Some Further Properties for Analytic Functions
with Varying Argument Defined by
Hadamard Products

Shu-Hai Li, Huo Tang, Li-Na Ma and En Ao

School of Mathematics and Statistics
Chifeng University
Chifeng 024000, Inner Mongolia, China

Copyright © 2015 Shu-Hai Li, Huo Tang, Li-Na Ma and En Ao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The purpose of this paper is to obtain some further properties including coefficients estimates, majorization problems, distortion bounds, extreme points and radius of close-to-convexity, starlikeness and convexity for functions belonging to the class $TU_{\gamma}(\phi, \psi; \alpha, A, B)$, which are defined by Hadamard products with varying argument.

Mathematics Subject Classification: 30C45; 30C50; 26D15

Keywords: analytic functions, Hadamard products, varying argument, subordination, coefficients estimate, majorization
1. Introduction

Let \(\mathcal{A} \) denote the class of functions of the form
\[
f(z) = z + \sum_{j=2}^{\infty} a_j z^j, \tag{1.1}
\]
which are analytic in the open unit disc \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). Let \(\mathcal{S} \) be the subclass of \(\mathcal{A} \), consisting of analytic and univalent functions. We denote by \(\mathcal{S}^*(\beta) \) and \(\mathcal{K}(\beta) \) \((0 \leq \beta < 1)\) the class of starlike of order \(\beta \) in \(U \) and the class of convex functions of order \(\beta \) in \(U \), respectively. It is well known that \(\mathcal{S}^*(\beta) \subset \mathcal{S}^*(0) = \mathcal{S}^* \) and \(\mathcal{K}(\beta) \subset \mathcal{K}(0) = \mathcal{K} \).

A function \(f(z) \in \mathcal{A} \) is said to be in \(US(\alpha, \beta) \), the class of \(\alpha \)-uniformly starlike functions of order \(\beta \) \((0 \leq \beta < 1)\), if \(f \) satisfies the condition (see [1,2])
\[
\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha \left| \frac{zf'(z)}{f(z)} - 1 \right| + \beta, \quad \alpha \geq 0. \tag{1.2}
\]

Replacing \(f(z) \) in (1.2) by \(zf'(z) \), we obtain
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \left| \frac{zf''(z)}{f'(z)} \right| + \beta, \quad \alpha \geq 0. \tag{1.3}
\]

Required for the function \(f \) to be in the subclass \(UK(\alpha, \beta) \) of \(\alpha \)-uniformly convex functions of order \(\beta \).

Also, by \(T_\gamma \) \((\gamma \in \mathbb{R})\) we denote the class of functions \(f(z) \in \mathcal{A} \) of the form (1.1) for which all of non-vanishing coefficients satisfy the condition
\[
\arg(a_n) = \pi + (1 - n)\gamma \quad (n = 2, 3, \cdots). \tag{1.4}
\]

For \(\gamma = 0 \) we obtain the class \(T_0 \) of functions with negative coefficients. Moreover, we define
\[
T = \bigcup_{\gamma \in \mathbb{R}} T_\gamma.
\]

The class \(T \) was introduced by Silverman [3] (see also [4], [5] and [31]). It is called the class of functions with varying argument of coefficients.

For two functions \(f \) and \(g \), analytic in \(U \), we say that the function \(f \) is subordinate to \(g \) in \(U \), and write
\[
f(z) \prec g(z) \quad (z \in U),
\]
if there exists a Schwarz function \(\omega \), which (by definition) is analytic in \(U \) with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \ (z \in U)\), such that \(f(z) = g(\omega(z)) \ (z \in U) \). Furthermore, if the function \(g \) is univalent in \(U \), then we have the following equivalence [6, p.4]:
\[
f(z) \prec g(z) \quad (z \in U) \iff f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).
\]
Let \(f \) and \(g \) be analytic in the open unit disk \(\mathbb{U} \). We say that \(f \) is majorized by \(g \) in \(\mathbb{U} \) (see [7]) and write
\[
\text{if there exists a function } \varphi(z), \text{ analytic in } \mathbb{U} \text{ such that }
\]
\[
|\varphi(z)| \leq 1 \quad \text{and} \quad f(z) = \varphi(z)g(z) \quad (z \in \mathbb{U}).
\]

It may be noted here that (1.5) is closely related to the concept of quasi-subordination between analytic functions.

For arbitrary fixed real numbers \(A \) and \(B \) \((-1 \leq B < A \leq 1)\), let \(P(A, B) \) denote the class of functions of the form \(\phi(z) = 1 + \sum_{j=1}^{\infty} p_j z^j \), which are analytic in \(\mathbb{U} \) and satisfies the condition
\[
\phi(z) \prec 1 + Az + Bz \quad (z \in \mathbb{U}).
\]

The class \(P(A, B) \) was introduced and studied by Janowski [8]. We note that a function \(f(z) \in P(A, B) \) if and only if
\[
\begin{cases}
|\phi(z) - \frac{1-AB}{1-B^2}| < \frac{A-B}{1-B^2}, & (-1 < B < A \leq 1; z \in \mathbb{U}); \\
\Re \{\phi(z)\} > \frac{1-A}{2}, & (B = -1; z \in \mathbb{U}).
\end{cases}
\]

Let
\[
f_i(z) = z + \sum_{j=2}^{\infty} a_{i,j} z^j \in A, (i = 1, 2),
\]
then \((f_1 * f_2)(z)\) be given by
\[
(f_1 * f_2)(z) = z + \sum_{j=2}^{\infty} a_{i,1} a_{i,2} z^j
\]

For \(\alpha \geq 0, -1 \leq B < A \leq 1 \) and for all \(z \in \mathbb{U} \), Li et al. [9] defined the subclass \(U(\phi, \psi, \alpha, A, B) \) of \(A \) which satisfies the following condition:
\[
\frac{(f * \phi)(z)}{(f * \psi)(z)} - \alpha \left| \frac{(f * \phi)(z)}{(f * \psi)(z)} - 1 \right| \in P(A, B) \quad (z \in \mathbb{U}),
\]
where
\[
\phi(z) = z + \sum_{j=2}^{\infty} \mu_j z^j \quad \text{and} \quad \psi(z) = z + \sum_{j=2}^{\infty} \eta_j z^j
\]
are analytic in \(\mathbb{U} \) such that \((f * \psi)(z) \neq 0 \) and \(\mu_j > \eta_j \geq 0 \) for \(j \geq 2 \).
For \(\alpha = 0, A = 1 - 2\beta \ (0 \leq \beta < 1) \) and \(B = -1 \), we denote the class \(U(\phi, \psi, 0, 1 - 2\beta, -1) \) by \(U(\phi, \psi; \beta) \). Equivalently, \(U(\phi, \psi; \beta) \) can be expressed in the form

\[
U(\phi, \psi; \beta) = \left\{ f(z) \in A : \Re \left\{ \frac{(f \ast \phi)(z)}{(f \ast \psi)(z)} \right\} > \beta, z \in \mathbb{U} \right\}.
\]

Using the results in [10, 11, 12] and (1.8), we get the following geometric interpretation.

Geometric interpretation. \(f(z) \in U(\phi, \psi; \alpha, A, B) \) if and only if \(p(z) = \frac{(f \ast \phi)(z)}{(f \ast \psi)(z)} \) takes all values in the conic domain \(R_\alpha(A, B) \) which is included in the right half plane such that

\[
R_\alpha(A, B) = \left\{ u + iv : u > \begin{cases}
\alpha \sqrt{(u - 1)^2 + v^2 + \frac{1-A}{1-B}}, & -1 < B < A \leq 1; \\
\alpha \sqrt{(u - 1)^2 + v^2 + \frac{1-A}{2}}, & B = -1.
\end{cases} \right\}
\] (1.9)

Denote by \(\mathcal{P}(p(\alpha, A, B)) \), the family of functions \(p \), such that \(p \in \mathcal{P} \), where \(\mathcal{P} \) denotes the well-known class of Caratheodory functions and \(p < p(\alpha, A, B)(z) \) in \(\mathbb{U} \). The function \(p(\alpha, A, B)(z) \) maps the unit disk conformally onto the domain \(R_\alpha(A, B) \) such that \(1 \in R_\alpha(A, B) \) and \(\partial R_\alpha(A, B) \) is a curve defined by the equality

\[
\partial R_\alpha(A, B) = \left\{ u + iv : u^2 = \begin{cases}
\left(\alpha \sqrt{(u - 1)^2 + v^2 + \frac{1-A}{1-B}} \right)^2, & -1 < B < A \leq 1; \\
\left(\alpha \sqrt{(u - 1)^2 + v^2 + \frac{1-A}{2}} \right)^2, & B = -1.
\end{cases} \right\}
\] (1.10)

From elementary computations, we see that (1.10) represents conic sections symmetric about the real axis. Thus \(R_\alpha(A, B) \) is an elliptic domain for \(\alpha > 1 \), a parabolic domain for \(\alpha = 1 \), a hyperbolic domain for \(0 < \alpha < 1 \) and the right half plane

\[
u > \begin{cases}
(1-A)/(1-B), & -1 < B < A \leq 1; \\
(1-A)/2, & B = -1.
\end{cases}
\]

for \(\alpha = 0 \).

The functions which play the role of extremal functions for these conic regions are given as

\[
p(\alpha, A, B)(z) = \begin{cases}
\frac{1+(1-2\frac{1-A}{1-B})z}{1-z}, & \alpha = 0, \\
1 + \frac{2(1-\frac{1-A}{1-B})}{\pi^2} \left(\log \left(\frac{1+\sqrt{2}}{1-\sqrt{2}} \right) \right)^2, & \alpha = 1, \\
\frac{1-\frac{1-A}{\alpha^2-1}}{\alpha^2-1} \cos \left\{ \left(\frac{2}{\pi} \cos^{-1} \alpha \right) \frac{\log \frac{1+\sqrt{2}}{1-\sqrt{2}}}{1-\sqrt{2}} \right\} - \frac{\alpha^2-\frac{1-A}{\alpha^2-1}}{\alpha^2-1}, & 0 < \alpha < 1, \\
\frac{1-\frac{1-A}{\alpha^2-1}}{\alpha^2-1} \sin \left(\frac{\pi}{2h(t)} \right) \int_0^{w(z)} \frac{1}{\sqrt{1-x^2}\sqrt{1-\frac{\alpha^2-1}{\alpha^2-1}}} dx + \frac{\alpha^2-\frac{1-A}{\alpha^2-1}}{\alpha^2-1}, & \alpha > 1,
\end{cases}
\] (1.11)
where \(-1 < B < A \leq 1, u(z) = \frac{z - \sqrt{t}}{1 - \sqrt{t}}z, t \in (0, 1)\), every positive number \(\alpha\) can be expressed as \(\alpha = \cosh \frac{\pi h(t)}{h(t)}\), where \(h(t)\) is the Legendre's complete elliptic integral of the first kind and \(h'(t)\) is complementary integral of \(h(t)\) (for details, see [10,11,12]). Also from (1.11), we get the extremum function \(p(\alpha, A, -1)(z) (B = -1)\).

Because \(p(\alpha, A, B)(z)\) is a convex univalent function, so we can write the class \(U(\phi, \psi; \alpha, A, B)\) in the subordination form

\[
f(z) \in U(\phi, \psi; \alpha, A, B) \iff f(z) \in A \quad \text{and} \quad p(z) = \frac{(f \ast \phi)(z)}{(f \ast \psi)(z)} < p(\alpha, A, B)(z) \quad (z \in U).
\]

Let us denote

\[
TU_\gamma(\phi, \psi; \alpha, A, B) = T_\gamma \cap U(\phi, \psi; \alpha, A, B),
\]

\[
TU*S_\gamma(\alpha, \beta) = T_\gamma \cap US(\alpha, \beta), \quad TU*K_\gamma(\alpha, \beta) = T_\gamma \cap UK(\alpha, \beta).
\]

For suitable choices of \(\phi, \psi\) and by specializing the parameters \(\alpha, A, B\) involved in the class \(U(\phi, \psi; \alpha, A, B)\), we also obtain the following subclasses which were studied in many earlier works:

(i) \(U\left(\frac{z}{(1-z)^2}, \frac{z^2}{(1-z)^3}; \alpha, 1 - 2\beta, -1\right) = US(\alpha, \beta)\) and \(U\left(\frac{z + z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; \alpha, 1 - 2\beta, -1\right) = UK(\alpha, \beta)\) (Shams et al. [1] and Shams and Kulkarni [2]).

(ii) \(U\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}; 0, A, B\right) = S^*(A, B)\) and \(U\left(\frac{z + z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; 0, A, B\right) = K(A, B)\) (Janowski [8] and Padmanabhan et al. [13]). For example, we have \(S^*(1, -1) = S^*\) and \(K(1, -1) = K\).

(iii) \(U\left(\frac{z}{(1-z)^2}, \frac{z}{1-z}; \alpha, 1, -1\right) = US(\alpha)\) and \(U\left(\frac{z + z^2}{(1-z)^3}, \frac{z}{(1-z)^2}; \alpha, 1, -1\right) = UK(\alpha)\) (Goodman[14], Ma and Minda [15] and Rønning [16]).

(iv) \(U(z + \sum_{j=2}^{\infty} j^{n+1} z^j, z + \sum_{j=2}^{\infty} j^n z^j; \alpha, 1 - 2\beta, -1) = US_n(\alpha, \beta)\) (Bharati et al. [17] and Kuang et al. [18]).

(v) \(U(z + \sum_{j=2}^{\infty} j^m z^j, z + \sum_{j=2}^{\infty} j^n z^j; \alpha, 1 - 2\beta, -1) = US_{m,n}(\alpha, \beta)\) (Eker and Owa [19] and Srivastava and Eker [20]).

(vi) \(U(z + \sum_{j=2}^{\infty} j^m \lambda_j z^j, z + \sum_{j=2}^{\infty} j^n \tau_j z^j; \alpha, (1 - \sigma a) + \sigma b, b) = E_{m,n}(\phi, \psi; a, b, \sigma, \alpha)\) (\(\lambda_j > \tau_j \geq 0; -1 \leq b < a \leq 1, 0 \leq \sigma < 1\)) (Srivastava et al. [21]).
(vii) \(U(z + \sum_{j=2}^{\infty} j \phi_j^*(\alpha_1, \lambda, l, m)z^j, z + \sum_{j=2}^{\infty} j \phi_j^*(\alpha_1, \lambda, l, m)z^j; \alpha, \beta, -1) = US_m^l(\tau, \lambda, \alpha, \beta) \) (\(\alpha \geq 0, 0 \leq \beta < 1 \)) (Srivastava et al. [22]).

(viii) \(U(z + \sum_{j=2}^{\infty} j \frac{1+b}{j+b} s z^j, z + \sum_{j=2}^{\infty} j \frac{1+b}{j+b} s z^j; \alpha, 1-\beta, -1) = UST_{s,b}(\sigma, \beta) \) (\(s \in \mathbb{C}; b \in \mathbb{C}\setminus\{0, -1, -2, \cdots\}; 0 \leq \beta < 1 \)) (Sun et al. [23]).

(ix) \(U(z + \sum_{j=2}^{\infty} j^m z^j, z + \sum_{j=2}^{\infty} j^n z^j; \alpha, A, B) = US_{m,n}(\alpha, A, B) \) (\(0 \leq \alpha, 0 \leq \beta < 1 \)) (Li and Tang [24], Aouf et al. [25] and El-Ashwah et al. [26]).

In this paper, we aim to obtain some further properties, such as coefficients estimates, majorization problems, distortion bounds, extreme points and radius of close-to-convexity, starlikeness and convexity for functions belonging to the class \(TU_\gamma(\phi, \psi; \alpha, A, B) \).

2. Preliminary results

We need the following results in our next investigation.

Lemma 2.1. Let \(f(z) \in U(\phi, \psi; \alpha, A, B) \). Then

\[
\begin{align*}
\text{if} & \quad f(z) \in U(\phi, \psi; (1-A)\alpha, (1-B)\beta), \quad -1 < B < A \leq 1, \quad \alpha(1-B) \leq 1 - A; \\
\text{then} & \quad f(z) \in U(\phi, \psi; (1-A)\alpha - 2\alpha B, \quad B = -1, \quad 2\alpha \leq 1 - A. \\
& \quad (2.1)
\end{align*}
\]

Proof. Let \(f(z) \in U(\phi, \psi; \alpha, A, B) \). Then we obtain

\[
\Re \left\{ \frac{(f*\phi)(z)(f*\psi)(z)}{(f*\psi)(z)} \right\} > \begin{cases} \\
\alpha \Re \left\{ \frac{(f*\phi)(z)}{(f*\psi)(z)} \right\} - \alpha + \frac{1-A}{1-B}, \quad -1 < B < A \leq 1, \quad \alpha(1-B) \leq 1 - A; \\
\alpha \Re \left\{ \frac{(f*\phi)(z)}{(f*\psi)(z)} \right\} - \alpha + \frac{1-A}{2}, \quad B = -1, \quad 2\alpha \leq 1 - A.
\end{cases}
\]

or, equivalently,

\[
\Re \left\{ \frac{(f*\phi)(z)}{(f*\psi)(z)} \right\} > \begin{cases} \\
\frac{(1-A)\alpha(1-B)}{(1-\alpha)(1-B)}, \quad -1 < B < A \leq 1, \quad \alpha(1-B) \leq 1 - A; \\
\frac{(1-A)2\alpha}{2(1-\alpha)}, \quad B = -1, \quad 2\alpha \leq 1 - A.
\end{cases}
\]

If \(-1 < B < A \leq 1 \) and \(\alpha(1-B) \leq 1 - A \), then we have

\[
0 \leq \frac{(1-A)\alpha(1-B)}{(1-\alpha)(1-B)} < 1
\]
Also if $B = -1$ and $2\alpha \leq 1 - A$, then we obtain
\[
0 \leq \frac{(1 - A) - 2\alpha}{2(1 - \alpha)} < 1
\]
Thus we prove Lemma 2.1.

Lemma 2.2 ([9]). Let $f(z)$ be the function of the form (1.1). Then $f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B)$ if and only if
\[
\sum_{j=2}^{\infty} \phi_j(\mu_j , \eta_j , \alpha , A , B) |a_j| \leq A - B, \tag{2.2}
\]
where
\[
\phi_j(\mu_j , \eta_j , \alpha , A , B) = (1 + (1 + |B|\alpha))(\mu_j - \eta_j) + |B|\mu_j - A\eta_j \tag{2.3}
\]
\[
(\alpha \geq 0 , -1 \leq B < A \leq 1 , \mu_j > \eta_j \geq 0 , j \geq 2).
\]

Lemma 2.3 ([27, p.3]). Let $\alpha \geq 0$ and $-1 \leq B < A \leq 1$. If $\omega(z)$ is an analytic function with $\omega(0) = 1$, then we have
\[
\omega - \alpha|\omega - 1| < \frac{1 + Az}{1 + Bz} \iff \omega(1 - \alpha e^{-i\phi}) + \alpha e^{-i\phi} < \frac{1 + Az}{1 + Bz} \quad (\phi \in \mathbb{R}). \tag{2.4}
\]

Lemma 2.4 ([32]). Let $\varphi(z)$ be analytic in U satisfy $|\varphi(z)| \leq 1$ for $z \in U$. Then
\[
|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2} \quad (z \in U). \tag{2.5}
\]

Lemma 2.5. Let $f(z) \in U(\phi, \psi; \alpha, A, B)$. Then
\[
f(z) \in U(\phi, \psi; \alpha, A, B) \implies \begin{cases} f(z) \in U(\phi, \psi; \frac{1-A}{1-B}), & -1 < B < A \leq 1; \\ f(z) \in U(\phi, \psi; \frac{1-A}{2}), & B = -1. \end{cases} \tag{2.6}
\]

Proof. By virtue of (1.8), (1.10) and the properties of the domain $R_\alpha(A, B)$, we obtain
\[
\Re \left\{ \frac{(f \ast \phi)(z)}{(f \ast \psi)(z)} \right\} > \begin{cases} \frac{(1-B)\alpha+1-A}{(\alpha+1)(1-B)}, & -1 < B < A \leq 1; \\ \frac{2\alpha+1-A}{2(\alpha+1)}, & B = -1. \end{cases}
\]
Thus we prove Lemma 2.5.
Lemma 2.6. If $f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B)$ and
\[\phi_j(\mu_j, \eta_j, A, B) \geq \phi_{p+1}(\mu_{p+1}, \eta_{p+1}, A, B) \quad (j \geq p + 1, p \geq 2), \] (2.7)
then
\[\sum_{j=p+1}^{\infty} a_j \leq \frac{(A-B)- \sum_{j=2}^{p} \phi_j(\mu_j, \eta_j, A, B)a_j}{\phi_{p+1}(\mu_{p+1}, \eta_{p+1}, A, B)} = A_j. \] (2.8)

Proof. In view of Lemma 2.2, we can write that
\[\sum_{j=p+1}^{\infty} \phi_{p+1}(\mu_{p+1}, \eta_{p+1}, A, B)a_j \leq (A-B) - \sum_{j=2}^{p} \phi_j(\mu_j, \eta_j, A, B)a_j. \] (2.9)
Then from (2.7) and (2.9), we have
\[\phi_{p+1}(\mu_{p+1}, \eta_{p+1}, A, B) \sum_{j=p+1}^{\infty} a_j \leq (A-B) - \sum_{j=2}^{p} \phi_j(\mu_j, \eta_j, A, B)a_j. \]
Thus we obtain
\[\sum_{j=p+1}^{\infty} a_j \leq \frac{(A-B) - \sum_{j=2}^{p} \phi_j(\mu_j, \eta_j, A, B)a_j}{\phi_{p+1}(\mu_{p+1}, \eta_{p+1}, A, B)}. \]
Also, we easily obtain

Lemma 2.7. If $f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B)$ and $\phi_j(\mu_j, \eta_j, A, B)$ defined by (2.3) satisfies (2.7), then
\[\sum_{j=p+1}^{\infty} j a_j \leq \frac{(A-B) - \sum_{j=2}^{p} \phi_j(\mu_j, \eta_j, A, B)a_j}{j^{p+1} \phi_{p+1}(\mu_{p+1}, \eta_{p+1}, A, B)} = B_j. \] (2.10)

3. Main Results

Theorem 3.1. Let $f(z) \in U_\gamma(\phi, \psi; A, B)$. Then
\[|a_2| \leq \begin{cases} \frac{2(1-(1-A)/(1-B))}{(\mu_2-\eta_2)(1-\alpha)}, & -1 < B < A \leq 1, \ \alpha(1-B) \leq 1 - A; \\ \frac{2(1-(1-A)/2)}{(\mu_2-\eta_2)(1-\alpha)}, & B = -1, \ 2\alpha \leq 1 - A. \end{cases} \] (3.1)
and
\[|a_j| \leq \begin{cases} \frac{2(1-(1-A)/(1-B))}{(\mu_j-\eta_j)(1-\alpha)} \prod_{k=1}^{j-2} (1 + \frac{2(1-(1-A)/(1-B))}{(\mu_{k+1}-\eta_{k+1})(1-\alpha)}), & -1 < B < A \leq 1, \ \alpha(1-B) \leq 1 - A; j \geq 3; \\ \frac{2(1-(1-A)/2)}{(\mu_j-\eta_j)(1-\alpha)} \prod_{k=1}^{j-2} (1 + \frac{2(1-(1-A)/2)}{(\mu_{k+1}-\eta_{k+1})(1-\alpha)}), & B = -1, \ 2\alpha \leq 1 - A; j \geq 3. \end{cases} \] (3.2)
Proof. Suppose that \(f \in U(\phi, \psi; \alpha, A, B) \). Then, by Lemma 2.1, we obtain

\[
\Re \left\{ \frac{(f * \phi)(z)}{(f * \psi)(z)} \right\} > \begin{cases}
(1-A)-\alpha(1-B) \over (1-\alpha)(1-B), & -1 < B < A \leq 1, \; \alpha(1-B) \leq 1-A; \\
\frac{(1-A) - 2\alpha}{2(1-\alpha)}, & B = -1, \; 2\alpha \leq 1-A.
\end{cases}
\]

Let us define the function \(p(z) \) by

\[
p(z) = \begin{cases}
\frac{(1-\alpha)(f*\phi)(z) - (1-A)-\alpha(1-B)}{1-B}, & -1 < B < A \leq 1, \; \alpha(1-B) \leq 1-A; \\
\frac{(1-\alpha)(f*\phi)(z) - (1-A) - 2\alpha}{2}, & B = -1, \; 2\alpha \leq 1-A.
\end{cases}
\]

Hence \(p(z) \) is analytic in \(U \) with \(p(0) = 1 \) and \(\Re p(z) > 0 \; (z \in U) \). Let

\[
p(z) = 1 + c_1z + c_2z^2 + \ldots.
\]

So we get

\[
\frac{(f * \phi)(z)}{(f * \psi)(z)} = \begin{cases}
1 + \frac{A-B}{(1-\alpha)(1-B)}(c_1z + c_2z^2 + \ldots), & -1 < B < A \leq 1, \; \alpha(1-B) \leq 1-A; \\
1 + \frac{1+A}{2(1-\alpha)}(c_1z + c_2z^2 + \ldots), & B = -1, \; 2\alpha \leq 1-A.
\end{cases}
\]

or, equivalently,

\[
(f*\phi)(z) - (f*\psi)(z) = \begin{cases}
\frac{A-B}{(1-\alpha)(1-B)}((f*\psi)(z))(c_1z + c_2z^2 + \ldots), & -1 < B < A \leq 1, \; \alpha(1-B) \leq 1-A; \\
\frac{1+A}{2(1-\alpha)}((f*\psi)(z))(c_1z + c_2z^2 + \ldots), & B = -1, \; 2\alpha \leq 1-A,
\end{cases}
\]

which implies that

\[
(\mu_j - \eta_j)a_j = \begin{cases}
\frac{A-B}{(1-\alpha)(1-B)}(c_{j-1} + a_2c_{j-2} + \ldots + a_{j-1}c_1), & -1 < B < A \leq 1, \; \alpha(1-B) \leq 1-A; \\
\frac{1+A}{2(1-\alpha)}(c_{j-1} + a_2c_{j-2} + \ldots + a_{j-1}c_1), & B = -1, \; 2\alpha \leq 1-A.
\end{cases}
\]

Applying the coefficient estimates \(|c_j| \leq 2 \; (j \geq 1) \) (see [33]), we obtain

\[
|a_j| \leq \begin{cases}
\frac{2(A-B)}{(\mu_j - \eta_j)(1-\alpha)(1-B)}(1 + a_2 + \ldots + a_{j-1}), & -1 < B < A \leq 1, \; \alpha(1-B) \leq 1-A; \\
\frac{(1+A)}{(\mu_j - \eta_j)(1-\alpha)}(1 + a_2 + \ldots + a_{j-1}), & B = -1, \; 2\alpha \leq 1-A.
\end{cases}
\]

(3.3)
For $j = 2$,

$$|a_2| \leq \left\{ \begin{array}{ll}
\frac{2(A-B)}{\mu_2 - \eta_2}(1-B), & -1 < B < A \leq 1, \; \alpha(1 - B) \leq 1 - A; \\
\frac{1 + A}{\mu_2 - \eta_2}(1 - \alpha), & B = -1, \; 2\alpha \leq 1 - A.
\end{array} \right.$$

which proves (3.1).

For $j = 3$,

$$|a_3| \leq \left\{ \begin{array}{ll}
\frac{2(A-B)}{(\mu_3 - \eta_3)(1-\alpha)(1-B)} \left(1 + \frac{2(A-B)}{(\mu_2 - \eta_2)(1-\alpha)(1-B)} \right), & -1 < B < A \leq 1, \; \alpha(1 - B) \leq 1 - A; \\
\frac{1 + A}{(\mu_3 - \eta_3)(1-\alpha)}, & B = -1, \; 2\alpha \leq 1 - A.
\end{array} \right.$$

Therefore (3.2) holds true for $j = 3$. Assume that (3.3) is true for $j = m$.

If $-1 < B < A \leq 1$ and $\alpha(1 - B) \leq 1 - A$, then we have

$$|a_{m+1}| \leq \frac{2(A-B)}{(\mu_{m+1} - \eta_{m+1})(1-\alpha)(1-B)} \left(1 + \frac{2(A-B)}{(\mu_2 - \eta_2)(1-\alpha)(1-B)} \right) + \ldots + \frac{2(A-B)}{(\mu_{m-1} - \eta_{m-1})(1-\alpha)(1-B)} \prod_{k=1}^{m-2} \left(1 + \frac{2(A-B)}{(\mu_{k+1} - \eta_{k+1})(1-\alpha)(1-B)} \right).$$

Also, if $B = -1$ and $2\alpha \leq 1 - A$, then we have

$$|a_{m+1}| \leq \frac{1 + A}{(\mu_{m+1} - \eta_{m+1})(1-\alpha)} \prod_{k=1}^{m-1} \left(1 + \frac{1 + A}{(\mu_{k+1} - \eta_{k+1})(1-\alpha)} \right).$$

So (3.2) is true for $j = m + 1$. Consequently, using the mathematical induction, we get that (3.2) holds true for all $j \geq 3$.

Remark 3.1. Taking $\alpha = 0, \mu_j = j, \eta_j = 1, B = -1$ and $A = 1 - 2\beta$ $(0 \leq \beta < 1)$ in Theorem 3.1, we obtain the results of Robertson [34].

Theorem 3.2. Let the function $f \in A$ and suppose that $f \in TU_\gamma(\phi, \psi; \alpha, A, B)$ $(0 \leq \alpha \neq 1)$. If $(f * \phi)(z)$ is majorized by $(f * \psi)(z)$ and $|(f * \phi)(z)| \leq |z(f * \psi)'(z)|$, then

$$|(f * \phi)'(z)| \leq |(f * \psi)'(z)| \; (|z| \leq r_0),$$

(3.4)
where \(r_0 = r_0(\alpha, A, B) \) is the smallest positive root of the equation

\[
\left[\frac{A - B}{1 - \alpha} + |B| \right] r^3 - [1 + 2|B||r^2 - \left[\frac{A - B}{1 - \alpha} + |B| + 2 \right] r + 1 = 0 \tag{3.5}
\]

\((z \in U; -1 \leq B < A \leq 1; 0 \leq \delta \leq r_0; \left| \frac{A - B}{1 - \alpha} + |B| \right| \delta \leq 1)\).

Proof. Suppose that \(f \in TU_\gamma(\phi, \psi; \alpha, A, B) \). Then, by Lemma 2.3, we obtain

\[
\frac{f(z) \ast \phi(z)}{f(z) \ast \psi(z)} (1 - \alpha e^{-i\phi}) + \alpha e^{-i\phi} < \frac{1 + Az}{1 + Bz},
\]

or, equivalently,

\[
\frac{f(z) \ast \phi(z)}{f(z) \ast \psi(z)} < \frac{1 + \left(\frac{A - \alpha Be^{-i\phi}}{1 - \alpha e^{-i\phi}} \right) z}{1 + Bz}, \tag{3.6}
\]

which holds true for all \(z \in U \).

We find from (3.6) that

\[
\frac{f(z) \ast \phi(z)}{f(z) \ast \psi(z)} = \frac{1 + \left(\frac{A - \alpha Be^{-i\phi}}{1 - \alpha e^{-i\phi}} \right) \omega(z)}{1 + B\omega(z)}, \tag{3.7}
\]

where \(\omega(z) = c_1 z + c_2 z^2 + \cdots \in W, W \) denotes the well known class of the bounded analytic functions in \(U \) and satisfies the conditions:

\[
\omega(0) = 0, \quad |\omega(z)| \leq |z| \quad (z \in U).
\]

From (3.7), we get

\[
|(f \ast \psi)(z)| \leq \frac{1 + |B||z|}{1 - \left(\frac{A - B}{1 - \alpha} + |B| \right) |z|} |(f \ast \phi)(z)|. \tag{3.8}
\]

Next, since \((f \ast \phi)(z)\) is majorized by \((f \ast \psi)(z)\) in \(U \), from (1.6), we have

\[
(f \ast \phi)(z) = \varphi(z)(f \ast \psi)(z).
\]

Differentiating it with respect to \(z \) and multiplying by \(z \), we get

\[
(f \ast \phi)'(z) = \varphi'(z)(f \ast \psi)(z) + \varphi(z)(f \ast \psi)'(z). \tag{3.9}
\]

Thus, by Lemma 2.4, (3.8) and (3.9), we get

\[
|(f \ast \phi)'(z)| \leq \left[|\varphi(z)| + \frac{1 - |\varphi(z)|^2}{1 - |z|^2} \cdot \frac{1 + |B||z|}{1 - \left(\frac{A - B}{1 - \alpha} + |B| \right) |z|} \right] |(f \ast \psi)'(z)|, \tag{3.10}
\]

which upon setting

\[
|z| = r \quad \text{and} \quad |\varphi(z)| = \rho \quad (0 \leq \rho \leq 1)
\]
leads us to the inequality
\[
|(f * \phi)'(z)| \leq \left[\frac{\psi(\rho)}{(1 - r^2)(1 - (\frac{A - B}{1 - \alpha}) + |B|r)} \right] |(f * \psi)'(z)|,
\]
where
\[
\psi(\rho) = -r(1 + |B|r\rho^2 + (1 - r^2) \left[1 - (\frac{A - B}{1 - \alpha}) + |B|r \right] + r + (1 + |B|r\rho^2 + (1 - r^2) \left[1 - (\frac{A - B}{1 - \alpha}) + |B|r \right]) \rho + r(1 + |B|r)^2
\]
takes its maximum value at \(\rho = 1 \), with \(r_0 = r_0(\alpha, A, B) \), where \(r_0 = r_0(\alpha, A, B) \) is the smallest positive root of (3.5). Furthermore, if \(0 \leq \delta \leq r_0(\alpha, A, B) \), then the function \(\psi(\rho) \) defined by
\[
\psi(\rho) = -\delta(1 + |B|\delta\rho^2 + (1 - \delta^2) \left[1 - (\frac{A - B}{1 - \alpha}) + |B|\delta \right]) + (1 + |B|\delta\rho^2 + (1 - \delta^2) \left[1 - (\frac{A - B}{1 - \alpha}) + |B|\delta \right]) \rho + (1 + |B|\delta\rho^2 + (1 - \delta^2) \left[1 - (\frac{A - B}{1 - \alpha}) + |B|\delta \right]) \rho + (1 + |B|\delta)^2
\]
is an increasing function on the interval \(0 \leq \rho \leq 1 \), so that
\[
\psi(\rho) \leq \psi(1) = (1 - \delta^2) \left[1 - (\frac{A - B}{1 - \alpha}) + |B|\delta \right] \quad (0 \leq \rho \leq 1; 0 \leq \delta \leq r_0(\alpha, A, B)).
\]
Hence, upon setting \(\rho = 1 \) in (3.13), we conclude that (3.4) of Theorem 3.2 holds true for \(|z| \leq r_0 = r_0(\alpha, A, B) \), which completes the proof of Theorem 3.2.

Theorem 3.3. Let the function \(f \in A \) and suppose that \(f \in TU(\phi, \psi; 1, A, B) \) (\(\alpha = 1 \)). If
\[
(f * \phi)(z) \text{ is majorized by } (f * \psi)(z) \text{ and } |(f * \phi)(z)| \leq |(f * \psi)'(z)|,
\]
then
\[
|(f * \phi)'(z)| \leq |(f * \psi)'(z)|
\]
where \(r_0 = r_0(A, B) \) is the smallest positive root of the equation
\[
\chi(A, B) = \begin{cases}
\frac{(1 - A)}{2}r^2 - (3 + \frac{1 - A}{2})r + 1 = 0, & -1 < B < A \leq 1; \\
\frac{(1 - A)}{2}r^2 - (3 + \frac{1 - A}{2})r + 1 = 0, & B = -1.
\end{cases}
\]
\[
(z \in \mathbb{U}; -1 \leq B < A \leq 1; r_0 \geq 0).
\]

Proof. Suppose that \(f \in TU(\phi, \psi; 1, A, B) \). Then, by Lemma 2.5, we obtain
\[
\Re \left\{ \frac{(f * \phi)(z)}{(f * \psi)(z)} \right\} > \begin{cases}
\frac{(1 - B + 1 - A)}{2(1 - B)}, & -1 < B < A \leq 1; \\
\frac{3 - A}{4}, & B = -1,
\end{cases}
\]
or, equivalently,
\[
\frac{(f * \phi)(z)}{(f * \psi)(z)} > \begin{cases}
\frac{1 + (\frac{(1 - B) + 1 - A)}{1 - z}}{1 - z}, & -1 < B < A \leq 1; \\
\frac{1 + (\frac{3 - A)}{1 - z}}{1 - z}, & B = -1,
\end{cases}
\]
(3.17)
which holds true for all \(z \in \mathbb{U} \).

We find from (3.17) that

\[
\frac{(f * \phi)(z)}{(f * \psi)(z)} = \begin{cases}
\frac{1 + (1 - B) + 1 - A + \omega(z)}{1 - \omega(z)}, & -1 < B < A \leq 1; \\
\frac{1 + 1 - \omega(z)}{1 - \omega(z)}, & B = -1,
\end{cases}
\]

where \(\omega(z) = c_1 z + c_2 z^2 + \cdots \in \mathcal{W} \). The remainder of Theorem 3.3 is analogous to the proof of Theorem 3.2, so we omit the details involved.

Theorem 3.4. If \(f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B) \) and \(\phi_j(\mu_j, \eta_j, \alpha, A, B) \) defined by (2.3) satisfies (2.7), then for \(|z| = r < 1\)

\[
r - r^2 \sum_{j=2}^{p} |a_j| - |A_j|r^{p+1} \leq |f(z)| \leq r + r^2 \sum_{j=2}^{p} |a_j| + |A_j|r^{p+1}
\]

and

\[
1 - r \sum_{j=2}^{p} |a_j| - |B_j|r^p \leq |f'(z)| \leq 1 + r \sum_{j=2}^{p} |a_j| + |B_j|r^p.
\]

where \(A_j \) and \(B_j \) are given by (2.8) and (2.10), respectively.

Proof. Let \(f(z) \) be given by (1.1). For \(|z| = r < 1\), by using Lemma 2.6, we have

\[
|f(z)| \leq |z| + \sum_{j=2}^{p} |a_j||z|^j + \sum_{j=p+1}^{\infty} |a_j||z|^j
\]

\[
\leq |z| + |z|^2 \sum_{j=2}^{p} |a_j| + |z|^p \sum_{j=p+1}^{\infty} |a_j|
\]

\[
\leq r + r^2 \sum_{j=2}^{p} |a_j| + |A_j|r^{p+1}
\]

and

\[
|f(z)| \geq |z| - \sum_{j=2}^{p} |a_j||z|^j - \sum_{j=p+1}^{\infty} |a_j||z|^j
\]

\[
\geq |z| - |z|^2 \sum_{j=2}^{p} |a_j| - |z|^p \sum_{j=p+1}^{\infty} |a_j|
\]

\[
\geq r - r^2 \sum_{j=2}^{p} |a_j| - |A_j|r^{p+1}
\]

Furthermore for \(|z| = r < 1\), by using Lemma 2.7, we obtain

\[
|f'(z)| \leq 1 + \sum_{j=2}^{p} j|a_j||z|^{j-1} + \sum_{j=p+1}^{\infty} j|a_j||z|^{j-1}
\]

\[
\leq 1 + |z| \sum_{j=2}^{p} j|a_j| + |z|^p \sum_{j=p+1}^{\infty} j|a_j|
\]

\[
\leq 1 + r \sum_{j=2}^{p} |a_j| + |B_j|r^p
\]

and
\[
|f'(z)| \geq 1 - \sum_{j=2}^{p} j|a_j||z|^{j-1} - \sum_{j=p+1}^{\infty} j|a_j||z|^{j-1}
\geq 1 - |z| \sum_{j=2}^{p} j|a_j| - |z|^p \sum_{j=p+1}^{\infty} j|a_j|
\geq 1 - r \sum_{j=2}^{p} |a_j| - |B_j|r^p,
\]
thus we have (3.19).

Theorem 3.5. Let the function \(f(z) \) defined by (1.1) satisfy (1.4). We define

\[
f_1(z) = z, \quad f_j(z) = z - \frac{A-B}{\phi_j(\mu_j, \eta_j, \alpha, A, B)} e^{i(1-j)\gamma} z^j \quad (j = 2, 3, \cdots),
\]
where \(\phi_j(\mu_j, \eta_j, \alpha, A, B) \) is given by (2.3). Then \(f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B) \) if and only if it can be expressed in the form

\[
f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z),
\]
where \(\lambda_j > 0 \) and \(\sum_{j=1}^{\infty} \lambda_j = 1 \).

Proof. Suppose that

\[
f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z) = z - \sum_{j=1}^{\infty} \lambda_j \frac{A-B}{\phi_j(\mu_j, \eta_j, \alpha, A, B)} e^{i(1-j)\gamma} z^j.
\]

Then

\[
\sum_{j=1}^{\infty} \phi_j(\mu_j, \eta_j, \alpha, A, B) |\lambda_j| \frac{A-B}{\phi_j(\mu_j, \eta_j, \alpha, A, B)} e^{i(1-j)\gamma} = (A - B) \sum_{j=2}^{\infty} \lambda_j
\]

\[
= (A - B)(1 - \lambda_1)
\]

\[
< A - B.
\]

By Lemma 2.2, we have \(f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B) \).

Conversely, suppose that \(f(z) \in TU_\gamma(\phi, \psi; \alpha, A, B) \). Since

\[
|a_j| \leq \frac{A-B}{\phi_j(\mu_j, \eta_j, \alpha, A, B)} \quad (j = 2, 3, \cdots),
\]
we may set

\[
\lambda_j = \frac{\phi_j(\mu_j, \eta_j, \alpha, A, B)}{(A-B)|e^{i(1-j)\gamma}|} |a_j| \quad (j = 2, 3, \cdots)
\]

and

\[
\lambda_1 = 1 - \sum_{j=2}^{\infty} \lambda_j.
\]

Then

\[
f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z).
\]
This completes the proof of Theorem 3.5.

Theorem 3.6. Let the function $f(z)$ defined by (1.1) be in the class $TU(\phi, \psi; \alpha, A, B)$, and $\phi_j(\mu_j, \eta_j, \alpha, A, B)$ be given by (2.3). Then, we have

1. The function $f(z)$ is close-to-convex of μ ($0 \leq \mu < 1$) in $|z| < r_1$ where

 $$r_1 = \inf_j \left\{ \left(1 - \mu\right) \phi_j(\mu_j, \eta_j, \alpha, A, B) \right\}^{\frac{1}{j-1}} (j \geq 2) \tag{3.22}$$

2. The function $f(z)$ is starlike of η ($0 \leq \eta < 1$) in $|z| < r_2$ where

 $$r_2 = \inf_j \left\{ \left(1 - \eta\right) \phi_j(\mu_j, \eta_j, \alpha, A, B) \right\}^{\frac{1}{j-1}} (j \geq 2) \tag{3.23}$$

3. The function $f(z)$ is convex of μ ($0 \leq \xi < 1$) in $|z| < r_3$ where

 $$r_3 = \inf_j \left\{ \left(1 - \xi\right) \phi_j(\mu_j, \eta_j, \alpha, A, B) \right\}^{\frac{1}{j-1}} (j \geq 2) \tag{3.24}$$

Proof. (1) We must show that $|f'(z) - 1| < 1 - \mu$ for $|z| < r_1$. We have

$$|f'(z) - 1| \leq \sum_{j=2}^{\infty} j|a_j||z|^{j-1}.$$

Thus $|f'(z) - 1| < 1 - \mu$ if

$$\sum_{j=2}^{\infty} \frac{j}{1-\mu} |a_j||z|^{j-1} \leq 1. \tag{3.25}$$

By Lemma 2.2, we have

$$\sum_{j=2}^{\infty} \frac{\phi_j(\mu_j, \eta_j, \alpha, A, B)}{A - B} |a_j| \leq 1 \tag{3.26}$$

Hence (3.25) will be true if

$$\frac{j|z|^{j-1}}{1-\mu} \leq \frac{\phi_j(\mu_j, \eta_j, \alpha, A, B)}{A - B},$$

or, if

$$|z| \leq \left\{ \frac{(1-\mu)\phi_j(\mu_j, \eta_j, \alpha, A, B)}{j(A - B)} \right\}^{\frac{1}{j-1}} (j \geq 2), \tag{3.27}$$

which follows from (3.22). Similarly, we can prove (2) and (3). This completes the proof of Theorem 3.6.

Acknowledgements.

The present investigation was supported by the Natural Science Foundation of Inner Mongolia of China under Grant 2014MS0101.
References

Received: January 3, 2015; Published: January 25, 2015