as $a.a.a = a$ and a^* is the unique multiplicative inverse of a then $a^* = a^*.a.a$.

With the same considerations we can easily prove that $a.a^*.a$ and $a.a.a^*$ are multiplicative inverses of $a.a.a$ and by the uniqueness of any multiplicative inverse we get $(a.a.a)^* = a.a^*.a = a.a.a^* = a^*.a.a$. But $a.a^*.a = a$ and then $a^* = a.a^*.a = a$.

\[\rule{1cm}{0.1cm}\]
Proposition 2.14 Let S be a ST-semiring. Then for any permutation δ of the set $\{e, f, g\}$ and any $e, f, g \in E^*(S)$ such that $f.e.f = e.f.f$, we have $e.f.g = \delta(e)\delta(f)\delta(g)$

Proof. From the lemma 2.2 it is clear that $e.f.g \in E^*(S)$.

Now as S_3 can be generated by the transpositions $\tau_{1,2}$ and $\tau_{1,3}$ and since the condition 6) in the definition 1.1 gives $e.f.g = \tau_{1,3}(e)\tau_{1,3}(f)\tau_{1,3}(g)$ it suffices to prove that $e.f.g = \tau_{1,2}(e)\tau_{1,2}(f)\tau_{1,2}(g)$ that is $e.f.g = f.e.g$. Indeed

$$e.f.g = (e.f.g)(e.f.g)(e.f.g) = (f.e.f)(e.f.g)(e.f.g) = (f.e.e)(f.f.g)(e.f.g) = f.(f.f.g)(e.f.g)(e.f.g) = f.f.(f.f.g)(e.f.g) = f.f.(f.f.g)(e.f.g) = f.f.(f.f.g)(e.f.g) = f.f(f.f.e) = g.f.f$$

\[\blacksquare\]

Corollary 2.15 Let S be a ST-semiring with zero and $E^*(S)$ of characteristic 3 (that is $3x = 0 \quad \forall x \in E^*(S)$) and such that $e.f.g = \tau_{1,2}(e)\tau_{1,2}(f)\tau_{1,2}(g)$ for any elements e, f and g of $E^*(S)$, then $E^*(S)$ is a subsemiring.

Proof. Since $E^*(S)$ is closed with respect to the action of $\tau_{1,2}$ then it is a subsemiring.

\[\blacksquare\]

Proposition 2.16 Let S be a ST-semiring if each element has a multiplicative inverse then $\forall a, b, c \in S; c^*b^*a^*$ is a multiplicative inverse of $a \cdot b \cdot c$, where a^*, b^*, c^* are respectively some multiplicative inverses of a, b and c.

Proof. If $a, b, c \in S$ and a^*, b^*, c^* are as required, then $(a \cdot b \cdot c \cdot a^* \cdot b^* \cdot c^*) = a \cdot b \cdot c \cdot (c^* \cdot b^* \cdot a^*) \cdot (b^* \cdot a^*) \cdot (a \cdot b \cdot c)$

\[\begin{align*}
 a \cdot b \cdot c &\cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] = a \cdot b \cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] \\
 a \cdot b &\cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] = a \cdot b \cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] \\
 a \cdot b &\cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] = a \cdot b \cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] \\
 a \cdot b &\cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)] = a \cdot b \cdot [c \cdot b \cdot (b^* \cdot a^* \cdot a)]
\end{align*}\]

In the other hand by replacing a, b, c, a^*, b^*, c^* respectively by c^*, b^*, a^*, c, b, a in the previous relation we get

$$(c^* \cdot b^* \cdot a^*) \cdot (a \cdot b \cdot c) = c^* \cdot b^* \cdot a^*$$

so $c^* \cdot b^* \cdot a^*$ is an inverse of $a \cdot b \cdot c$.

\[\blacksquare\]
Definition 2.17 Let x be an element of a ST-semiring S, we define the powers of x as:
\[x^3 = x.x.x, \quad x^5 = (x^3).x.x, \quad x^{2n+1} = (x^{2n-1}).x.x \quad \forall n \geq 1. \]

Proposition 2.18 Let S be a ST-semiring. If x^* is an inverse of x then
\[x^*.x^*(x^3) = x.x.x^* \quad \text{and} \quad \forall n \geq 3; x^*.(x^{2n+1}) = x^{2n-1}. \]

Proof. For all $x \in S$ we have:
\[x^*.x^*(x^3) = (x^*.x^*).x.x = (x.x^*).x.x = x.x^*.(x.x^*) = (x.x^*).x.x^* = x.x.x^*. \]

In the other hand:
\[x^*.x^*(x^5) = (x^*.x^*(x^3)).x.x = (x.x.x^*).x.x = x.(x.x^*).x.x = x.x.x = x^3 \]

and so by induction for any $n \geq 2$:
\[x^*.x^*(x^{2n+1}) = (x^*.x^*(x^{2n-1})).x.x = (x^{2n-3}).x.x = x^{2n-1}. \]

Proposition 2.19 Let S be a ST-semiring. If x^* is an inverse of x and n is such $n \geq 1$; then
\[x \in E^+(S) \implies x^3 \in E^+(S) \iff x^{2n+1} \in E^+(S). \]

Proof. The first implication is trivial.

For the equivalence; since $x^3 \in E^+(S)$ and $x^{2n+3} + x^{2n+3} = (x^{2n+1} + x^{2n-1}).x.x$; the direct implication can then be done by induction on $n \geq 1$.

The converse can be done by a decreasing induction:

In one hand we have $x^{2n+1} \in E^+(S)$ in the other hand, suppose that $x^{2n-p} \in E^+(S)$ \forall 1 \leq p \leq 2n - 5 then;
\[x^{2n-p-2} + x^{2n-p-2} = x^*.x^*(x^{2n-p}) + x^*.x^*(x^{2n-p}) = x^*.x^*(x^{2n-p} + x^{2n-p}) = x^*.x^*(x^{2n-p-2}) \]

So by taking $p = 2n - 5$ we get $x^3 \in E^+(S)$.

Proposition 2.20 If S is a cyclic ST-semiring then:

1. for all $n \geq 1, x, y$ and $z \in S$;
\[(x^{2n+1}).(y^{2n+1}).(z^{2n+1}) = (x.y.z).(x.y.z)(x^{2n-1}.z^{2n-1}.y^{2n-1}). \quad (D) \]

2. If x^* is a multiplicative inverse of x then $(x^*)^{2n+1}$ is a multiplicative inverse of x^{2n+1}.

Proof.
1. Since $S; \ a^{2n+1} = a^{2n-1}a.a = a.a.a^{2n-1}$ then
\[x^{2n+1}.y^{2n+1}.z^{2n+1} = \{x.x.x^{2n-1}\} (y.y.y^{2n-1}).(z.z.z^{2n-1}) = \]
\[x.x.\{x^{2n-1}.(y.y.y^{2n-1}).(z.z.z^{2n-1})\} = x.x.\{x^{2n-1}.y.y^{2n-1}.(z.z.z^{2n-1})\} = \]
\[x.x.\{y.x^{2n-1}.y.y^{2n-1}.(z.z.z^{2n-1})\} = (x.y.x).y^{2n-1}.x^{2n-1}.(z.z.z^{2n-1}) = (x.y.x).y.\{y^{2n-1}.x^{2n-1}.z\}.z.$z^{2n-1} = \]
\[(x.y.x).y.\{z.z^{2n-1}.(y^{2n-1}.x^{2n-1}.z)\} = (x.y.x).y.z^{2n-1}.y^{2n-1}.x^{2n-1}.z = \]
\[((x.y.x).y.z).z^{2n-1}.(y^{2n-1}.x^{2n-1}) = [x.y.(z.x.y)].z^{2n-1}.(z.y^{2n-1}.x^{2n-1}) = \]
\[[(x.y.z).x.y].z^{2n-1}.(z.y^{2n-1}.x^{2n-1}) = (x.y.z)\] \[x.y.z^{2n-1}.y^{2n-1}.x^{2n-1} = ((x.y.z).x.y).y^{2n-1}.x^{2n-1} = \]
\[z.(x.y.z).x.y$.z^{2n-1}.y^{2n-1}.x^{2n-1} = z.((x.y.z).x.y).z^{2n-1}.y^{2n-1}.x^{2n-1} = \]
\[(x.y.z).z.\{x.y.\{z^{2n-1}.y^{2n-1}.x^{2n-1}\}\} = (x.y.z).z.x.y.\{z^{2n-1}.y^{2n-1}.x^{2n-1}\} = \]
\[(x.y.z).z.x.y.\{z^{2n-1}.y^{2n-1}.x^{2n-1}\} = (x.y.z).(x.y.z).z^{2n-1}.y^{2n-1}.x^{2n-1} = \]
\[(x.y.z).(x.y.z).z^{2n-1}.y^{2n-1}.x^{2n-1} = (x.y.z).(x.y.z).(x^{2n-1}.z^{2n-1}.y^{2n-1}).\]

2. By induction on $n \geq 1$ and by replacing in the equality (D), y, z respectively by x^*, x we have

For $n = 1; \ x^3(x^*)^3.x^3 = (x.x^*.x).\{x.x^*.x\}.x.x^*.x = x.x.\{x.x^*.x\} = x.x.x = x^3.$

Suppose that $x^{2n-1}.(x^*)^{2n-1}.x^{2n-1} = x^{2n-1}$, then
\[(x^{2n+1}).\{(x^*)^{2n+1}\} = (x.x^*).\{x.x^*\}.(x^{2n-1}.x^{2n-1}).\{(x^*)^{2n-1}\} = \]
\[x.x.\{x^{2n-1}.(x^*)^{2n-1}.x^{2n-1}\} = x.x.(x^{2n-1}) = x^{2n-1}.x.x = x^{2n+1}.\]

Proposition 2.21 Any multiplicative inverse of an element of a ST-semiring is unique.

Proof. Let a, b be two multiplicative inverses of an element $x \in S$; then
\[a = a.x.a = (x.b.x).a = a.x.(b.x.a) = a.x.(a.x.b) = (a.x.a).x.b = a.x.b \]

and by inverting a in b and vice-versa we get $b = b.x.a$ and since $a.x.b = b.x.a$ we get the uniqueness of the multiplicative inverse. ■

References

Idempotent and inverse elements in strong ternary semirings

Received: December 14, 2015; Published: February 9, 2016