Symmetric bi-f-Derivations of Incline Algebras

Kyung Ho Kim

Department of Mathematics, Korea National University of Transportation
Chungju 380-702, Korea

So Young Park

Department of Convergence Science Education,
Korea National University of Transportation
Chungju 380-702, Korea

Copyright © 2014 Kyung Ho Kim and So Young Park. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract

In this paper, we introduce the concept of a symmetric bi-f-derivation
in incline algebras and give some properties of incline algebras. Also,
we characterize $\text{Ker}_D(K)$ and $F_a(K)$ by symmetric bi-f-derivations in
incline algebras.

Mathematics Subject Classification: 06F35, 03G25, 08A30

Keywords: Incline algebra, derivation, symmetric bi-f-derivation, iso-
tone, $\text{Ker}_D(K)$

1 Introduction

Z. Q. Cao, K. H. Kim and F. W. Roush [2] introduced the notion of incline
algebras in their book. Some authors studied incline algebras and application.
N. O. Alshehri [1] introduced the notion of derivation in incline algebras. In
this paper, we introduce the concept of a symmetric bi-f-derivation in incline
algebra and give some properties of incline algebras. Also, we characterize
$\text{Ker}_D(K)$ and $F_a(K)$ by symmetric bi-f-derivations in incline algebras.
2 Incline algebras

An incline algebra is a set K with two binary operations denoted by “+” and “∗” satisfying the following axioms:

\begin{enumerate}
\item[(K1)] $x + y = y + x$,
\item[(K2)] $x + (y + z) = (x + y) + z$,
\item[(K3)] $x ∗ (y ∗ z) = (x ∗ y) ∗ z$,
\item[(K4)] $x ∗ (y + z) = (x ∗ y) + (x ∗ z)$,
\item[(K5)] $(y + z) ∗ x = (y ∗ x) + (z ∗ x)$,
\item[(K6)] $x + x = x$,
\item[(K7)] $x + (x ∗ y) = x$,
\item[(K8)] $y + (x ∗ y) = y$
\end{enumerate}

for all $x, y, z \in K$. For convenience, we pronounce “+” (resp. “∗”) as addition (resp. multiplication). Every distributive lattice is an incline algebra. An incline algebra is a distributive lattice if and only if $x ∗ x = x$ for all $x \in K$. Note that $x \leq y \iff x + y = y$ for all $x, y \in K$. It is easy to see that “≤” is a partial order on K and that for any $x, y \in K$, the element $x + y$ is the least upper bound of $\{x, y\}$. We say that \leq is induced by operation $+$. In an incline algebra K, the following properties hold.

\begin{enumerate}
\item[(K9)] $x ∗ y \leq x$ and $y ∗ x \leq x$ for all $x, y \in K$,
\item[(K10)] $y \leq z$ implies $x ∗ y \leq x ∗ z$ and $y ∗ x \leq z ∗ x$, for all $x, y, z \in K$,
\item[(K11)] If $x \leq y$ and $a \leq b$, then $x + a \leq y + b$, and $x ∗ a \leq y ∗ b$ for all $x, y, a, b \in K$.
\end{enumerate}

Furthermore, an incline algebra K is said to be commutative if $x ∗ y = y ∗ x$ for all $x, y \in K$. A map f is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$.

A subincline of an incline algebra K is a non-empty subset M of K which is closed under the addition and multiplication. A subincline M is said to be an ideal if $x \in M$ and $y \leq x$ then $y \in M$. An element “0” in an incline algebra K is a zero element if $x + 0 = x = 0 + x$ and $x ∗ 0 = 0 = 0 ∗ x$ for any $x \in K$. An non-zero element “1” is called a multiplicative identity if $x ∗ 1 = 1 ∗ x = x$ for any $x \in K$. A non-zero element $a \in K$ is said to be a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such that $a ∗ b = 0$ (resp. $b ∗ a = 0$). A zero divisor
is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an integral incline if it has no zero divisors. By a homomorphism of inclines, we mean a mapping f from an incline algebra K into an incline algebra L such that $f(x + y) = f(x) + f(y)$ and $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in K$. A mapping f is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$. A subincline I of an incline algebra K is said to be k-ideal if $x + y \in I$ and $y \in I$, then $x \in I$. Let K be an incline algebra. An element $a \in K$ is called a additively left cancellative if for all $a, b \in K, a + b = a + c \Rightarrow b = c$. An element $a \in K$ is called a additively right cancellative if for all $a, b \in K, b + a = c + a \Rightarrow b = c$. It is said to be additively cancellative if it is both left and right cancellative. If every element of K is additively left cancellative, it is called additively left cancellative. If every element of K is additively right cancellative, it is called additively right cancellative.

Definition 2.1. Let K be an incline algebra. A mapping $D(., .) : K \times K \rightarrow K$ is called symmetric if $D(x, y) = D(y, x)$ holds for all $x, y \in K$.

Definition 2.2. Let K be an incline algebra and $x \in K$. A mapping $d(x) = D(x, x)$ is called trace of $D(., .)$, where $D(., .) : K \times K \rightarrow K$ is a symmetric mapping.

Definition 2.3. Let K be an incline algebra and let $D : K \times K \rightarrow K$ be a symmetric mapping. We call D a symmetric bi-derivation on K if it satisfies the following condition

$$D(x \ast y, z) = (D(x, z) \ast y) + (x \ast D(y, z))$$

for all $x, y, z \in K$.

3 Symmetric bi-f-derivations of incline algebras

In what follows, let K denote an incline algebra with a zero-element unless otherwise specified.

Definition 3.1. Let K be an incline algebra and let $D : K \times K \rightarrow K$ be a symmetric mapping. We call D a symmetric bi-f-derivation on K if there exists a function $f : K \rightarrow K$ such that

$$D(x \ast y, z) = (D(x, z) \ast f(y)) + (f(x) \ast D(y, z))$$
for all $x, y, z \in K$.

Obviously, a symmetric bi-f-derivation D on K satisfies the relation

$$D(x, y \ast z) = (D(x, y) \ast f(z)) + (f(y) \ast D(x, z))$$

for all $x, y, z \in K$.

Example 3.2. Let K be a commutative incline algebra and $a \in K$. Define a mapping on K by $D(x, y) = f(x) \ast f(y)$ where $f : K \rightarrow K$ satisfies $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in K$. Then we can see that D is a symmetric bi-f-derivation on K.

Example 3.3. Let K be a commutative incline algebra and $a \in K$. Define a mapping on K by $D(x, y) = (f(x) \ast f(y)) \ast a$ where $f : K \rightarrow K$ satisfies $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in K$. Then we can see that D is a symmetric bi-f-derivation on K.

Example 3.4. Let $K = \{0, a, b, 1\}$ be a set in which “$+$” and “\ast” is defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

Then it is easy to check that $(K, +, \ast)$ is an incline algebra. Define a map $D : K \times K \rightarrow K$ by

$$D(x, y) = \begin{cases}
0 & \text{if } (x, y) = (0, 0) \\
0 & \text{if } (x, y) = (0, a), (a, 0) \\
0 & \text{if } (x, y) = (0, b), (b, 0) \\
0 & \text{if } (x, y) = (0, 1), (1, 0) \\
0 & \text{if } (x, y) = (a, a) \\
b & \text{if } (x, y) = (b, b) \\
b & \text{if } (x, y) = (1, 1) \\
0 & \text{if } (x, y) = (a, b) \text{ or } (b, a) \\
0 & \text{if } (x, y) = (a, 1) \text{ or } (1, a) \\
b & \text{if } (x, y) = (b, 1) \text{ or } (1, b)
\end{cases}$$

and $f : K \rightarrow K$ by
Proof. (i) Let f be a symmetric bi-derivation on K. Then the following identities hold for all $x, y, z \in K$,

(i) $D(x \ast y, z) \leq f(x) + f(y)$, for all $x, y, z \in K$,

(ii) $D(x \ast y, z) \leq D(x, z) + D(y, z)$, for all $x, y, z \in K$.

Proof. (i) Let $x, y, z \in K$. By using (K9), we have $D(x, z) \ast f(y) \leq f(y)$ and $f(x) \ast D(y, z) \leq f(x) + f(y)$. Then by using (K11), we obtain $D(x, z) \ast f(y) + f(x) \ast D(y, z) \leq f(x) + f(y)$. Hence $D(x \ast y, z) \leq f(x) + f(y)$.

(ii) Let $x, y, z \in K$. By using (K9), we have $D(x, z) \ast f(y) \leq D(x, z)$ and $f(x) \ast D(y, z) \leq D(y, z)$. Then by using (K11), we obtain $D(x, z) \ast f(y) + f(x) \ast D(y \ast z) \leq D(x, z) + D(y, z)$. Hence $D(x \ast y, z) \leq D(x, z) + D(y, z)$.

Proposition 3.6. Let K be an incline algebra and let D be a symmetric bi-f-derivation on K. If $x \leq y$ and f an isotone mapping, we have $D(x \ast y, z) \leq f(y)$.

Proof. Let $x \leq y$. Then we have $f(x) \leq f(y)$. By using (K11) and (K9), $f(x) \ast D(y, z) \leq f(y) \ast D(y, z) \leq f(y)$. Also, by using (K9), we get $D(x, z) \leq f(y) \leq f(y)$. Hence we have $D(x \ast y, z) = D(x, z) \ast f(y) + f(x) \ast D(y, z) \leq f(y) + f(y) = f(y)$.

Proposition 3.7. Let K be an incline algebra. If K is a distributive lattice, we have $D(x, y) \leq f(x)$ and $D(x, y) \leq f(y)$ for all $x, y \in K$.

Proof. Let K be a distributive lattice. Then $D(x, y) = D(x \ast x, y) = D(x, y) \ast f(x) + f(x) \ast D(x, y)$, and so $D(x, y) + f(x) = (D(x, y) \ast f(x) + f(x) \ast D(x, y)) + f(x) = (D(x, y) \ast f(x) + D(x, y) \ast f(x)) + f(x) = (D(x, y) \ast f(x)) + f(x)$ for all $x, y \in K$. By using (K8), we get $D(x, y) + f(x) = f(x)$. Hence we obtain $D(x, y) \leq f(x)$. Similarly, we have $D(x, y) \leq f(y)$.

Proposition 3.8. Let K be an incline algebra. If K is a distributive lattice, we have $d(x) \leq f(x)$ for all $x \in K$.

Proof. Let K be a distributive lattice. Then we have
\[
d(x) = D(x, x) = D(x \ast x, x) = D(x, x) \ast f(x) + f(x) \ast D(x, x)
\]
\[
= D(x, x) \ast f(x) \leq f(x)
\]
for all $x \in K$.

Proposition 3.9. Let K be an incline algebra and let d be a trace of symmetric bi-f-derivation D of K. If $f(0) = 0$, then $d(0) = 0$.

Proof. Let $x \in K$. Then we have $d(0) = D(0, 0) = D(x \ast 0, 0) = D(x, 0) \ast f(0) + f(x) \ast D(0, 0) = 0 + f(x) \ast d(0)$. If we take $x = 0$, we get $d(0) = 0 + 0 = 0$.

Theorem 3.10. Let K be an integral incline and let D be a symmetric bi-f-derivation of K where f is a function satisfying $f(1) = 1$ and $a \in K$. Then for all $x, y \in K$, we have
(i) $a \ast D(x, y) = 0$ implies $a = 0$ or $D = 0$,
(ii) $D(x, y) \ast a = 0$ implies $a = 0$ or $D = 0$.

Proof. (i) Let $a \ast D(x, y) = 0$ for all $x \in K$. If we replace x by $x \ast z$ for $z \in K$, we obtain
\[
0 = a \ast D(x, y) = a \ast D(x \ast z, y) = a \ast (D(x, y) \ast f(z) + (f(x) \ast D(z, y))
\]
\[
= (a \ast (D(x, y) \ast f(z))) + (a \ast (f(x) \ast D(z, y)))
\]
\[
= a \ast (f(x) \ast D(z, y)).
\]
In this equation, by taking $x = 1$, we have $a \ast D(z, y) = 0$. Since K is an integral incline, that is, it has no zero-divisors, we have $a = 0$ or $D(z, y) = 0$ for all $y, z \in K$. Hence we get $a = 0$ or $D = 0$. (ii) Similarly, we can prove (ii).

Theorem 3.11. Let K be an incline algebra with a multiplicative identity and let D be a symmetric bi-f-derivation of K where f is a function satisfying $f(1) = 1$. Then the following identities hold for all $x, y \in K$.
(i) $f(x) \ast D(1, y) \leq D(x, y)$,
(ii) If d is the trace of K and $d(1) = 1$, we have $f(x) \leq D(x, 1)$.

Proof. (i) Let $x, y \in K$. Then we have $D(x, y) = D(x \ast 1, y) = D(x, y) \ast f(1) + f(x) \ast D(1, y) = D(x, y) \ast 1 + f(x) \ast D(1, y) = D(x, y) + f(x) \ast D(1, x)$. Therefore, $f(x) \ast D(1, y) \leq D(x, y)$. (ii) It can be derived from (i).

Proposition 3.12. Let K be an incline algebra. If $D(x, y) = f(x)$ and $D(w, y) = f(w)$, we have $D(x \ast w, y) = f(x) \ast f(w)$.
Proof. Let $x, y, w \in K$. Then we have
\[
D(x \ast w, y) = D(x, y) \ast f(w) + f(x) \ast D(w, y) = f(x) \ast f(w) + f(x) \ast f(w) = f(x) \ast f(w).
\]

Definition 3.13. Let K be an incline algebra. If $D : K \times K \rightarrow K$ be a symmetric mapping. We call D a \textit{joinitive mapping} if it satisfies
\[
D(x + y, z) = D(x, z) + D(y, z)
\]
for all $x, y, z \in K$.

Proposition 3.14. Let K be an incline algebra and let d be a trace of joinitive symmetric bi-f-derivation D of K. Then the following identities hold for all $x, y \in K$,
\begin{enumerate}[(i)]

 \item $d(x + y) = d(x) + d(y) + D(x, y)$ and $d(x) + d(y) \leq d(x + y)$,

 \item $D(x \ast y, x) \leq d(x)$.
\end{enumerate}

Proof. (i) Let $x, y \in K$. Then we have
\[
d(x + y) = D(x + y, x + y) = D(x, x + y) + D(y, x + y)
= D(x, x) + D(x, y) + D(y, x) + D(y, y)
= D(x, x) + D(y, y) + D(x, y).
\]
Hence we get $d(x + y) = d(x) + d(y) + D(x, y)$ and $d(x) + d(y) \leq d(x + y)$.

(ii) Let $x, y \in K$. It follows from (K7) that $d(x) = D(x, x) = D(x + (x \ast y), x) = D(x, x) + D(x \ast y, x)$, which implies $D(x \ast y, x) \leq d(x)$.

Proposition 3.15. Let K be an incline algebra and let D be a trace of jointive symmetric bi-f-derivation D of K. Then $D(x \ast y, y) \leq D(x, y)$ for all $x, y \in K$.

Proof. Let $x, y \in K$. Then we have
\[
D(x, y) = D(x + x \ast y, y) = D(x, y) + D(x \ast y, y),
\]
which implies $D(x \ast y, y) \leq D(x, y)$.

Definition 3.16. Let K be an incline algebra and let D be a symmetric bi-f-derivation on K. If $x \leq w$ implies $D(x, y) \leq D(w, y)$, D is called an \textit{isotone symmetric bi-f-derivation} for all $x, y, w \in K$.
Theorem 3.17. Let K be an incline algebra and let D be a joinitive symmetric bi-f-derivation D of K. Then D is an isotone symmetric bi-f-derivation of K.

Proof. Let x and w be such that $x \leq w$. Then $x + w = w$, and so
\[D(w, y) = D(w + x, y) = D(w, y) + D(x, y) \]
This implies that $D(x, y) \leq D(w, y)$. This completes the proof.

Let D be a symmetric bi-f-derivation of K. Fix $a \in K$ and define a set $F_a(K)$ by
\[F_a(K) := \{ x \in K \mid D(x, a) = f(x) \} \]
for all $x \in K$.

Proposition 3.18. Let D be a joinitive symmetric bi-f-derivation and let f be an endomorphism on K. Then $F_a(K)$ is a subincline of K.

Proof. Let $x, y \in F_a(K)$. Then we have $D(x, a) = f(x)$ and $D(y, a) = f(y)$, and so
\[D(x * y, a) = D(x, a) * f(y) + f(x) * D(y, a) \]
\[= f(x) * f(y) + f(x) * f(y) \]
\[= f(x) * f(y) = f(x * y). \]
Hence we get $x * y \in F_a(K)$. Also, we get $D(x + y, a) = D(x, a) + D(y, a) = f(x) + f(y) = f(x + y)$, and so $x + y \in F_a(K)$. This completes the proof.

Proposition 3.19. Let K be additively right cancellative and let D be a joinitive symmetric bi-f-derivation and let f be an endomorphism on K. Then $F_a(K)$ is a k-ideal of K.

Proof. Let $x + y \in F_a(K)$ and $y \in F_a(K)$. Then we have $f(x) + f(y) = f(x + y) = D(x + y, a) = D(x, a) + D(y, a) = D(x, a) + f(y)$. Since K is additively right cancellative, we have $f(x) = D(x, a)$, which implies $x \in F_a(K)$. This completes the proof.

Definition 3.20. Let K be an incline algebra. If $D : K \times K \to K$ be a symmetric mapping. Define a set $\text{Ker}_D(K)$ by
\[\text{Ker}_D(K) = \{ x \in K \mid D(0, x) = 0 \}. \]
Proposition 3.21. Let K be an incline algebra and let D be a joinitive symmetric bi-f-derivation D. If $x \leq y$ and $y \in Ker_D(K)$, then we have $x \in Ker_D(K)$.

Proof. Let $x \leq y$ and $y \in Ker_D(K)$. Then we get $x + y = y$ and $D(0, y) = 0$. Hence we get

$$0 = D(0, y) = D(0, x + y) = D(0, x) + D(0, y) = D(0, x) + 0 = D(0, x),$$

which implies $x \in Ker_D(K)$. This completes the proof.

Proposition 3.22. Let K be an incline algebra and let D be a joinitive symmetric bi-f-derivation of K. Then $Ker_D(K)$ is a subincline of K.

Proof. Let $x, y \in Ker_D(K)$. Then $D(0, x) = D(0, y) = 0$, and so

$$D(0, x \ast y) = D(x \ast y, 0) = D(x, 0) \ast f(y) + f(x) \ast D(y, 0) = 0 \ast f(y) + f(x) \ast 0 = 0 + 0 = 0,$$

which implies $x \ast y \in Ker_D(K)$. Now $D(x+y, 0) = D(x, 0)+D(y, 0) = 0+0 = 0$. Hence $x + y \in Ker_D(K)$. This completes the proof.

Theorem 3.23. Let D be a joinitive symmetric bi-f-derivation of K. Then $Ker_D(K)$ is an ideal of K.

Proof. By Proposition 3.23, $Ker_D(K)$ is a subincline of K. Let $x \leq y$ and $y \in Ker_D(K)$. Then $x + y = y$ and $D(0, y) = 0$. Thus

$$0 = D(0, y) = D(0, x + y) = D(0, x) + D(0, y) = D(0, x) + 0 = D(0, x),$$

which implies $x \in Ker_D(K)$.

Proposition 3.24. Let K be an incline algebra and let D be a symmetric bi-f-derivation of K. If there exists $a \in K$ such that $D(x, z) \ast a = 0$ for all $x, z \in K$, then $z \in Ker_D(K)$.
Proof. Let D be a symmetric bi-f-derivation of K and $a \in K$. Then we have for all $x, z \in K$,

$$D(0, z) = D(0 \ast a, z) = D(0, z) \ast a + 0 \ast D(a, z) = 0 + 0 = 0,$$

which implies $z \in \text{Ker}_D(K)$.

Corollary 3.25. Let K be an incline algebra and let D be a symmetric bi-f-derivation of K. If there exists $a \in K$ such that $D(x, z) \ast a = 0$ for all $x, z \in K$, then $d(0) = D(0,0) = 0$.

Theorem 3.26. Let K be a commutative integral incline algebra. Suppose that there exist two joinitive symmetric bi-f-derivations D_1 and D_2 such that $D_1(d_2(x), x) = 0$ for all $x \in K$ where d_1, d_2 denote the trace of D_1 and D_2, respectively. If f is a nonzero function on K, then $d_1 = 0$.

Proof. Let $D_1(d_2(x), x) = 0$ where d_1, d_2 denote the trace of symmetric bi-derivations D_1 and D_2, respectively. Then by using (K7), we have

$$D_1(d_2(x) + (d_2(x) \ast x), x) = D_1(d_2(x), x) + D_1(d_2(x) \ast x, x) = D_1(d_2(x), x) \ast f(x) + f(d_2(x)) \ast D_1(x, x) = f(d_2(x)) \ast d_1(x).$$

Since K has no zero divisors, we have $f(d_2(x)) = 0$ or $d_1(x) = 0$. But since f is a nonzero function on K, we get $d_1(x) = 0$ for all $x \in K$.

References

Received: November 19, 2014; Published: January 9, 2015