On Fuzzy JB-semigroups

Joemar C. Endam and Mae D. Manahon

Department of Mathematics
College of Arts and Sciences
Negros Oriental State University
Dumaguete City 6200, Philippines

Abstract

In this paper, we introduce the notion of fuzzy JB-semigroups and we investigate some of its properties.

Mathematics Subject Classification: 06F35, 03G25

Keywords: fuzzy JB-semigroups, fuzzy JB-ideal, fuzzy JB$_s$-ideal

1 Introduction and Preliminaries

In [4], J. Neggers and H.S. Kim introduced the notion of B-algebra. A B-algebra is an algebra $(X; *, 0)$ of type $(2, 0)$ (that is, a nonempty set X with a binary operation $*$ and a constant 0) satisfying the following axioms: (I) $x * x = 0$, (II) $x * 0 = x$, and (III) $(x * y) * z = x * (z * (0 * y))$. In [1], J.C. Endam and J.P. Vilela introduced the notion of JB-semigroup. A JB-semigroup is a nonempty set X together with two binary operations $*$ and \cdot and a constant 0 satisfying the following: $(X; *, 0)$ is a B-algebra, (X, \cdot) is a semigroup, and the operation \cdot is left and right distributive over the operation $*$, that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$.

In [5], a nonempty subset N of a B-algebra $(X; *, 0)$ is called a subalgebra of X if $x * y \in N$ for any $x, y \in N$. It is called normal in X if for any $x * y, a * b \in N$ implies $(x * a) * (y * b) \in N$. A normal subset of X is a subalgebra of X.
Throughout this paper, X means a JB-semigroup $(X; *, \cdot, 0)$. In [1], a nonempty subset S of X is called a sub JB-semigroup of X if $x * y, x \cdot y \in S$ for all $x, y \in S$. If $a \cdot b = b \cdot a$ for all $a, b \in X$, then X is called commutative.

Example 1.1 [1] Let $X = \{0, a, b, c\}$ be a set with the following tables of operations:

\[
\begin{array}{c|cccc}
* & 0 & a & b & c \\
\hline
0 & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
\hline
0 & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Then $(X; *, \cdot, 0)$ is a JB-semigroup.

Example 1.2 [1] Let $X = \{0, a, b, c\}$ be a set with the following tables:

\[
\begin{array}{c|cccc}
* & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Then $(X; *, \cdot, 0)$ is a JB-semigroup.

Example 1.3 [1] The algebras $(\mathbb{Z}; *, \cdot, 0)$, $(\mathbb{Q}; *, \cdot, 0)$, $(\mathbb{R}; *, \cdot, 0)$, and $(\mathbb{C}; *, \cdot, 0)$ are JB-semigroups, where $x * y = x - y$ and \cdot is the usual multiplication.

Definition 1.4 [1] A nonempty subset I of X is called a JB-ideal of X if the following hold: i. $(x * a) * (y * b) \in I$ for any $x * y, a * b \in I$, and ii. $a \cdot x, x \cdot a \in I$ for any $a \in I, x \in X$.

Let X be the JB-semigroup in Example 1.2, the set $I = \{0, b\}$ is a JB-ideal of X, while the set $J = \{0, a\}$ is not.

Remark 1.5 [1] Let I be a JB-ideal of X. Then I is a sub JB-semigroup of X and I is a JB-ideal for every sub JB-semigroup of X containing I.

Theorem 1.6 [1] Let $\{I_\alpha : \alpha \in \mathcal{A}\}$ be a nonempty collection of JB-ideals of X. Then $\bigcap_{\alpha \in \mathcal{A}} I_\alpha$ is a JB-ideal of X.

Theorem 1.7 [1] Let I be a JB-ideal of X. Then $(X/I; *, \cdot, [0]_I)$ is a JB-semigroup, where $*$ and \cdot defined as $[x]_I * [y]_I = [x * y]_I$ and $[x]_I \cdot [y]_I = [x \cdot y]_I$. If X is commutative or has a unity, then the same is true of X/I.
The JB-semigroup X/I in Theorem 1.7 is called quotient JB-semigroup of X by I.

We now introduce the concept of fuzzy sets.

Definition 1.8 [6] Let X be any set. A mapping $\mu : X \to [0, 1]$ is called a fuzzy set of X.

Definition 1.9 [3] Let X and Y be two nonempty sets, μ a fuzzy set of Y, and $f : X \to Y$ a mapping. The preimage of μ under f, denoted by μ^f, is the fuzzy set of X defined by $\mu^f(x) = \mu(f(x))$ for all $x \in X$, that is, $\mu^f = \mu \circ f$.

Definition 1.10 [3] Let μ be a fuzzy set of X and $f : X \to Y$ a mapping. The mapping $f(\mu) : Y \to [0, 1]$ defined by

$$f(\mu)(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} \{\mu(x)\}, & \text{if } f^{-1}(y) \neq \emptyset, \\
0, & \text{if } f^{-1}(y) = \emptyset,
\end{cases}$$

is called the image of μ under f, where $f^{-1}(y) = \{x \in X : f(x) = y\}$.

Definition 1.11 [3] Let $\{\mu_\alpha : \alpha \in \mathcal{A}\}$ be a nonempty family of fuzzy sets of X, where \mathcal{A} is an arbitrary index set. The intersection of μ_α, denoted by $\bigwedge_{\alpha \in \mathcal{A}} \mu_\alpha$, is defined by $\bigwedge_{\alpha \in \mathcal{A}} \mu_\alpha(x) = \inf_{\alpha \in \mathcal{A}} \{\mu_\alpha(x)\}$ for all $x \in X$.

Definition 1.12 [3] Let $\{\mu_\alpha : \alpha \in \mathcal{A}\}$ be a nonempty family of fuzzy sets of X, where \mathcal{A} is an arbitrary index set. The union of μ_α, denoted by $\bigvee_{\alpha \in \mathcal{A}} \mu_\alpha$, is defined by $\bigvee_{\alpha \in \mathcal{A}} \mu_\alpha(x) = \sup_{\alpha \in \mathcal{A}} \{\mu_\alpha(x)\}$ for all $x \in X$.

2 Fuzzy sub JB-semigroups

This section introduces the notion of fuzzy sub JB-semigroups and provides some related properties.

Definition 2.1 A fuzzy JB-semigroup μ of X is called a fuzzy sub JB-semigroup of X if it satisfies the following conditions: For all $x, y \in X$, i. $\mu(x \ast y) \geq \min\{\mu(x), \mu(y)\}$, and ii. $\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\}$.

Example 2.2 Let $X = \{0, a, b, c\}$ be the JB-semigroup in Example 1.1. Define a fuzzy subset $\mu : X \to [0, 1]$ by $\mu(0) = 0.8$, $\mu(a) = 0.3$ for all $x \neq 0$. Then by routine calculations, μ is a fuzzy sub JB-semigroup of X.

Lemma 2.3 Let \(\mu \) be a fuzzy sub JB-semigroup of \(X \). Then \(\mu(0) \geq \mu(x) \) for all \(x \in X \). Moreover, if \(\mu \) is onto, then \(\mu(0) = 1 \).

Theorem 2.4 Let \(\mu \) be a fuzzy sub JB-semigroup of \(X \). Then there exists a sequence \(\langle x_n \rangle \) in \(X \) such that \(\lim_{n \to \infty} \mu(x_n) = 1 \) if and only if \(\mu(0) = 1 \).

Theorem 2.5 Let \(\mu \) be a fuzzy sub JB-semigroup of \(X \). Then the set \(X_\mu = \{ x \in X : \mu(x) = \mu(0) \} \) is a sub JB-semigroup of \(X \).

Proof: Clearly, \(0 \in X_\mu \) and so \(X_\mu \neq \emptyset \). If \(x, y \in X_\mu \), then \(\mu(x) = \mu(y) = \mu(0) \) and so \(\mu(x * y) \geq \min\{\mu(x), \mu(y)\} = \mu(0) \). By Lemma 2.3, \(\mu(x * y) = \mu(0) \). Hence, \(x * y \in X_\mu \). Similarly, \(x \cdot y \in X_\mu \). Therefore, \(X_\mu \) is a sub JB-semigroup of \(X \). \(\square \)

Theorem 2.6 The intersection of any nonempty family of fuzzy sub JB-semigroups of \(X \) is also a fuzzy sub JB-semigroup of \(X \).

Proposition 2.7 Let \(\mu \) be a fuzzy sub JB-semigroup of \(X \). Then for all \(x, y \in X \),

i. \(\mu(0 * x) = \mu(x) \),

ii. \(\mu(x * (0 * y)) \geq \min\{\mu(x), \mu(y)\} \),

iii. \(\mu(x * y) = \mu(y * x) \).

Proposition 2.8 Let \(\mu \) be a fuzzy sub JB-semigroup of \(X \) and \(x, y \in X \). If \(\mu(x * y) = \mu(0) \), then \(\mu(x) = \mu(y) \).

The converse of Proposition 2.8 need not be true. Consider the fuzzy sub JB-semigroup \(\mu \) in Example 2.2. Now, \(\mu(a) = 0.3 = \mu(b) \). But \(\mu(a * b) = \mu(c) = 0.3 \neq 0.8 = \mu(0) \).

Let \(\mu \) be a fuzzy set in \(X \) and \(0 \leq t \leq 1 \). The upper level set \(U(\mu; t) \) is the set \(U(\mu; t) = \{ x \in X : \mu(x) \geq t \} \).

Theorem 2.9 Let \(\mu \) be a fuzzy set in \(X \), where \(U(\mu; t) \neq \emptyset \). Then \(\mu \) is a fuzzy sub JB-semigroup of \(X \) if and only if \(U(\mu; t) \) is a sub JB-semigroup of \(X \) for every \(0 \leq t \leq 1 \).

Proof: Suppose that \(\mu \) is a fuzzy sub JB-semigroup of \(X \) and \(U(\mu; t) \neq \emptyset \). Let \(x, y \in U(\mu; t) \). Then \(\mu(x * y) \geq \min\{\mu(x), \mu(y)\} \geq t \). Thus, \(x * y \in U(\mu; t) \). Also, \(\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\} \geq t \). Thus, \(x \cdot y \in U(\mu; t) \). Hence, \(U(\mu; t) \) is a sub JB-semigroup of \(X \). Conversely, suppose \(U(\mu; t) \) is a sub JB-semigroup of \(X \). If there are \(x_0, y_0 \in X \) such that \(\mu(x_0 * y_0) < \min\{\mu(x_0), \mu(y_0)\} \), then taking \(t_0 = \frac{1}{2}(\mu(x_0 * y_0) + \min\{\mu(x_0), \mu(y_0)\}) \), \(\mu(x_0 * y_0) < t_0 < \min\{\mu(x_0), \mu(y_0)\} \). Hence, \(x_0, y_0 \in U(\mu; t_0) \), but \(x_0 * y_0 \notin U(\mu; t_0) \), a contradiction. Thus, for all \(x, y \in X \), \(\mu(x * y) \geq \min\{\mu(x), \mu(y)\} \). Similarly, \(\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\} \) for all \(x, y \in X \). Therefore, \(\mu \) is a fuzzy sub JB-semigroup of \(X \). \(\square \)
Theorem 2.10 Two upper level sets \(U(\mu; s) \) and \(U(\mu; t) \) (\(s < t \)) of a fuzzy sub JB-semigroup \(\mu \) of \(X \) are equal if and only if there is no \(x \in X \) such that \(s \leq \mu(x) < t \).

Proof: Suppose \(s < t \) and \(U(\mu; s) = U(\mu; t) \). If there exists \(x \in X \) such that \(s \leq \mu(x) < t \), then \(U(\mu; t) \) is a proper subset of \(U(\mu; s) \), a contradiction. Conversely, suppose there is no \(x \in X \) such that \(s \leq \mu(x) < t \). From \(s < t \), \(U(\mu; t) \subseteq U(\mu; s) \). If \(x \in U(\mu; s) \), then \(\mu(x) \geq s \) and so \(\mu(x) \geq t \). Hence, \(x \in U(\mu; t) \). Therefore, \(U(\mu; s) = U(\mu; t) \).

Theorem 2.11 Let \(\emptyset \neq N \subseteq X \) and \(\mu_N \) be a fuzzy set in \(X \) defined by

\[
\mu_N(x) = \begin{cases}
\alpha & \text{if } x \in N, \\
\beta & \text{otherwise}
\end{cases}
\]

for all \(x \in X \) and \(\alpha, \beta \in [0, 1] \) with \(\alpha > \beta \). Then \(\mu_N \) is a fuzzy sub JB-semigroup of \(X \) if and only if \(N \) is a sub JB-semigroup of \(X \). Moreover, in this case, \(X_{\mu_N} = N \).

Proof: Suppose that \(\mu_N \) is a fuzzy sub JB-semigroup of \(X \). Let \(x, y \in N \). Then \(\mu_N(x * y) \geq \min\{\mu_N(x), \mu_N(y)\} = \alpha \). Hence, \(\mu_N(x * y) = \alpha \) since \(\alpha > \beta \). Thus, \(x * y \in N \). Similarily, \(x \cdot y \in N \). Therefore, \(N \) is a sub JB-semigroup of \(X \). Conversely, suppose that \(N \) is a sub JB-semigroup of \(X \) and \(x, y \in X \). If \(x, y \in N \), then \(x \cdot y \in N \) and \(\mu_N(x \cdot y) = \alpha = \min\{\mu_N(x), \mu_N(y)\} \).

If \(x \notin N \) or \(y \notin N \), then \(\mu_N(x \cdot y) \geq \beta = \min\{\mu_N(x), \mu_N(y)\} \). Hence, \(\mu_N(x \cdot y) \geq \min\{\mu_N(x), \mu_N(y)\} \). Therefore, \(\mu_N(x \cdot y) \geq \min\{\mu_N(x), \mu_N(y)\} \). Similarly, \(\mu_N(x \cdot y) \geq \min\{\mu_N(x), \mu_N(y)\} \).

Moreover, \(X_{\mu_N} = \{x \in X : \mu_N(x) = \mu_N(0)\} = \{x \in X : \mu_N(x) = \alpha\} = N \).

Corollary 2.12 Let \(\chi_N \) be the characteristic function of a nonempty subset \(N \) of \(X \). Then \(\chi_N \) is a fuzzy sub JB-semigroup of \(X \) if and only if \(N \) is a sub JB-semigroup of \(X \).

Any sub JB-semigroup of \(X \) can be realized as an upper level set of some fuzzy sub JB-semigroup.

Corollary 2.13 Let \(N \) be a sub JB-semigroup of \(X \). Then there exists a fuzzy sub JB-semigroup \(\mu \) of \(X \) such that \(U(\mu; t) = N \) for any \(0 < t < 1 \).

Proof: Consider the fuzzy sub JB-semigroup \(\mu \) of \(X \) defined by

\[
\mu(x) = \begin{cases}
t & \text{if } x \in N, \\
0 & \text{otherwise}
\end{cases}
\]

where \(0 < t < 1 \). Clearly, \(U(\mu; t) = N \).
Theorem 2.14 Let \(\mu \) be a fuzzy set in \(X \) with \(\text{Im}(\mu) = \{\alpha_0, \alpha_1, \ldots, \alpha_k\} \) where \(\alpha_i < \alpha_j \) whenever \(i > j \). Let \(\{N_n : n = 0, 1, \ldots, k\} \) be a family of sub JB-semigroups of \(X \) such that

(i) \(N_0 \subset N_1 \subset \cdots \subset N_k = X \),
(ii) \(\mu(N'_n) = \alpha_n \), where \(N'_n = N_n \setminus N_{n-1} \) for \(n = 0, 1, \ldots, k \) and \(N_{-1} = \emptyset \).

Then \(\mu \) is a fuzzy sub JB-semigroup of \(X \).

Proof: Let \(x, y \in X \). Consider the following cases.

Case 1. If \(x, y \in N'_n \), then \(\mu(x) = \alpha_n = \mu(y) \). Since \(x, y \in N_n \) and \(N_n \) is a sub JB-semigroup, \(x \ast y \in N_n \). By WOP, there exists a smallest \(m \) such that \(x \ast y \in N_m \) and \(x \ast y \notin N_{m-1} \). This means that \(x \ast y \in N'_m \). Hence, \(\mu(x \ast y) = \alpha_m \geq \alpha_n = \min\{\mu(x), \mu(y)\} \).

Similarly, \(\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\} \).

Case 2. If \(x \in N'_n \) and \(y \in N_m \) where \(0 \leq m < n \leq k \), then \(x \in N_n \) and \(y \in N_m \subset N_n \). Hence, \(x \ast y \in N_n \). By WOP, there exists a smallest \(p \) such that \(x \ast y \in N_p \) and \(x \ast y \notin N_{p-1} \). This means that \(x \ast y \in N'_p \). Since \(m < n \), \(\alpha_m > \alpha_n \). It follows that \(\mu(x \ast y) = \alpha_p \geq \alpha_n = \min\{\mu(x), \mu(y)\} \).

Similarly, \(\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\} \).

Case 3. If \(x \in N'_m \) and \(y \in N_n \) where \(0 \leq m < n \leq k \), then similarly as in case 2, we obtain \(\mu(x \ast y) \geq \min\{\mu(x), \mu(y)\} \) and \(\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\} \).

Therefore, \(\mu \) is a fuzzy sub JB-semigroup of \(X \). \(\square \)

Theorem 2.15 Let \(\mu \) be a fuzzy sub JB-semigroup of \(X \) such that \(\text{Im}(\mu) = \{\alpha_i : i \in \mathcal{A}\} \), where \(\mathcal{A} \) is an arbitrary index set. Then

i. \(X_\mu = \bigcap_{i \in \mathcal{A}} U(\mu; \alpha_i) = U(\mu; \alpha_{i_0}) \), where \(\mu(0) = \alpha_{i_0} \).

ii. \(X = \bigcup_{i \in \mathcal{A}} U(\mu; \alpha_i) \).

3 Fuzzy JB-ideal and Fuzzy JB\(_s\)-ideal

This section introduces the notions of fuzzy JB-ideals and fuzzy JB\(_s\)-ideals. It also provides some related properties.

Definition 3.1 A fuzzy JB-semigroup \(\mu \) of \(X \) is called a fuzzy JB-ideal of \(X \) if it satisfies the following conditions: For all \(a, b, x, y \in X \),

i. \(\mu((x \ast a) \ast (y \ast b)) \geq \min\{\mu(x \ast y), \mu(a \ast b)\} \), and

ii. \(\mu(x \cdot y) \geq \min\{\mu(x), \mu(y)\} \).

Example 3.2 The fuzzy set \(\mu \) in Example 2.2 is a fuzzy JB-ideal of \(X \).

Theorem 3.3 Every fuzzy JB-ideal is a fuzzy sub JB-semigroup.
Theorem 3.4 The intersection of any nonempty family of fuzzy JB-ideals of X is also a fuzzy JB-ideal of X.

Definition 3.5 A fuzzy JB-semigroup μ of X is called a fuzzy JB_s-ideal of X if it satisfies the following conditions: For all $a, b, x, y \in X$,

i. $\mu((x * a) * (y * b)) \geq \min\{\mu(x * y), \mu(a * b)\}$,

ii. $\mu(x \cdot y) \geq \mu(x)$ and $\mu(x \cdot y) \geq \mu(y)$.

Theorem 3.6 Every fuzzy JB_s-ideal of X is a fuzzy JB-ideal of X.

Theorem 3.7 The intersection of any nonempty family of fuzzy JB_s-ideals of X is also a fuzzy JB_s-ideal of X.

Theorem 3.8 If μ is a fuzzy JB_s-ideal of X, then $U(\mu; t)$ is a JB-ideal of X for every $0 \leq t \leq 1$, where $U(\mu; t) \neq \emptyset$.

Proof: Let μ is a fuzzy JB_s-ideal of X and $U(\mu; t) \neq \emptyset$. Let $a, b, x, y \in U(\mu; t)$ with $x * y, a * b \in U(\mu; t)$. Then $\mu((x * a) * (y * b)) \geq \min\{\mu(x * y), \mu(a * b)\} \geq t$. Thus, $(x * a) * (y * b) \in U(\mu; t)$. Suppose that $a \in U(\mu; t)$ and $x \in X$. Then $\mu(a \cdot x) \geq \mu(a) \geq t$ and $\mu(x \cdot a) \geq \mu(a) \geq t$. Hence, $a \cdot x, x \cdot a \in U(\mu; t)$. Therefore, $U(\mu; t)$ is a JB-ideal of X. \qed

Theorem 3.9 Let $\emptyset \neq N \subseteq X$ and μ_N be a fuzzy set in X defined by

$$
\mu_N(x) = \begin{cases}
\alpha & \text{if } x \in N, \\
\beta & \text{otherwise}
\end{cases}
$$

for all $x \in X$ and $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. If μ_N is a fuzzy JB_s-ideal of X, then N is a JB-ideal of X. In this case, $X_{\mu_N} = N$.

Proof: Let $a, b, x, y \in X$ such that $x * y, a * b \in N$. Then by Definition 3.5(i), $\mu_N((x * a) * (y * b)) \geq \min\{\mu_N(x * y), \mu_N(a * b)\} = \alpha$. It follows that $\mu_N((x * a) * (y * b)) = \alpha$. Hence, $(x * a) * (y * b) \in N$. Let $a \in N$ and $x \in X$. Then $\mu_N(a \cdot x) \geq \mu_N(a) = \alpha$ and so, $\mu_N(a \cdot x) = \alpha$, that is, $a \cdot x \in N$. Similarly, $x \cdot a \in N$. Therefore, N is a JB-ideal of X. Moreover, by Theorem 2.11, $X_{\mu_N} = N$. \qed

Theorem 3.10 Let μ be a fuzzy set in X with $\text{Im}(\mu) = \{\alpha_0, \alpha_1, \ldots, \alpha_k\}$ where $\alpha_i < \alpha_j$ whenever $i > j$. Let $\{N_n : n = 0, 1, \ldots, k\}$ be a family of JB-ideals of X such that

(i) $N_0 \subset N_1 \subset \cdots \subset N_k = X$,

(ii) $\mu(N_n') = \alpha_n$, where $N_n' = N_n \setminus N_{n-1}$ for $n = 0, 1, \ldots, k$ and $N_{-1} = \emptyset$.

Then μ is a fuzzy JB-ideal of X.

Proof: Let $a, b, x, y \in X$. Consider the following cases.

Case 1. If $x * y, a * b \in N'_n$, then $x * y, a * b \in N_n$. Since N_n is a JB-ideal, $(x * a) * (y * b) \in N_n$. By WOP, there exists a smallest m such that $(x * a) * (y * b) \in N_m$ and $(x * a) * (y * b) \notin N_{m-1}$. Thus, $(x * a) * (y * b) \in N'_m$. Hence, $\mu((x * a) * (y * b)) = \alpha_m \geq \alpha_n = \min\{\mu(x * y), \mu(a * b)\}$.

Case 2. If $x * y \in N'_n$ and $a * b \in N'_m$ where $0 \leq m < n \leq k$, then $x * y \in N_n$ and $a * b \in N_m \subset N_n$. Hence, $(x * a) * (y * b) \in N_n$. By WOP, there exists a smallest p such that $(x * a) * (y * b) \in N_p$ and $(x * a) * (y * b) \notin N_{p-1}$. This means that $(x * a) * (y * b) \in N'_p$. Since $m < n$, $\alpha_m > \alpha_n$. It follows that $\mu((x * a) * (y * b)) = \alpha_p \geq \alpha_n = \min\{\mu(x * y), \mu(a * b)\}$.

Case 3. If $x * y \in N'_m$ and $a * b \in N'_n$ where $0 \leq m < n \leq k$, then following the argument as in case 2, we get $\mu((x * a) * (y * b)) \geq \min\{\mu(x * y), \mu(a * b)\}$. Therefore, μ is a fuzzy JB-ideal of X. □

References

http://dx.doi.org/10.12988/ams.2015.46427

http://dx.doi.org/10.12988/ams.2015.410800

http://dx.doi.org/10.1016/s0019-9958(65)90241-x

Received: February 3, 2016; Published: April 8, 2016