The r-Polynomials in Hecke Algebras with Unequal Parameters

Dongcheng Li and Xigou Zhang

College of Mathematics & Information Science
JXNU, Nanchang, P.R. China, 330022

Abstract

This paper is concerned with some important properties of r-polynomials in Hecke algebras with unequal parameters. In chapter one, we briefly introduce some conceptions in Coxeter group \mathcal{W} and some notations in Hecke algebra \mathcal{H}. In chapter two, we give some important properties of some r-polynomials which satisfy $r_{y,w} = \prod_{i=1}^{l(w)-l(y)}(v_{s_i} - v_{s_i}^{-1})$ when $y \leq w$ in \mathcal{W} and $w = s_1s_2\cdots s_q$ is any reduced expression.

Keywords: Coxeter group; Coxeter elements; Hecke algebra; r-polynomials

1. Introduction

Let (\mathcal{W}, S) be a Coxeter system (see [1]), For the generators set S, we say the group W is of rank $|S|$, and call any order product of some elements in S is a Coxeter element (see [2]) of W.

Definition 1.1.1 (see [1]) Let $w = s_1s_2\cdots s_r \in W$ be any expression with $s_i \in S$ for $1 \leq i \leq r$. Define the length function $l(w)$ to be the smallest r for which such a expression exists, and we call the expression reduced. Note that the reduced expression of w is not necessary uniquely determined.
Let “≤” be the Bruhat ordering in W, equivalently \(y \leq w \) for \(y, w \in W \) if and only if \(y \) is a subexpression of any reduced expression of \(w \), which is clearly a partial order in \(W \). In particular, let \(W \) be the dihedral group \(D_m \) for any \(y, w \in W \), we can get that \(y < w \) if and only if \(l(y) < l(w) \). Moreover, if \(D_m = \langle s, t \rangle \) with \(m < \infty \), we denote \(\text{Prod} (s, t; n) = ssts \cdots \), which has \(n \) factors with \(n \geq 0 \).

Definition 1.1.2 (see [3]) A map \(L: W \to \mathbb{Z} \) is said to be a weight function for \(W \), if \(L(ww') = L(w) + L(w') \) for any \(w, w' \in W \) such that \(l(ww') = l(w) + l(w') \). Note that \(L \) is determined by its values \(L(s) \) on \(S \) which are subject only to the condition that \(L(s) = L(s') \) for any \(s \neq s' \) in \(S \) such that \(m_{s,s'} \) is finite and odd. It is clear that \(L(1) = 0 \) and \(L(w) = L(w^{-1}) \) for all \(w \in W \).

Definition 1.1.3 (see [3]) Let \(A = \mathbb{Z}[v, v^{-1}] \) be the Laurent polynomial ring, where \(v \) is an indeterminate. For \(s \in S \), we set \(v_s = v^{L(s)} \in A \).

Definition 1.1.4 (see [3]) Let \(\mathcal{H} \) be the \(\mathcal{A} \)-algebra with 1 defined by the generators \(T_s (s \in S) \) and relations:
(a) \((T_s - v_s)(T_s + v_s^{-1}) = 0 \) for all \(s \in S \);
(b) \(T_s T_s' T_s \cdots = T_{s'} T_s T_{s'} \cdots \), both sides have \(m_{s,s'} \) factors, for any \(s \neq s' \) in \(S \) such that \(m_{s,s'} < \infty \).
\(\mathcal{H} \) is called the Hecke algebra or Iwahori-Hecke algebra with unequal parameters.

For all \(s \in S \), we can see that the element \(T_s \) is invertible in \(\mathcal{H} \) by (a), and have \(T_s^{-1} = T_s - (v_s - v_s^{-1}) \). By (b) and Matsumoto’s theorem (see [4]), we have \(T_w \) is independent of the choices of a reduced expression of \(w \). Moreover, if \(w = s_1 s_2 \cdots s_q \in W \) is a reduced expression, then \(T_w^{-1} = T_{s_q}^{-1} \cdots T_{s_2}^{-1} T_{s_1}^{-1} \).

Definition 1.1.5 (see [3]) Let \(\tilde{\cdot}: \mathcal{A} \to \mathcal{A} \) be the ring involution which takes \(v^n \) to \(v^{-n} \) for any \(n \in \mathbb{Z} \).

Lemma 1.1.6 (see [3]) (a) There is a unique ring homomorphism \(\tilde{\cdot}: \mathcal{H} \to \mathcal{H} \) which is \(\mathcal{A} \)-semilinear with respect to \(\cdot: \mathcal{A} \to \mathcal{A} \) and satisfies \(\tilde{T}_s = T_s^{-1} \) for all \(s \in S \).
(b) This homomorphism is involutive which takes \(T_w \) to \(T_w^{-1} \) for any \(w \in W \).

Proposition 1.1.7 (see [3]) For any \(w \in W \), we can write uniquely \(T_w = \sum_{y \in W} r_{y,w} T_y \), where \(r_{y,w} \in \mathcal{A} \) are zero for all but finitely many \(y \). In particular, \(r_{w,w} = 1 \) for all \(w \in W \), while \(r_{y,w} = 0 \) unless \(y \leq w \) for \(y, w \in W \).

Proposition 1.1.8 (see [3]) Let \(w \in W \) and \(s \in S \) be such that \(sw < w \). For any \(y \in W \), we have
The \(r \)-polynomials in Hecke algebras with unequal parameters

(1) \(r_{y,w} = r_{sy,sw} \), if \(sy < y \);
(2) \(r_{y,w} = r_{sy,sw} + (v_s - v_s^{-1})r_{y,sw} \), if \(sy > y \).

It is sometimes useful to have alternate versions of (1) and (2), with \(s \) occurring on the right hand, rather than the left. For the right-handed version, we have the similar relations as follows:

(3) if \(y < w, ys < y, ws < w \) (forcing \(ys < ws \)), then \(r_{y,w} = r_{ys,ws} \);
(4) if \(y < w, y < ys \) (forcing \(ys \leq w \) and \(y \leq wy \)), then \(r_{y,w} = r_{ys,ws} + (v_s - v_s^{-1})r_{y,sw} \).

Now we consider a special case: \(l(w) - l(y) = 1 \). Let \(w = s_1s_2 \cdots s_r \) be a reduced expression, we can take \(y \) by omitting a single \(s_i \) with \(1 \leq i \leq r \). Consider the \(i \)-th position of \(s_i \) with 3 cases. If \(i = 1 \), taking \(y = s_2s_3 \cdots s_r \), we can get \(r_{y,w} = r_{1,s_1} = v_{s_1} - v_{s_1}^{-1} \) by (3); if \(i = r \), taking \(y = s_1s_2 \cdots s_{r-1} \), we can get \(r_{y,w} = r_{1,s_r} = v_{s_r} - v_{s_r}^{-1} \) by (1); at last, if \(1 < i < r \), taking \(y = s_1 \cdots s_i \cdots s_r \), we can have \(r_{y,w} = r_{1,s_i} = v_{s_i} - v_{s_i}^{-1} \) by (1) and (3).

So, for any \(1 \leq i \leq r \), we can get the conclusion \(r_{y,w} = v_{s_i} - v_{s_i}^{-1} \).

Similarly for another special case: \(l(w) - l(y) = 2 \). we can get that \(r_{y,w} = (v_{s_i} - v_{s_i}^{-1})(v_{s_j} - v_{s_j}^{-1}) \) for \(1 \leq i < j \leq r \).

However, if \(l(w) - l(y) \geq 3 \), the \(r \)-polynomials are rapidly become less manageable, because of the more complicated possibilities for subexpressions when more than two factors are omitted. For example, when \(W \) is of the type \(B_3 \), let \(y = 1 \) and \(w = s_1s_2s_1 \) in \(W \), we can get that

\[
r_{y,w} = (v_{s_1} - v_{s_1}^{-1})(v_{s_2} - v_{s_2}^{-1}) + (v_{s_1} - v_{s_1}^{-1}).
\]

2. SOME PROPERTIES OF \(R \)-POLYNOMIALS

Proposition 2.1 Let \(S = \{ s_1, s_2, \ldots, s_n \} \), and \(J \) be the set consisting of all the Coxeter elements of \(W_I \) for all \(I \subseteq S \). For \(w = s_1s_2 \cdots s_r \) we have \(r_{1,w} = \prod_{i=1}^{l(w)}(v_{s_i} - v_{s_i}^{-1}) \) if and only if \(w \in J \).

Proof. We first prove by induction \(l(w) \) that if \(w \in J \), then \(r_{1,w} = \prod_{i=1}^{l(w)}(v_{s_i} - v_{s_i}^{-1}) \). It is obvious when \(l(w) = 0, 1 \) or 2. Let \(l(w) = k \in [3, n] \), the equivalence \(r_{1,w} = \prod_{j=1}^{l(w)}(v_{s_i} - v_{s_i}^{-1}) \) hold. If \(l(w) = k + 1 \), then we can get

\[
r_{1,w} = r_{1,s_1s_2 \cdots s_{k+1}} = r_{s_1s_2 \cdots s_{k+1}} + (v_{s_1} - v_{s_1}^{-1})r_{s_1s_2 \cdots s_{k+1}}
\]

Since \(s_i \neq s_j \) for any \(1 \leq i < j \leq k + 1 \), it implies that \(s_1 \) is not the subexpression of \(s_2 \cdots s_{k+1} \), we can get

\[
r_{s_1s_2 \cdots s_{k+1}} = 0.
\]
On the other hand, by induction, we get
\[r_{1,s_2\ldots s_{k+1}} = \prod_{j=2}^{k+1} (v_{s_i} - v_{s_i}^{-1}). \]

Finally, we obtain
\[r_{1,w} = (v_{s_1} - v_{s_1}^{-1}) \prod_{j=2}^{k+1} (v_{s_i} - v_{s_i}^{-1}) = \prod_{j=1}^{l(w)} (v_{s_i} - s_i) \]
as required.

Conversely, assume that \(r_{1,w} = \prod_{j=1}^{l(w)} (v_{s_i} - v_{s_i}^{-1}) \), we need to show \(w \in J \).
Consider \(l(w) \) on two steps:
First, if \(l(w) = 1 \) or 2, it is clear.
Second, if \(l(w) \geq 3 \), then we can get that
\[r_{1,w} = r_{1,s_1s_2\ldots s_r} = r_{s_1,s_2\ldots s_r} + (v_{s_1} - v_{s_1}^{-1})r_{1,s_2\ldots s_r}. \]
Since \(l(s_2\ldots s_r) = r - 1 \leq l(w) \), it implies \(r_{1,s_2\ldots s_r} = \prod_{i=2}^{l(w)} (v_{s_i} - v_{s_i}^{-1}) \) by
\[r_{1,w} = \prod_{i=1}^{l(w)} (v_{s_i} - v_{s_i}^{-1}) \]. Hence,
\[r_{1,w} = r_{s_1,s_2\ldots s_r} + (v_{s_1} - v_{s_1}^{-1}) \prod_{i=2}^{l(w)} (v_{s_i} - v_{s_i}^{-1}) = r_{s_1,s_2\ldots s_r} + \prod_{i=1}^{l(w)} (v_{s_i} - v_{s_i}^{-1}). \]

So we can get \(r_{s_1,s_2\ldots s_r} = 0 \) by using \(r_{1,w} = \prod_{i=1}^{l(w)} (v_{s_i} - v_{s_i}^{-1}) \) again. Since \(s_1 \) is not a subexpression of \(s_2\ldots s_r \), we have \(s_1 \neq s_i \) for any \(2 < i \leq r \). By the same argument, we can obtain \(s_m \neq s_n \) for any \(2 < m < n \leq r \). Hence, we can have \(s_i \neq s_j \) and so on for any \(1 \leq i < j \leq r \), so \(w \) is a Coxeter element of \(W_I \) for some \(I \subseteq S \). ie. \(w \in J \).

Corollary 2.2 Let \(S = \{s_1, s_2, \ldots, s_n\} \), and \(J \) be the set consisting of all the Coxeter elements of \(W_I \) for all \(I \subseteq S \). Finding \(w_1 \in W \) and \(w = s_{i_2}\ldots s_{i_1} \ldots s_i \) in \(J \) such that \(l(w_1w) = l(w_1) + l(w) \) (resp. \(l(ww_1) = l(w) + l(w_1) \)), we have \(r_{w_1,w_1w} = \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \) (resp. \(r_{w_1,ww_1} = \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \)).

Proposition 2.3 Let \(S = \{s_1, s_2, \ldots, s_n\} \), and let \(J \) be the set consisting of all the Coxeter elements of \(W_I \) for all \(I \subseteq S \) with \(|I| \geq 3 \). Assume that \(w = s_{i_2}\ldots s_{i_1} \ldots s_i \) for \(w \in J \), then we have \(r_{s_{i_1},w} = \prod_{j=2}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \).

Proof. We argue it by induction on \(l(w) \), starting with the fact \(l(w) = 3 \). So,
\[r_{s_{i_1},s_{i_2}s_{i_1}s_{i_3}} = r_{s_{i_2}s_{i_1}s_{i_1}s_{i_3}} + (v_{s_{i_2}} - v_{s_{i_2}}^{-1})r_{s_{i_1},s_{i_1}s_{i_3}} = (v_{s_{i_2}} - v_{s_{i_2}}^{-1})(v_{s_{i_3}} - v_{s_{i_3}}^{-1}) = \]
Consider the case \(l(w) > 3 \), we can find \(s = s_i \) such that \(sw < w \) while \(sy > y \). \(w \) has two possibilities:
(1) if \(w = s_i s_i s_i \cdots s_i \), we have
\[
 r_{s_i w} = r_{s_i s_i s_i \cdots s_i} + (v_{s_i} - v_{s_i}^{-1}) r_{s_i s_i s_i \cdots s_i} = r_{s_i s_i s_i s_i s_i \cdots s_i} + (v_{s_i} - v_{s_i}^{-1}) r_{s_i s_i s_i \cdots s_i}
\]
Since it is clear that \(s_i s_i \) is not a subexpression of \(s_i s_i s_i \cdots s_i \), we can get the first term
\[
 r_{s_i s_i s_i s_i s_i \cdots s_i} = 0.
\]
By Proposition 2.1, we can have the second term
\[
 r_{s_i s_i s_i \cdots s_i} = \prod_{j=3}^{l(w)} (v_{s_i} - v_{s_i}^{-1}).
\]
Combing these, we get that
\[
 r_{s_i w} = (v_{s_i} - v_{s_i}^{-1}) \prod_{j=3}^{l(w)} (v_{s_i} - v_{s_i}^{-1}) = \prod_{j=2}^{l(w)} (v_{s_i} - v_{s_i}^{-1}).
\]
as required.
(2) if \(w = s_i s_i \cdots s_i \cdots s_i \), we get
\[
 r_{s_i s_i w} = r_{s_i s_i s_i \cdots s_i s_i} + (v_{s_i} - v_{s_i}^{-1}) r_{s_i s_i s_i \cdots s_i s_i} + (v_{s_i} - v_{s_i}^{-1}) r_{s_i s_i s_i \cdots s_i}
\]
Since \(s_i s_i \) is not the subexpression of \(s_i s_i \cdots s_i \cdots s_i \), we have \(r_{s_i s_i s_i s_i s_i \cdots s_i s_i} = 0 \).
By the induction hypothesis, we have
\[
 r_{s_i s_i s_i \cdots s_i s_i} = \prod_{j=3}^{l(w)} (v_{s_i} - v_{s_i}^{-1})
\]
Combining these, we have
\[
 r_{s_i w} = \prod_{j=2}^{l(w)} (v_{s_i} - v_{s_i}^{-1}),
\]
as required.

Corollary 2.4 Let \(W \) be the Coxeter group \(B_3 \) as in Definition 1.1.1, if \(y = s_2 \) and \(w = s_1 s_3 s_2 s_3 \) which are both in \(W \), then \(r_{y,w} \neq (v_{s_1} - v_{s_1}^{-1})(v_{s_3} - v_{s_3}^{-1})^2 \).

Proof. First we have
\[
 r_{y,w} = r_{s_2 s_1 s_3 s_2 s_3} = r_{s_2 s_1 s_3 s_2 s_3} + (v_{s_1} - v_{s_1}^{-1}) r_{s_2 s_1 s_3 s_2 s_3}
\]
by taking \(s = s_2 \). Since \(s_2 s_1 \) is not a subexpression of \(s_3 s_2 s_3 \), it implies \(r_{s_2 s_1, s_3 s_2 s_3} = 0 \). So,

\[
y_{v, w} = (v_{s_1} - v_{s_1}^{-1}) r_{s_2, s_3 s_2 s_3} = (v_{s_1} - v_{s_1}^{-1}) [r_{s_2 s_3, s_2 s_3} + (v_{s_3} - v_{s_3}^{-1}) r_{s_2 s_2 s_3}]
\]

On one hand, \(r_{s_2 s_3, s_2 s_3} = 1 \). On the other hand, \(r_{s_2, s_3 s_2} = v_{s_3} - v_{s_3}^{-1} \).

Combing these, we can get that

\[
y_{v, w} = (v_{s_1} - v_{s_1}^{-1}) + (v_{s_1} - v_{s_1}^{-1})(v_{s_3} - v_{s_3}^{-1})^2 \neq (v_{s_1} - v_{s_1}^{-1})(v_{s_3} - v_{s_3}^{-1})^2.
\]

as required.

Corollary 2.5 Let \(S = \{s_1, s_2, \ldots, s_n\} \), and \(J \) be the set consisting of all the Coxeter elements of \(W_I \) for all \(I \subseteq S \), for any \(w = s_{i_1} \cdots s_{i_r} \),

(a) Assume that there exists \(s = s_{i_j} \) such that \(sw > w \) (resp. \(ws > w \)), where \(1 \leq j \leq r \), then \(r_{1, s w} \neq (v_s - v_s^{-1}) \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \) (resp. \(r_{1, w s} \neq (v_s - v_s^{-1}) \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \)) for \(w \in J \).

(b) Assume that there exists \(s = s_{i_j} \) such that \(s_{i_1} \cdots s_{i_j} s_{i_r} > s_{i_1} \cdots s_{i_r} \), where \(1 \leq j \leq r \), then \(r_{1, s_{i_1} \cdots s_{i_j} s_{i_r}} \neq (v_s - v_s^{-1}) \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \).

Proof. (a) It is clear that \(s \neq s_{i_1} \) by \(sw > w \), and we can have

\[
r_{1, s w} = r_{s, w} + (v_s - v_s^{-1}) r_{1, w}.
\]

By proposition 2.1, we can obtain \(r_{1, w} = \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}) \). By proposition 2.3, we can get \(r_{s, w} = \prod_{l=1, l \neq j}^{l(w)} (v_{s_{i_l}} - v_{s_{i_l}}^{-1}) \).

Combining these, we compute

\[
r_{1, s w} = \prod_{l=1, l \neq j}^{l(w)} (v_{s_{i_l}} - v_{s_{i_l}}^{-1}) + (v_s - v_s^{-1}) \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}),
\]

ie.

\[
r_{1, s w} \neq (v_s - v_s^{-1}) \prod_{j=1}^{l(w)} (v_{s_{i_j}} - v_{s_{i_j}}^{-1}),
\]

as required.

(b) Suppose that \(s \) occurs in the \(m \)th position of \(r_{1, s_{i_1} \cdots s_{i_r}} \), where \(m \) satisfies \(1 < m \leq \left[\frac{r+1}{2} \right] + 1 \) when \(r \) is even, and \(1 < m \leq \left[\frac{r+1}{2} \right] \) when \(r \) is odd.

Proceed by induction on \(m \). If \(m = 2 \), then we get

\[
r_{1, s_{i_1} s_{i_2} \cdots s_{i_r}} = r_{s_{i_1} s_{i_2} \cdots s_{i_r}} + (v_{s_{i_1}} - v_{s_{i_1}}^{-1}) r_{1, s_{i_2} \cdots s_{i_r}} \]

Since \(s_{i_1} \cdots s_{i_r} > s_{i_1} s_{i_2} \cdots s_{i_r} \), it is clear that \(s \neq s_{i_1} \), which implies that \(s_{i_1} \) is not the subexpression of \(s_{i_2} \cdots s_{i_r} \), hence \(r_{s_{i_1}, s_{i_2} \cdots s_{i_r}} = 0 \). However, by
the case (a), we get $r_{1,s_1s_2\cdots s_{ir}} \neq (v_s - v_s^{-1}) \prod_{j=2}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1})$. Thus,

$$r_{1,s_1s_2\cdots s_{ir}} \neq (v_s - v_s^{-1}) \prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}).$$

Assume that $m = k$, where $1 < k \leq \left[\frac{r+1}{2}\right] + 1$ when r is even, and $1 < k \leq \left[\frac{r+1}{2}\right]$ when r is odd. The case (b) holds. Now $m = k + 1$, so

$$r_{1,s_1\cdots s_kss_{k+1}\cdots s_{ir}} = r_{1,s_1s_2\cdots s_kss_{k+1}\cdots s_{ir}} + (v_{s_{i1}} - v_{s_{i1}}^{-1})r_{1,s_1s_2\cdots s_kss_{k+1}\cdots s_{ir}}$$

two cases are possible:

Case (1). Suppose that $s = s_{i1}$, by Proposition 2.1 and Proposition 2.3, we have

$$r_{1,s_1s_2\cdots s_kss_{k+1}\cdots s_{ir}} = \prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}),$$

while

$$r_{1,s_1\cdots s_kss_{k+1}\cdots s_{ir}} = \prod_{j=2}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}).$$

Hence

$$r_{1,s_1\cdots s_{ir}} = \prod_{j=2}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}) + (v_{s_{i1}} - v_{s_{i1}}^{-1})\prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}),$$

ie.

$$r_{1,s_1\cdots s_{ir}} \neq (v_s - v_s^{-1})\prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1})$$

this proves (b).

Case (2). Suppose that $s \neq s_{i1}$, note that s is not the subsequence of $s_{i2} \cdots s_kss_{k+1} \cdots s_{ir}$, so we have

$$r_{s_{i1}s_{i2}\cdots s_kss_{k+1}\cdots s_{ir}} = 0.$$

On the other hand, by the induction hypothesis, we have

$$r_{1,s_1s_2\cdots s_{k-1}s_{k}s_{k+1}\cdots s_{ir}} \neq (v_s - v_s^{-1})\prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}),$$

it can deduce

$$r_{1,s_1s_2\cdots s_{k-1}s_{k}s_{k+1}\cdots s_{ir}} \neq (v_s - v_s^{-1})\prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}).$$

Combining these, we can get that

$$r_{1,s_1\cdots s_{ir}} \neq (v_s - v_s^{-1})\prod_{j=1}^{l(w)}(v_{s_{ij}} - v_{s_{ij}}^{-1}),$$

as required.

Proposition 2.6 Let W be the dihedral group $D_m = \langle s, t \rangle$ with $m < \infty$, for any $y, w \in W$, if $l(w) - l(y) \geq 3$, then $r_{y,w} \neq \text{Prod} (v_s - v_s^{-1}, v_t - v_t^{-1}; l(w) - l(y)).$

Proof. It is clear that we just need to consider these two cases as follows:

Case (1). $y = 1$ and $w = sts \cdots$ (resp. $w = tsts \cdots$) with $l(w) \geq 3$. Then we have

$$r_{1,w} = r_{s,ts\cdots} + (v_s - v_s^{-1})r_{1,ts\cdots}.$$

It is obvious $r_{s,ts\cdots} \neq 0$, forcing $r_{s,ts\cdots}$ is a factor of some term in $r_{1,w}$. Hence $r_{y,w} \neq \text{Prod} (v_s - v_s^{-1}, v_t - v_t^{-1}; l(w)).$
Case (2). \(y = sts\cdots s \) and \(w = tst\cdots s \) with \(l(w) - l(y) \geq 3 \), we have

\[
r_{y,w} = r_{ty,tw} + (v_t - v_t^{-1}) r_{y,tw}.
\]

Since \(l(w) - l(y) \geq 3 \), we can get \(l(tw) - l(ty) \geq 1 \) and \(ty \leq tw \), so \(r_{ty,tw} \neq 0 \), forcing \(r_{ty,tw} \) is a factor of some term of \(r_{y,w} \). Hence

\[
r_{y,w} \neq \text{Prod} \left(v_s - v_s^{-1}, v_t - v_t^{-1}; l(w) - l(y) \right).
\]

In each case, \(r_{y,w} \neq \text{Prod} \left(v_s - v_s^{-1}, v_t - v_t^{-1}; l(w) - l(y) \right) \), as required.

References

Received: August 14, 2015; Published: October 12, 2015