Successive Derivatives of arctan x
and Number Theory

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina

Copyright © 2016 Rafael Jakimczuk. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let us consider the well-known function $tan^{-1}(x) = \arctan x$. In this article we examine the successive algebraic derivatives of this function and its connection with important numbers in mathematics, for example the e number and the π number.

Mathematics Subject Classification: 11A99, 11B99

Keywords: arctan x, derivatives, number theory

1 Introduction

In a previous article [1] we examine the successive derivatives de la function $f(x) = \frac{1}{g(x)}$. In this article we examine the special case of the successive derivatives when $g(x) = 1 + x^2$ and $g(x) = 1 - x^2$. The antiderivatives of these rational functions are trascendent.

Let us consider the trascendent inverse function of $\tan x$, namely

$$f(x) = \arctan x = \tan^{-1}(x)$$

The successive rational derivatives of this function are

$$f^{(1)}(x) = \frac{1}{1 + x^2} \quad (1)$$
In this article we examine these successive derivatives, that is, the polynomials with integers coefficients in the numerators of these derivatives and its connection with important numbers in mathematics, for example the e number and the π number.

2 Successive derivatives of $\arctan x$

Theorem 2.1 Let us consider the function $f(x) = \arctan x$. we have

$$f^{(n)}(x) = \frac{P_{n-1}(x)}{(1 + x^2)^n} \quad (n = 1, 2, 3, \ldots)$$

where $P_{n-1}(x)$ is a polynomial of integer coefficients.

These polynomials can be obtained using the recursive formulae

$$P_0(x) = 1$$

$$P_n(x) = P'_{n-1}(x)(1 + x^2) - 2nP_{n-1}(x) \quad (n = 1, 2, 3, \ldots)$$

Proof. Use equation (2), mathematical induction and the quotient’s rule for derivatives. The theorem is proved.

Example 2.2 The first polynomials are (using (3) and (4))

$$P_0(x) = 1$$

$$P_1(x) = -2x$$

$$P_2(x) = 6x^2 - 2$$
Successive derivatives of arctan x

$$P_3(x) = -24x^3 + 24x$$

$$P_4(x) = 120x^4 - 240x^2 + 24$$

$$P_5(x) = -720x^5 + 2400x^3 - 720x$$

$$P_6(x) = 5040x^6 - 25200x^4 + 15120x^2 - 720$$

Theorem 2.3 The polynomial $P_n(x)$ $(n \geq 0)$ has degree n, integer coefficients and leading coefficient $(-1)^n(n+1)!$.

Proof. We shall apply mathematical induction. Clearly the theorem is true for the first polynomials (see Example 2.2). Suppose the theorem is true for $P_{n-1}(x)$ then from equation (4) we obtain that the greater exponent in $P_n(x)$ is n and its coefficient is

$$(n-1)(-1)^{n-1}n! - 2n(-1)^{n-1}n! = (-1)^n(n+1)! \neq 0$$

The theorem is proved.

Theorem 2.4 In the polynomial $P_n(x)$ $(n \geq 0)$ appear only even exponents if n is even and only odd exponents if n is odd.

It is an immediate consequence of Example 2.2, equation (4) and mathematical induction. The theorem is proved.

Theorem 2.5 The polynomials $P_n(x)$ are of the form

$$P_{2n}(x) = \sum_{i=0}^{n} (-1)^i a_{2n-2i,2n} x^{2n-2i} \quad (n = 0, 1, 2, 3, \ldots)$$

(5)

where $a_{2n-2i,2n}$ are positive integers $(i = 0, \ldots, n)$.

$$P_{2n-1}(x) = \sum_{i=0}^{n-1} (-1)^{i+1} a_{2n-1-2i,2n-1} x^{2n-1-2i} \quad (n = 1, 2, 3, \ldots)$$

(6)

where $a_{2n-1-2i,2n-1}$ are positive integers $(i = 0, \ldots, n-1)$.

Proof. For sake of simplicity in the proof we shall write $a_{2n-2i,2n} = a_{2n-2i}$ and $a_{2n-1-2i,2n-1} = a_{2n-1-2i}$. We shall use mathematical induction. Clearly the theorem is true for the first polynomials (see Example 2.2). Suppose that the theorem is true for $P_{2n-1}(x)$, then we shall prove the theorem is also true for $P_{2n}(x)$. We have (see (4) and (6))
\[P_{2n}(x) = P'_{2n-1}(x)(1 + x^2) - 4n x P_{2n-1}(x) \]

\[= \sum_{i=0}^{n-1} (-1)^{i+1} (2n - 1 - 2i) a_{2n-1-2i} x^{2n-2-2i} (1 + x^2) \]

\[- 4n \sum_{i=0}^{n-1} (-1)^{i+1} a_{2n-1-2i} x^{2n-2i} = \sum_{i=0}^{n-1} (-1)^{i+1} (2n - 1 - 2i) a_{2n-1-2i} x^{2n-2i} \]

\[- \sum_{i=0}^{n-1} (-1)^{i+1} 4na_{2n-1-2i} x^{2n-2i} + \sum_{i=0}^{n-1} (-1)^{i+1} (2n - 1 - 2i) a_{2n-1-2i} x^{2n-2i} \]

\[= (2n + 1) a_{2n-1} x^{2n} \]

\[+ \sum_{i=1}^{n-1} (-1)^i ((2n + 1 + 2i) a_{2n-1-2i} + (2n + 1 - 2i) a_{2n+1-2i}) x^{2n-2i} \]

\[+ (-1)^n a_1 \quad \text{(7)} \]

where, from the inductive hypothesis, the integers in the last polynomial in (7), namely

\[(2n + 1) a_{2n-1} \quad \text{(8)} \]

\[((2n + 1 + 2i) a_{2n-1-2i} + (2n + 1 - 2i) a_{2n+1-2i}) \quad \text{for } i = 1, \ldots, n - 1 \quad \text{(9)} \]

\[a_1 \quad \text{(10)} \]

are positive. As we desired.

Now suppose that the theorem is true for \(P_{2n}(x) \), then we shall prove the theorem is also true for \(P_{2n+1}(x) \). We have (see (4) and (5))

\[P_{2n+1}(x) = P'_{2n}(x)(1 + x^2) - 2(2n + 1) x P_{2n}(x) \]

\[= \sum_{i=0}^{n-1} (-1)^{i} (2n - 2i) a_{2n-2i} x^{2n-2i-1} (1 + x^2) - (4n + 2) \sum_{i=0}^{n} (-1)^i a_{2n-2i} x^{2n-2i+1} \]

\[- \sum_{i=0}^{n-1} (-1)^{i} (2n - 2i) a_{2n-2i} x^{2n-2i-1} + \sum_{i=0}^{n-1} (-1)^i (2n - 2i) a_{2n-2i} x^{2n-2i+1} \]

\[- 4n \sum_{i=0}^{n} (-1)^i a_{2n-2i} x^{2n-2i+1} = \sum_{i=0}^{n-1} (-1)^{i-1} (2n - 2i + 2) a_{2n-2i+2} x^{2n-2i+1} \]

\[+ \sum_{i=0}^{n-1} (-1)^i (2n - 2i) a_{2n-2i} x^{2n-2i+1} - (4n + 2) \sum_{i=0}^{n} (-1)^i a_{2n-2i} x^{2n-2i+1} \]
Successive derivatives of arctan x

\[
= -(2n + 2)a_{2n}x^{2n+1} + \sum_{i=1}^{n-1} (-1)^{i+1} ((2n + 2i + 2)a_{2n-2i} + (2n - 2i + 2)a_{2n-2i+2}) x^{2n-2i+1} + (-1)^{n+1} (2a_2 + (4n + 2)a_0) x
\]

(11)

where, from the inductive hypothesis, the integers in the last polynomial in (11), namely

\[
(2n + 2)a_{2n}
\]

(12)

\[
((2n + 2i + 2)a_{2n-2i} + (2n - 2i + 2)a_{2n-2i+2}) \quad (i = 1, \ldots, n - 1)
\]

(13)

\[
(2a_2 + (4n + 2)a_0)
\]

(14)

are positive. As we desired. The theorem is proved.

In the following theorem, we examine the sum of the absolute values of the coefficients in the polynomial $P_n(x)$.

Theorem 2.6 Let us consider the polynomial $P_n(x)$ ($n = 0, 1, 2, \ldots$). The sum of the absolute values of their coefficients is $A_n = 2^n n!$ ($n = 0, 1, 2, \ldots$).

Proof. We shall use mathematical induction. The theorem is true for the first values of n (see Example 2.2). From the inductive hypothesis we have (see (6))

\[
\sum_{i=1}^{n-1} a_{2n-1-2i} = A_{2n-1} = 2^{2n-1}(2n - 1)!
\]

(15)

On the other hand, equations (8), (9), (10) and (15) give

\[
A_{2n} = (2n + 1)a_{2n-1} + \sum_{i=1}^{n-1} ((2n + 1 + 2i)a_{2n-1-2i} + (2n - 1 - 2i)a_{2n+1-2i}) + a_1 = 4n \sum_{i=0}^{n-1} a_{2n-1-2i} = 4nA_{2n-1} = 2^{2n}(2n)!
\]

As we desired.

From the inductive hypothesis we have (see (5))

\[
\sum_{i=0}^{n} a_{2n-2i} = A_{2n} = 2^{2n}(2n)!
\]

(16)
On the other hand, equations (12), (13), (14) and (16) give

\[A_{2n+1} = (2n + 2)a_{2n} + \sum_{i=1}^{n-1} ((2n + 2i + 2)a_{2n-2i} + (2n - 2i + 2)a_{2n-2i+2}) \]
\[+ \ (4n + 2)a_{0} + 2a_{2} \]
\[= (4n + 2) + (2n + 1)A_{2n} \]
\[= 2^{2n+1}(2n + 1)! \]

As we desired. The theorem is proved.

In the following theorem we show that the coefficients of the polynomials \(P_n(x) \) \((n = 0, 1, 2, \ldots)\) are connected in some way with the \(e \) number.

Theorem 2.7 The series of the reciprocal of the absolute values of the leading coefficients in the polynomials \(P_n(x) \) has sum \(e - 1 \). The series of the reciprocal of the leading coefficients in the polynomials \(P_n(x) \) has sum \(1 - \frac{1}{e} \). On the other hand

\[\sum_{n=0}^{\infty} \frac{1}{A_n} = \sqrt{e} \]

Proof. The power series for \(e^x \) is well-known

\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (x \in (-\infty, \infty)) \] (17)

Therefore the sum of the series of the reciprocal of the absolute values of the leading coefficients in the polynomials \(P_n(x) \) will be (see Theorem 2.3 and (17))

\[\sum_{n=0}^{\infty} \frac{1}{n+1}! = \sum_{n=1}^{\infty} \frac{1}{n!} = e - 1 \]

and the sum of the series of the reciprocal of the leading coefficients in the polynomials \(P_n(x) \) will be (see Theorem 2.3 and (17))

\[\sum_{n=0}^{\infty} \frac{1}{(-1)^n(n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!} = (-1) \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \]
\[= - (e^{-1} - 1) = 1 - \frac{1}{e} \]

On the other hand Theorem 2.6 and (17) give

\[\sum_{n=0}^{\infty} \frac{1}{A_n} = \sum_{n=0}^{\infty} \frac{1}{2^n n!} = \sum_{n=0}^{\infty} \frac{(1/2)^n}{n!} = \sqrt{e} \]

The theorem is proved.
Theorem 2.8 The coefficient of x^0 in the polynomial $P_{2n}(x)$ is $(-1)^n(2n)!$ and consequently (see (5)) $a_{0,2n} = (2n)!$. The coefficient of x in the polynomial $P_{2n-1}(x)$ is $(-1)^n(2n)!$ and consequently (see (6) and (7)) $a_{1,2n-1} = (2n)!$.

Proof. The following geometric power series is well-known

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

Equation (18) gives

$$g(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad |x| < 1$$

On the other hand, it is well-known that

$$g(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} \frac{g(0)^{(n)}}{n!} x^n, \quad |x| < 1$$

Hence, equations (19) and (20) give

$$g(0)^{(2n-1)} = 0, \quad (n = 1, 2, 3, \ldots)$$

$$g(0)^{(2n)} = (-1)^n(2n)!, \quad (n = 0, 1, 2, \ldots)$$

Now, see (2), we have

$$g^{(n-1)}(0) = f^{(n)}(0) = \frac{P_{n-1}(0)}{(1+x^2)^n} = P_{n-1}(0) \quad (n = 1, 2, 3, \ldots)$$

Equations (21), (22) and (23) give

$$P_{2n-1}(0) = 0 \quad (n = 1, 2, 3, \ldots)$$

$$P_{2n}(0) = (-1)^n(2n)! \quad (n = 0, 1, 2, \ldots)$$

Consequently, the coefficient of x^0 in the polynomial $P_{2n}(x)$ is $P_{2n}(0) = (-1)^n(2n)!$ and consequently (see (5)) $a_{0,2n} = (2n)!$. The theorem is proved.

It is well-known that (see (2))

$$\int_{0}^{\infty} f^{(1)}(x) \, dx = \int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2}$$

In the following theorem we generalize this integral.
Theorem 2.9 We have
\[\int_0^\infty f^{(2n+2)}(x) \, dx = \int_0^\infty \frac{P_{2n+1}(x)}{(1 + x^2)^{2n+2}} \, dx = (-1)^{n+1}(2n)! \quad (n = 0, 1, 2, \ldots) \]
\[\int_0^\infty f^{(2n+1)}(x) \, dx = \int_0^\infty \frac{P_{2n}(x)}{(1 + x^2)^{2n+1}} \, dx = 0 \quad (n = 1, 2, 3, \ldots) \]

Proof. We have (see (2), (24) and (25))
\[\int_0^\infty f^{(2n+2)}(x) \, dx = \lim_{a \to \infty} \left(f^{(2n+1)}(a) - f^{(2n+1)}(0) \right) \]
\[= \lim_{a \to \infty} \left(\frac{P_{2n}(a)}{(1 + a^2)^{2n+1}} - P_{2n}(0) \right) = 0 - P_{2n}(0) = (-1)^{n+1}(2n)! \]
\[\int_0^\infty f^{(2n+1)}(x) \, dx = \lim_{a \to \infty} \left(f^{(2n)}(a) - f^{(2n)}(0) \right) \]
\[= \lim_{a \to \infty} \left(\frac{P_{2n-1}(a)}{(1 + a^2)^{2n}} - P_{2n-1}(0) \right) = 0 - P_{2n-1}(0) = 0 \]
The theorem is proved.

In the following theorem we obtain new relations between the coefficients of the polynomials \(P_n(x) \) and important numbers in mathematics.

Theorem 2.10 The sum of the series of the reciprocal of the coefficients of \(x^0 \) in the polynomials \(P_n(x) \) is \(\cos 1 \). The sum of the series of the absolutes values of the reciprocal of the coefficients of \(x^0 \) in the polynomials \(P_n(x) \) is \(e + e^{-1} \). On the other hand we have
\[\lim_{n \to \infty} \frac{(A_n)^2}{a_{0,2n} \sqrt{n}} = \sqrt{\pi} \quad (26) \]

Proof. We have the well-known power series
\[\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \]
Therefore the sum of the series of the reciprocal of the coefficients of \(x^0 \) in the polynomials \(P_n(x) \) is (see Theorem 2.8)
\[\sum_{n=0}^{\infty} \frac{1}{(-1)^n(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} = \cos 1 \]
We have the well-known power series
\[\cosh x = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \]

Therefore the sum of the series of the reciprocal of the absolute values of the coefficients of \(x^0 \) in the polynomials \(P_n(x) \) is (see Theorem 2.8)
\[\sum_{n=0}^{\infty} \frac{1}{(2n)!} = \cosh 1 = \frac{e + e^{-1}}{2} \]

On the other hand, limit (26) is an immediate consequence of the following well-known limit (see [2, page 719]), Theorem 2.6 and Theorem 2.8.
\[\lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)!(\sqrt{n})} = \sqrt{\pi} \]

The theorem is proved.

Theorem 2.11 The coefficient of \(x^2 \) in the polynomial \(P_{2n}(x) \) is \((-1)^{n-1}n(2n+1)! \) and consequently (see (5)) \(a_{2,2n} = n(2n+1)! \).

Proof. We have (see equations (11), (14) and Theorem 2.8)
\[2a_2 + (4n+2)a_0 = 2a_2 + (4n+2)(2n)! = (2n+2)! \] (27)

Equation (27) gives \(a_2 = n(2n+1)! \). The theorem is proved.

3 An Observation

The inverse function of \(\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \) is the function
\[f(x) = \tanh^{-1}(x) = \log \sqrt{\frac{x+1}{1-x}} \quad (-1 < x < 1) \] (28)

The successive algebraic derivatives of this function are
\[f^{(1)}(x) = \frac{1}{1-x^2} \]
\[f^{(2)}(x) = \frac{2x}{(1-x^2)^2} \]
\[f^{(3)}(x) = \frac{6x^2 + 2}{(1-x^2)^3} \]
Theorem 3.1 Let us consider the function (28). we have

\[f^{(n)}(x) = \frac{Q_{n-1}(x)}{(1-x^2)^n} \quad (n = 1, 2, 3, \ldots) \]

where \(Q_{n-1}(x) \) is a polynomial of integer coefficients.
These polynomials can be obtained using the recursive formulae

\[Q_0(x) = 1 \quad (29) \]

\[Q_n(x) = Q'_{n-1}(x)(1 - x^2) + 2nxQ_{n-1}(x) \quad (n = 1, 2, 3, \ldots) \quad (30) \]

Proof. Use equation (30), mathematical induction and the quotient’s rule for derivatives. The theorem is proved.

Example 3.2 The first polynomials are (using (29) and (30))(compare with Example 2.2)

\[P_0(x) = 1 \]

\[P_1(x) = 2x \]

\[P_2(x) = 6x^2 + 2 \]

\[P_3(x) = 24x^3 + 24x \]

\[P_4(x) = 120x^4 + 240x^2 + 24 \]

\[P_5(x) = 720x^5 + 2400x^3 + 720x \]

\[P_6(x) = 5040x^6 + 25200x^4 + 15120x^2 + 720 \]
Theorem 3.3 The polynomials $Q_n(x)$ are of the form

$$Q_{2n}(x) = \sum_{i=0}^{n} a_{2n-2i, 2n} x^{2n-2i} \quad (n = 0, 1, 2, 3, \ldots)$$

where $a_{2n-2i, 2n}$ $(i = 0, \ldots, n)$ are the same positive integers that in equation (5)(see Theorem 2.5).

$$Q_{2n-1}(x) = \sum_{i=0}^{n-1} a_{2n-1-2i, 2n-1} x^{2n-1-2i} \quad (n = 1, 2, 3, \ldots)$$

where $a_{2n-1-2i, 2n-1}$ $(i = 0, \ldots, n-1)$ are the same positive integers that in equation (6)(see Theorem 2.5).

Proof. The theorem is true for the first polynomials (see Example 2.2 and Example 3.2). Now the proof is the same as Theorem 2.5 using equation (30) and mathematical induction. The theorem is proved.

Acknowledgements. The author is very grateful to Universidad Nacional de Luján.

References

Received: July 5, 2016; Published: August 10, 2016