A Class of Complete Lie Algebras II

Mingzhong Wu

Department of Mathematics, China West Normal University
Nanchong, Sichuan, 637002, P. R. China

Copyright © 2015 Mingzhong Wu. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, by using a matrix method, we explicitly determine the maximal torus of a class of quasifiliform Lie algebras C_n and prove that this class of Lie algebras are complete and has a left-symmetric algebra structure.

Mathematics Subject Classification: 17B05, 17B30

Keywords: Maximal torus; Derivation algebra; Quasifiliform Lie algebra

1 Introduction

A Lie algebra is called complete if its center is zero, and all its derivations are inner. The definition of complete Lie algebras was given by N. Jacobson in 1962 [2]. The first important result of complete Lie algebras first appeared in 1951, in the context of Schenkman’s theory of subinvariant Lie algebras [10]. In recent years, different authors have concentrated on classifications and structural properties of complete Lie algebras [3, 6, 7, 12]. The complete nilpotent Lie algebra is one of the interesting results have been obtained [12]. But which nilpotent Lie algebra is complete is still an open problem.

Left-symmetric algebras first have been studied in theory of affine manifolds, affine structures on Lie groups and convex homogeneous cones [4],[5],[11]. It is well-known that under the commutator $[x, y] = xy - yx$, A left-symmetric

1This work is supported by the PhD Research Startup Foundation (No.15E027) and the Fundamental Research Funds of China West Normal University (No.14D013).
algebra becomes a Lie algebra. But not all Lie algebras have left-symmetric algebra structures.

In [1], J. R. Gómez, A. Jiménez-Merchán and J. Reyes have given the classification of quasi-filiform Lie algebras of maximal length. In this paper, we explicitly determine the maximal torus of a class of quasifiliform Lie algebras C_n and prove that they are complete and have left-symmetric algebra structures.

2 Preliminary

Definition 2.1 Let N be a Lie algebra. A maximal torus on N is a maximal abelian subalgebra of $\text{Der} N$, which consists of semisimple linear transformations.

Lemma 2.2 [9] Let H_1 and H_2 be two maximal torus on N, then there exist $\theta \in \text{Aut} N$, such that $H_2 = \theta H_1 \theta^{-1}$.

As all maximal tori on N are mutually conjugated, so the dimension of a maximal torus on N is an invariant of N called the rank of N (denoted by $\text{rank}(N)$). A nilpotent Lie algebra is called maximal rank nilpotent Lie algebra if $\text{rank}(N)=\text{dim} N/[[N,N]]$.

If H is a maximal torus on a nilpotent Lie algebra N, define the bracket in H^+N, by $[h_1 + n_1, h_2 + n_2] = h_1(n_2) - h_2(n_1) + [n_1, n_2]$, where $h_i \in H, n_i \in N, i = 1, 2$, then H^+N is a solvable Lie algebra.

Definition 2.3 [12] Let H be a maximal torus on a nilpotent Lie algebra N, if a solvable Lie algebra H^+N is complete, then N is called a complete nilpotent Lie algebra.

Lemma 2.4 [8] Let H be a maximal torus on a nilpotent Lie algebra N and the decomposition of N with respect to H be

$$N = \sum_{\alpha \in \Delta} N_\alpha,$$

where $\Delta = \{ \alpha \in H^* | N_\alpha \neq 0 \}$. Defined the bracket in $g = H^+N$, by $[h_1 + n_1, h_2 + n_2] = h_1(n_2) - h_2(n_1) + [n_1, n_2]$, where $h_i \in H, n_i \in N, i = 1, 2$, then H^+N is a solvable Lie algebra. If $0 \notin \Delta$ and $C(g) = 0$, then

$$\text{Der} g = \text{ad} g + D_0$$

where $D_0 = \{ \phi \in \text{Der} g | \phi(H) = 0 \}$.
Lemma 2.5 [1] Let \(g \) be an \(n \)-dimensional non-split quasifiliform Lie algebra of maximal length \(l(g) = n \geq 13 \). Then the algebra \(g \) is isomorphic to \(A_n \) (\(n \) odd), or to \(B_n \) or to \(C_n \), where \(A_n, B_n, C_n \) are defined in a basis \(X = \{x_0, x_1, \cdots, x_{n-2}, y\} \) as follows:

\[
\begin{align*}
A_n : & \quad \begin{cases}
[x_0, x_i] = x_{i+1}, & 1 \leq i \leq n-3, \\
[x_i, x_{n-2-i}] = (-1)^{i-1}y, & 1 \leq i \leq \frac{n-3}{2}.
\end{cases} \\
B_n : & \quad \begin{cases}
[x_0, x_i] = x_{i+1}, & 1 \leq i \leq n-3, \\
[x_i, y] = x_{i+2}, & 1 \leq i \leq n-4.
\end{cases} \\
C_n : & \quad \begin{cases}
[x_0, x_i] = x_{i+1}, & 1 \leq i \leq n-3, \\
[x_i, y] = x_{i+2}, & 1 \leq i \leq n-4, \\
[x_1, x_i] = x_{i+3}, & 2 \leq i \leq n-5.
\end{cases}
\end{align*}
\]

3 Main Results

Let \(\sigma \) be a linear transformation of a Lie algebra \(g \), then \(\sigma \in \text{Der}(g) \) if and only if with respect to a basis \(\{x_1, x_2, \cdots, x_n\} \) of \(g \), \(\sigma \) satisfies for any \(1 \leq i, j \leq n \),

\[\sigma[x_i, x_j] = [\sigma x_i, x_j] + [x_i, \sigma x_j]. \]

Lemma 3.1 Let \(\sigma \) be a linear transformation of a Lie algebra \(g \) and \(A = \text{diag}(a_1, a_2, \cdots, a_n) \) be the matrix of \(\sigma \) with respect to a basis \(\{x_1, x_2, \cdots, x_n\} \) of \(g \). Suppose that

\[[x_i, x_j] = \sum_{k=1}^{n} b^k_{ij}x_k. \]

Then \(\sigma \in \text{Der}(g) \) if and only if for any \(1 \leq i, j \leq n \),

\[(a_i + a_j)b^k_{ij} = a_kb^k_{ij}, \quad 1 \leq k \leq n. \]

Lemma 3.2 Let \(C_n \) be the \(n \)-dimensional non-split quasifiliform Lie algebra of maximal length \(l(g) = n \geq 13 \) defined in Lemma 2.5. Suppose that \(\phi \) is a semisimple linear transformation of \(C_n \) with respect to the given basis \(X \). Then \(\phi \) is a derivation of \(C_n \) if and only if \(\phi \) satisfies

\[
\begin{align*}
\phi(x_0) &= a_0x_0, \quad \phi(x_1) = 3a_0x_1, \quad \phi(x_2) = 4a_0x_2, \quad \phi(x_3) = 5a_0x_3, \cdots, \\
\phi(x_{n-2}) &= na_0x_{n-2}, \quad \phi(y) = 2a_0y,
\end{align*}
\]

where \(a_0 \in \mathbb{F} \).
Proof. Let \(\phi \) be a semisimple linear transformation of \(C_n \), we may assume that
\[
\phi(x_0) = a_0x_0, \phi(x_1) = a_1x_1, \ldots, \phi(x_{n-2}) = a_{n-2}x_{n-2}, \phi(y) = by.
\]
Then by lemma 3.1, we have that \(\phi \in \text{Der}(C_n) \) if and only if
\[
\begin{cases}
a_0 + a_i = a_{i+1}, & 1 \leq i \leq n - 3; \\a_i + b = a_{i+2}, & 1 \leq i \leq n - 4; \\a_1 + a_i = a_{i+3}, & 2 \leq i \leq n - 5.
\end{cases}
\]
Solving the system of linear equations, we have \(\phi \in \text{Der}(C_n) \) if and only if
\[
\begin{cases}
a_1 = 3a_0, \\
a_2 = 4a_0, \\
\vdots \\
a_{n-2} = na_0, \\
b = 2a_0.
\end{cases}
\]
Hence \(\phi \in \text{Der}(C_n) \) if and only if
\[
\phi(x_0) = a_0x_0, \phi(x_1) = 3a_0x_1, \phi(x_2) = 4a_0x_2, \phi(x_3) = 5a_0x_3, \ldots, \\
\phi(x_{n-2}) = na_0x_{n-2}, \phi(y) = 2a_0y,
\]
Hence the conclusion holds. \(\square \)

Theorem 3.3 Let \(C_n \) be the \(n \)-dimensional non-split quasifiliform Lie algebra of maximal length \(l(g) = n \geq 13 \) defined in Lemma 2.5. Then the linear transformation
\[
\phi(x_0) = x_0, \phi(x_1) = 3x_1, \phi(x_2) = 4x_2, \phi(x_3) = 5x_3, \ldots, \\
\phi(x_{n-2}) = nx_{n-2}, \phi(y) = 2y
\]
generates a maximal torus on \(C_n \).

Proof. By Lemma 3.2, we know that the transformation
\[
\phi(x_0) = x_0, \phi(x_1) = 3x_1, \phi(x_2) = 4x_2, \phi(x_3) = 5x_3, \ldots, \\
\phi(x_{n-2}) = nx_{n-2}, \phi(y) = 2y
\]
is a derivation of \(C_n \). Let \(H \) be a maximal torus on \(C_n \) such that \(\phi \in H \). \(\forall h \in H \) and suppose the matrix of \(h \) with respect to the given basis is \(M_h = (h_{ij})_{n \times n} \). Since any maximal torus is abelian, we have
\[
[\phi, h] = 0,
\]
which means \([M_h, \text{diag}(1, 3, 4, \cdots, n, 2)] = 0\). Since the diagonal entries of the matrix \(\text{diag}(1, 3, 4, \cdots, n, 2)\) are different to each others, we have \(M_h\) is a diagonal matrix. Similarly as the proof of Lemma 3.2, we have \(h \in \text{Der}(C_n)\) if and only if
\[
\begin{align*}
 h(x_0) &= a_0 x_0, h(x_1) = 3a_0 x_1, h(x_2) = 4a_0 x_2, h(x_3) = 5a_0 x_3, \cdots, \\
 h(x_{n-2}) &= na_0 x_{n-2}, h(y) = 2a_0 y,
\end{align*}
\]
where \(a_0 \in \mathbb{F}\). Therefore, \(h = a_0 \phi\). Hence \(H\) is generated by \(\phi\). \(\square\)

Theorem 3.4 Let \(C_n\) be the \(n\)-dimensional non-split quasifiliform Lie algebra of maximal length \(l(g) = n \geq 13\) defined in Lemma 2.5. Then there exists a left-symmetric algebra structure on \(C_n\).

Proof. From the proof of Lemma 3.2, we know that the transformation
\[
\phi(x_0) = x_0, \phi(x_1) = 3x_1, \cdots, \phi(x_{n-2}) = nx_{n-2}, \phi(y) = 2y
\]
is a derivation of \(C_n\) and obviously nonsingular. It is well-known that a Lie algebra with a nonsingular transformation \(D\) has a left-symmetric algebra structure \(xy = D^{-1}[x, Dy]\). Hence the conclusion holds. \(\square\)

Theorem 3.5 Let \(C_n\) be the \(n\)-dimensional non-split quasifiliform Lie algebra of maximal length \(l(g) = n \geq 13\) defined in Lemma 2.5. Then \(C_n\) is a complete nilpotent Lie algebra.

Proof. From Theorem 3.3, there exists a maximal torus \(H\) such that the transformation
\[
\phi(x_0) = x_0, \phi(x_1) = 3x_1, \phi(x_2) = 4x_1, \cdots, \phi(x_{n-2}) = nx_{n-2}, \phi(y) = 2y
\]
is in \(H\). So there isn’t zero root space in the decomposition of
\[
C_n = \sum_{\alpha \in \Delta \subseteq H^*} (C_n)_{\alpha}
\]
with respect to \(H\), and \(C(H + C_n) \neq 0\). Hence by Lemma 2.4, \(\text{Der}g = \text{ad}g + D_0\), where \(g = H + C_n\).
\[
\forall \varphi \in D_0, \text{for any } 0 \neq x_\beta \in (C_n)_\beta, \text{ set }
\]
\[
\varphi(x_\beta) = h_1 + \sum_{\alpha \in \Delta} x_\alpha,
\]
where \(h_1 \in H, x_\alpha \in (C_n)_\alpha\). \(\forall h \in H, \) from
\[
\varphi[h, x_\beta] = [\varphi(h), x_\beta] + [h, \varphi(x_\beta)] = [h, \varphi(x_\beta)],
\]
we have
\[
\beta(h)h_1 + \sum_{\alpha \in \Delta} \beta(h)x_\alpha = \left[h, h_1 + \sum_{\alpha \in \Delta} x_\alpha \right] = \sum_{\alpha \in \Delta} \alpha(h)x_\alpha.
\]

By \(0 \notin \Delta, \beta \neq 0\), we have \(h_1 = 0\) and if \(\beta \neq \alpha, x_\alpha = 0\). Thus \(\varphi((C_n)_\beta) \subseteq (C_n)_\beta\).

From \(\phi \in H\), we obtain that \(\dim(C_n)_\beta = 1\). So \(\varphi(x_\beta) = k_i x_\beta, k_i \in \mathbb{C}\). It means that \(\varphi|_{C_n}\) is a semisimple derivation of \(C_n\). So \(C \varphi|_{C_n}\) is a torus on \(C_n\) and \([\varphi|_{C_n}, H]\) = 0. Because \(H\) is a maximal torus on \(C_n\), we have \(\varphi|_{C_n} \in H\). It means that there exists an \(h' \in H\) such that \(\varphi|_{C_n} = \text{ad} h'\). Noting that \(\varphi(H) = 0\), we immediately have
\[
\varphi = \text{ad} h'.
\]

Hence \(D_0 \subseteq \text{ad} g\) and \(\text{Der} g = \text{ad} g\). Therefore, \(g = H + C_n\) is a complete Lie algebra and \(C_n\) is a complete nilpotent Lie algebra. \(\square\)

References

Received: December 10, 2015; Published: January 29, 2016