Inextensible Curve Flows According to Bishop 2-Type Frame in Minkowski 3-Space

Nevin Gürbüz

Mathematics-Computer Department
Eskişehir Osmangazi University, Turkey

Copyright © 2016 Nevin Gürbüz. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we derive necessary and sufficient conditions for inextensible curve flow of timelike curves and spacelike curves with timelike normal according to Bishop 2-type frame in the Minkowski-3 space \(R^3_1 \).

Keywords: Bishop 2-type, Minkowski 3-space, inextensible

1 Introduction

The flow of a curve is called to be inextensible if its arclength is preserved [5]. Kwon, Park and Chi investigated inextensible flows of curves and developable surfaces in Euclidean 3-space [6]. Gürbüz study inextensible curve flows for null and non-null curves in Euclidean 3-space [1-3]. Yıldız, Tosun and Karakuş investigated inextensible flows of curves in \(E^n \) [10]. New version of Bishop frame was studied by Yılmaz [8]. In [9], authors studied characterizations of non-null curves according to the Bishop frame of type-2 in Minkowski 3-space. Kızıltuğ was investigated characterization of inextensible flows of curves according to Type-2 Bishop frame Euclidean 3-space [4]. In this paper we study inextensible non-null curve flows according to Bishop 2-type frame in Minkowski 3-space.

Minkowski 3-space \(R^3_1 \) is given the following metric [7]:

\[
\langle \cdot, \cdot \rangle_M = -dx_1^2 + dx_2^2 + dx_3^2
\]

Frenet-Serret frame \(\{ T, N, B \} \) derivative formulas are given in \(R^3_1 \) as following:
\[T_s = \epsilon_2 \kappa N, \]
\[N_s = -\epsilon_1 \kappa T + \epsilon_3 \tau B, \]
\[B_s = -\epsilon_2 \tau N. \]

Here \(\kappa, \tau \) Frenet curvatures with
\[\langle T, T \rangle_M = \epsilon_1, \langle N, N \rangle_M = \epsilon_2, \langle B, B \rangle_M = \epsilon_3, \epsilon_i = \pm 1 \]
For an arbitrary vector \(x = (x_1, x_2, x_3) \) in \(\mathcal{R}_1^3 \), if \(\langle x, x \rangle_M > 0 \), \(x \) is spacelike, if \(\langle x, x \rangle_M < 0 \), \(x \) is timelike. Spacelike and timelike vectors are called non-null vectors.

Let \(\{V_1, V_2, B\} \) be Bishop 2-type frame with
\[\langle V_1, V_1 \rangle_M = \epsilon_1, \langle V_2, V_2 \rangle_M = -\epsilon_2, \langle B, B \rangle_M = \epsilon_3. \]
Bishop 2-type frame derivative formulas are presented for timelike curves and spacelike curves with timelike normal in \(\mathcal{R}_1^3 \) as different from [9] in [3] as following:

Theorem 1.1 [3] Let \(\{T, N, B\} \) be Frenet frame for a spacelike curve with timelike normal
\[\langle T, T \rangle_M = 1, \langle N, N \rangle_M = -1, \langle B, B \rangle_M = 1 \]
and let \(\{V_1, V_2, B\} \) be Bishop 2-type frame with
\[\langle V_1, V_1 \rangle_M = 1, \langle V_2, V_2 \rangle_M = -1, \langle B, B \rangle_M = 1 \]
Bishop 2-type frame derivative formulas are given by as following in \(\mathcal{R}_1^3 \) :
\[
\begin{bmatrix}
 V_{1s} \\
 V_{2s} \\
 B_s
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & -k_1 \\
 0 & 0 & k_2 \\
 k_1 & k_2 & 0
\end{bmatrix}
\begin{bmatrix}
 V_1 \\
 V_2 \\
 B
\end{bmatrix}
\]
(2)

where \(k_1, k_2 \) are curvatures according to Bishop 2-type frame in the Minkowski 3-space. Connection between Frenet frame and Bishop 2-type frame is expressed as following:
\[
\begin{bmatrix}
 T \\
 N \\
 B
\end{bmatrix} =
\begin{bmatrix}
 \cosh \theta & \sinh \theta & 0 \\
 \sinh \theta & \cosh \theta & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 V_1 \\
 V_2 \\
 B
\end{bmatrix}
\]

First and second Bishop 2-type curvatures are \(k_1 = -\langle V_{1s}, B \rangle_M = \tau \sinh \theta \), \(k_2 = \langle V_{2s}, B \rangle_M = \tau \cosh \theta \). Also \(\theta_s = -\kappa, \tau = |k_1^2 - k_2^2|^{1/2} \).

Proof. The tangent vector \(T \) can be written by
Inextensible curve flows according to Bishop 2-type frame

\[\mathcal{T} = \cosh \theta V_1 + \sinh \theta V_2 \]

(3)

Taking derivative of (3), substituting \(V_{1s} = -k_1 B, V_{2s} = k_2 B \) we obtain

\[\mathcal{N} = \sinh \theta V_1 + \cosh \theta V_2, \quad \theta = \arg \tanh \frac{k_1}{k_2}, \quad \theta_s = -\kappa \]

From derivative of binormal,

\[B_s = k_1 V_1 + k_2 V_2 = \tau \mathcal{N} \]

(4)

Taking norm of (4), we have \(\tau = |k_1^2 - k_2^2|^{1/2} \).

Theorem 1.2 [3] Let \(\{\mathcal{T}, \mathcal{N}, B\} \) be Frenet frame with \(\langle \mathcal{T}, \mathcal{T} \rangle_M = -1, \langle \mathcal{N}, \mathcal{N} \rangle_M = 1, \langle B, B \rangle_M = 1 \) and let \(\{V_1, V_2, B\} \) be Bishop 2-type frame with \(\langle V_1, V_1 \rangle_M = -1, \langle V_2, V_2 \rangle_M = 1, \langle B, B \rangle_M = 1 \). Bishop 2-type frame derivative formulas for timelike curves are given as following:

\[
\begin{bmatrix}
V_{1s} \\
V_{2s} \\
B_s
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -k_1 \\
0 & 0 & k_2 \\
-k_1 & -k_2 & 0
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
B
\end{bmatrix}
\]

where \(k_1, k_2 \) are curvatures according to Bishop 2-type frame in Minkowski 3-space. Connection between Frenet frame and Bishop 2-type frame is expressed as following:

\[\mathcal{T} = \cosh \theta V_1 + \sinh \theta V_2 \]

\[\mathcal{N} = \sinh \theta V_1 + \cosh \theta V_2 \]

\[B = B \]

First and second Bishop 2-type curvatures are \(k_1 = \tau \sin \theta, k_2 = \tau \cos \theta \). Here \(\theta_s = \kappa \). Proof is obtained as similar with Theorem 1.1. As result, Bishop 2-type frame derivative formulas for timelike curves and spacelike curves with timelike normal are given as following [3]:

\[
\begin{bmatrix}
V_{1s} \\
V_{2s} \\
B_s
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -k_1 \\
0 & 0 & k_2 \\
\varepsilon_1 k_1 & \varepsilon_1 k_2 & 0
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
B
\end{bmatrix}
\]

(5)

where

\[\langle V_1, V_1 \rangle_M = \varepsilon_1, \langle V_2, V_2 \rangle_M = \varepsilon_2, \langle B, B \rangle_M = \varepsilon_3, \varepsilon_i = \pm 1 \]

Here \(k_1, k_2 \) are first and second Bishop 2-type curvatures in Minkowski 3-space.
2 Inextensible flows of non-null curves according to Bishop 2-type frame in Minkowski 3-space

We consider \(P(\xi,t) : [0,l] \times [0,t] \to \mathcal{R}^3 \) one parameter family. Flow of spacelike curves with timelike normal and timelike curves according to Bishop 2-type frame is expressed as following

\[
\frac{\partial P(\xi,t)}{\partial t} = fV_1 + gV_2 + hB
\]

where \(f, g, h \) are components of flow of non null curve family. Let

\[
v = \left| \left< \frac{\partial P}{\partial \xi}, \frac{\partial P}{\partial \xi} \right>_M \right|^{1/2}
\]

be curve speed and arc length is \(s = \int_0^\xi v d\xi \) according to Bishop 2-type frame.

Definition 2.1. \(\frac{P(\xi,t)}{\partial t} \) are defined to be inextensible according to Bishop 2-type frame if

\[
\frac{\partial}{\partial t} \sqrt{\left| \left< \frac{\partial P}{\partial \xi}, \frac{\partial P}{\partial \xi} \right>_M \right|} = 0
\]

Lemma 2.1.

\[
\frac{\partial v}{\partial t} = \varepsilon_1 \cosh \theta \left(\frac{\partial f}{\partial t} + vhk_1 \right) + \varepsilon_2 \sinh \theta \left(\frac{\partial g}{\partial t} + vhk_2 \right)
\]

Proof. From (6), it is obtained

\[
2v \frac{\partial v}{\partial t} = \frac{\partial}{\partial t} \left| \left< \frac{\partial P}{\partial \xi}, \frac{\partial P}{\partial \xi} \right>_M \right| = 2v \left| \left< \cosh \theta V_1 + \sinh \theta V_2, \frac{\partial}{\partial t} (fV_1 + gV_2 + hB) \right>_M \right|
\]

From (8), we obtain (7).

Theorem 2.1. Spacelike curve with timelike normal and timelike curve flow \(\frac{\partial P}{\partial t} = fV_1 + gV_2 + hB \) according to Bishop 2-type frame is inextensible if and only if

\[
\varepsilon_1 \cosh \theta \left(\frac{\partial f}{\partial t} + vhk_1 \right) = -\varepsilon_2 \sinh \theta \left(\frac{\partial g}{\partial t} + vhk_2 \right).
\]

Proof. If spacelike curve with timelike normal and timelike curve not be subject to any elongation or compression, the condition

\[
\frac{\partial}{\partial t} s(\xi,t) = \int_0^\xi \frac{\partial v}{\partial t} d\xi = 0
\]
is satisfied. From Lemma 2.1,
\[
\frac{\partial}{\partial t}s(\xi, t) = \int_0^\xi \varepsilon_1 \cosh \theta (\frac{\partial f}{\partial t} + \varepsilon h k_1) + \varepsilon_2 \sinh \theta (\frac{\partial g}{\partial t} + \varepsilon h k_2) \, d\xi = 0 \tag{10}
\]
From (10) we obtain (9).

Theorem 2.2.
\[
\frac{\partial V_1}{\partial t} = [-\varepsilon \sinh \theta (\varepsilon (\frac{\partial f}{\partial s} + \varepsilon_1 h k_1) - \varepsilon \sinh \theta \frac{\partial \theta}{\partial t}) - \varepsilon_2 \Psi_1] V_2 - \varepsilon_3 \Phi_1 B, \tag{11}
\]
\[
\frac{\partial V_2}{\partial t} = [-\varepsilon \cosh \theta (\varepsilon_2 (\frac{\partial g}{\partial s} + \varepsilon_1 h k_2) - \varepsilon \cosh \theta \frac{\partial \theta}{\partial t}) + \varepsilon_1 \Psi_1] V_1 - \varepsilon_3 \Phi_2 B, \tag{12}
\]
\[
\frac{\partial B}{\partial t} = V_1 [\varepsilon_1 \Phi - \varepsilon_3 (\frac{\partial h}{\partial s} - f k_1 + g k_2) \cosh \theta] + V_2 [\varepsilon_2 \Phi_2 - \varepsilon_3 (\frac{\partial h}{\partial s} - f k_1 + g k_2) \sinh \theta]. \tag{13}
\]

Proof.
\[
\frac{\partial T}{\partial t} = \frac{\partial}{\partial s} \frac{\partial P}{\partial t} = (\frac{\partial f}{\partial s} + \varepsilon_1 h k_1)V_1 + (\frac{\partial g}{\partial s} + \varepsilon_1 h k_2)V_2 + (\frac{\partial h}{\partial s} - f k_1 + g k_2)B \tag{14}
\]
From (14),
\[
\left\langle \frac{\partial T}{\partial t}, V_1 \right\rangle_M = \varepsilon_1 (\frac{\partial f}{\partial s} + \varepsilon_1 h k_1). \tag{15}
\]
Also
\[
\left\langle \frac{\partial T}{\partial t}, V_1 \right\rangle_M = \sinh \theta (\varepsilon_1 \frac{\partial \theta}{\partial t} + \left\langle \frac{\partial V_2}{\partial t}, V_1 \right\rangle_M). \tag{16}
\]
From (15), (16) we obtain
\[
\sinh \theta (\varepsilon_1 \frac{\partial \theta}{\partial t} + \left\langle \frac{\partial V_2}{\partial t}, V_1 \right\rangle_M) = \varepsilon_1 (\frac{\partial f}{\partial s} + \varepsilon_1 h k_1). \tag{17}
\]
\[
\left\langle \frac{\partial V_1}{\partial t}, V_2 \right\rangle_M + \left\langle \frac{\partial V_2}{\partial t}, V_1 \right\rangle_M = 0 \Rightarrow \frac{\partial V_1}{\partial t} = -\varepsilon_2 \Psi_1 V_2, \tag{18}
\]
\[
\left\langle \frac{\partial V_1}{\partial t}, B \right\rangle_M + \left\langle \frac{\partial B}{\partial t}, V_1 \right\rangle_M = 0 \Rightarrow \frac{\partial V_1}{\partial t} = -\varepsilon_3 \Phi_1 B, \tag{19}
\]
where
\[
\Psi_1 = \left\langle V_1, \frac{\partial V_2}{\partial t} \right\rangle_M, \quad \Phi_1 = \left\langle V_1, \frac{\partial B}{\partial t} \right\rangle_M. \tag{20}
\]
With aid (17), (18), (19) we obtain (11). From (14)

$$\left\langle \frac{\partial T}{\partial t}, V_2 \right\rangle_M = \varepsilon_2 (\frac{\partial g}{\partial s} + \varepsilon_1 h k_2),$$

(21)

$$\left\langle \frac{\partial T}{\partial t}, V_2 \right\rangle_M = \cosh \theta \left(\left\langle \frac{\partial V_1}{\partial t}, V_2 \right\rangle_M + \varepsilon_2 \frac{\partial \theta}{\partial t} \right).$$

(22)

From (22),

$$- \cosh \theta \left(\left\langle \frac{\partial V_2}{\partial t}, V_1 \right\rangle_M + \varepsilon_2 \frac{\partial \theta}{\partial t} \right) = \varepsilon_2 \left(\frac{\partial g}{\partial s} + \varepsilon_1 h k_2 \right)$$

(23)

From (20),

$$\frac{\partial V_2}{\partial t} = \varepsilon_1 \Psi_1 V_1,$$

(24)

$$\left\langle \frac{\partial V_2}{\partial t}, B \right\rangle_M + \left\langle V_2, \frac{\partial B}{\partial t} \right\rangle_M = 0 \Rightarrow \frac{\partial V_2}{\partial t} = -\varepsilon_3 \Phi_2 B,$$

(25)

where

$$\left\langle V_2, \frac{\partial B}{\partial t} \right\rangle_M = \Phi_2$$

(26)

With aid (23), (24), (25) we obtain (12)

$$\left\langle \frac{\partial T}{\partial t}, B \right\rangle_M = \varepsilon_3 \left(\frac{\partial h}{\partial s} - f k_1 + g k_2 \right),$$

(27)

$$\left\langle \frac{\partial T}{\partial t}, B \right\rangle_M = \cosh \theta \left\langle \frac{\partial V_1}{\partial t}, B \right\rangle_M + \sinh \theta \left\langle \frac{\partial V_2}{\partial t}, B \right\rangle_M$$

(28)

From (26), (27), (28) we have (13).

Theorem 2.3. Assume spacelike curve with timelike normal flow and timelike curve flow $\frac{\partial P}{\partial t}$ is inextensible for Bishop 2-type. Necessary and sufficient conditions for inextensible non-null curve flow are given as a system of partial differential equation contain first and second Bishop 2-type curvatures as following:

$$\frac{\partial k_1}{\partial t} = k_2 \varepsilon_2 \Psi_1 + \varepsilon_2 \sinh \theta(\varepsilon_1 (\frac{\partial f}{\partial s} + \varepsilon_1 h k_1) - \varepsilon_1 \sinh \theta \frac{\partial \theta}{\partial t}) + \varepsilon_3 \frac{\partial \Phi_1}{\partial s}$$

(29)

$$\frac{\partial k_2}{\partial t} = -\varepsilon_3 \frac{\partial \Phi_2}{\partial s} - k_1 [\varepsilon_1 \Psi_1 - \varepsilon_1 \cosh \theta(\varepsilon_2 (\frac{\partial g}{\partial s} + \varepsilon_1 h k_2) - \varepsilon_2 \cosh \theta \frac{\partial \theta}{\partial t})]$$

(30)

Proof.

$$\frac{\partial}{\partial t} \frac{\partial V_1}{\partial s} = \frac{\partial}{\partial t}(-k_1 B) = -\frac{\partial k_1}{\partial t} B - k_1 \frac{\partial B}{\partial t},$$

(31)
\[
\frac{\partial}{\partial t} \frac{\partial V_1}{\partial s} = [k_2 \Omega - \varepsilon_3 \frac{\partial \Phi_1}{\partial s}] B + \left[\frac{\partial \Omega}{\partial s} - \varepsilon_3 \varepsilon_1 k_2 \Psi_1 \right] V_2 - \varepsilon_1 \varepsilon_3 k_1 \Phi_1 V_1
\] (32)

where
\[
\Omega = -\varepsilon_2 \Psi_1 + \varepsilon_1 \varepsilon_2 \sinh \theta (\sinh \theta \frac{\partial \theta}{\partial t} - (\frac{\partial f}{\partial s} + h k_1)).
\]

and using compatibility conditions (31), (32), we obtain (29). From
\[
\frac{\partial}{\partial t} \frac{\partial V_2}{\partial s} = \frac{\partial}{\partial s} \frac{\partial V_2}{\partial t}
\]
we obtain (30).

References

Received: October 10, 2016; Published: November 20, 2016