Positive-Normal Operators in Semi-Hilbertian Spaces

Sidi Hamidou Jah

Department of Mathematics, College of Science Qassim University
P.O. Box 6640, Buraydah 51452, Saudi Arabia

Ould Ahmed Mahmoud Sid Ahmed

Department of Mathematics, College of Science, Al Jouf University
P.O. Box 2014 Al Jouf, Saudi Arabia

Copyright © 2014 Sidi Hamidou Jah and Ould Ahmed Mahmoud Sid Ahmed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Given a bounded positive linear operator A on a Hilbert space \mathcal{H} we consider the semi-Hilbertian space $(\mathcal{H}, \langle \cdot | \cdot \rangle_A)$, where $\langle \xi | \eta \rangle_A := \langle A\xi | \eta \rangle$. In this paper we introduce a class of operators on a semi Hilbertian space \mathcal{H} with inner product $\langle \cdot | \cdot \rangle_A$. We call the elements of this class A-positive-normal or A-posinormal. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be A-posinormal if there exists a A-positive operator $P \in \mathcal{B}(\mathcal{H})$ (i.e., $AP \geq 0$) such that $TAT^* = T^*APT$. We study some basic properties of these operators. Also we study the relationship between a special case of this class with the other kinds of classes of operators in semi-Hilbertian spaces.

Mathematics Subject Classification: Primary 47A05, 47A30 Secondary 47A62

Keywords: Inner product, A-adjoint, A-normal operator, A-positive-normal operator, tensor sum, tensor product
1 Introduction

We consider a Hilbert space H with an additional semi inner product defined by a positive semidefinite operator A; namely $\langle \xi | \eta \rangle_A = \langle A\xi | \eta \rangle$ for every $\xi, \eta \in H$. It must be observed from [2] and [3] that this additional structure induces an adjoint operation. However, this operation is defined for not every bounded linear operator on H, unless A is invertible. For those operators T which admit an adjoint with respect to $\langle | \rangle_A$, we choose one, denoted by $T^{(\ast)}_A$, which has similar, but not identical, properties as the classical T^\ast. Since not every operator admits an A-adjoint and, in case it admits one, it may have many others, then the extensions of normal operator, quasi-normal operators, isometries, unitary, partial isometries, quasi-isometry and m-isometry are not trivial. These classes of operators have been generalized to semi-Hilbertian spaces by many authors. Such operators appear in different contexts in [2], [3], [4], [14], [28], [29], [32] and other papers. The aim of this work is to continue this process of generalization to posinormal operators. The inspiration for our investigation comes from [2],[3],[4],[14],[28],[29],[32]. In this paper section 2 contains basic results on A-operators. There is also a description of the range inclusion theorem of R. G. Douglas [11], which is a key for some results of this paper. At the end of this section we give some characterizations of A-quasinormal operators inspired from [26] and [27]. In section 3 we study the concept of an A-posinormal operators and we investigate various structural properties of this class of operators. In the final section of the paper we consider the tensor product of some classes of A-operators.

2 Definitions and basic facts about semi-Hilbertian space $(H, \langle | \rangle_A)$.

Along this work H denotes a complex Hilbert space with inner product $\langle | \rangle$. $\mathcal{B}(H)$ is the algebra of all bounded linear operators on H, $\mathcal{B}(H)^+$ is the cone of positive (semidefinite) operators of $\mathcal{B}(H)$, i.e., $\mathcal{B}(H)^+ := \{ T \in \mathcal{B}(H) | \langle T\xi | \xi \rangle \geq 0 \ \forall \xi \in H \}$ and $\mathcal{B}(H)_{cr}$ is the subset of $\mathcal{B}(H)$ of all operators with closed range. For every $T \in \mathcal{B}(H)$, $\mathcal{N}(T), \mathcal{R}(T)$ and $\overline{\mathcal{R}(T)}$ stand for, respectively, the null space, the range and the closure of the range of T, its adjoint operator by T^\ast. In addition, if $T_1, T_2 \in \mathcal{B}(H)$ then $T_1 \geq T_2$ means that $T_1 - T_2 \in \mathcal{B}(H)^+$. Given a closed subspace S of H, P_S denotes the orthogonal projection onto S. On the other hand, T^\dagger stands for the Moore-Penrose inverse of $T \in \mathcal{B}(H)$.

Given $A \in \mathcal{B}(H)^+$, the functional

$$\langle | \rangle_A : H \times H \longrightarrow \mathbb{C}, \langle \xi | \eta \rangle_A = \langle A\xi | \eta \rangle$$

is a semi-inner product on H. By $\| |,| \rangle_A$ we denote the seminorm induced
Positive-normal operators in semi-Hilbertian spaces

by \langle \cdot \mid \cdot \rangle_A, i.e., \|\xi\|_A = (\langle \xi \mid \xi \rangle_A^\frac{1}{2}). Observe that \|\xi\|_A = 0 if and only if \xi \in \mathcal{N}(A). Then \|\cdot\|_A is a norm if and only if \(A \) is an injective operator, and the seminormed space \((H, \|\cdot\|_A)\) is complete if and only if \(\mathcal{R}(A) \) is closed. Moreover, \(\langle \cdot \mid \cdot \rangle_A \) induces a semi-norm on a certain subspace of \(\mathcal{B}(H) \), namely, on the subspace

\[\{ T \in \mathcal{B}(H) / \exists c > 0 : \|T\xi\|_A \leq c\|\xi\|_A \ \forall \xi \in H \} . \]

In such case it holds

\[
\|T\|_A = \sup_{\xi \in \mathcal{R}(A)} \frac{\|T\xi\|_A}{\|\xi\|_A} = \sup_{\|\xi\|_A \leq 1} \|T\xi\|_A = \sup\{\|T\xi\|_A : \|\xi\|_A = 1 \}
\]

\[
= \inf\{c > 0 : \|T\xi\|_A \leq c\|\xi\|_A, \ \xi \in H \} < \infty .
\]

Moreover

\[
\|T\|_A = \sup\{\langle T\xi \mid \eta \rangle_A ; \ \xi, \eta \in H, : \|\xi\| \leq 1, \|\eta\| \leq 1 \} .
\]

For \(\xi, \eta \in H \), we say that \(\xi \) and \(\eta \) are \(A \)-orthogonal if \(\langle \xi \mid \eta \rangle_A = 0 \). Define

\[\mathcal{B}_{A^\perp}(H) := \{ T \in \mathcal{B}(H) : \|T\xi\|_A \leq c\|\xi\|_A \ \text{for every} \ \xi \in H \} \]

It is easy to see that \(\mathcal{B}_{A^\perp}(H) \) is a subspace of \(\mathcal{B}(H) \). For more details about the class \(\mathcal{B}_{A^\perp}(H) \) see [2, 3, 4].

Note that given \(T \in \mathcal{B}_{A^\perp}(H) \), in general \(T^* \notin \mathcal{B}_{A^\perp}(H) \) (see [4]).

Definition 2.1 ([2]) For \(T \in \mathcal{B}(H) \), an operator \(S \in \mathcal{B}(H) \) is called an \(A \)-adjoint of \(T \) if for every \(\xi, \eta \in H \)

\[\langle T\xi \mid \eta \rangle_A = \langle \xi \mid S\eta \rangle_A , \]

i.e., \(AS = T^*A \); we say that \(T \) is \(A \)-selfadjoint if \(AT = T^*A \).

or which is equivalent, if \(S \) is a solution of the equation \(AX = T^*A \).

Remark 2.1 The existence of an \(A \)-adjoint operator is not guaranteed. Observe that \(T \) admits an \(A \)-adjoint if and only if the equation \(AX = T^*A \) has solution. This kind of equation can be studied applying the next theorem due to Douglas (for its proof see [11, 14]).

Theorem 2.1 Let \(A, B \in \mathcal{B}(H) \). The following conditions are equivalents.

1. \(\mathcal{R}(B) \subset \mathcal{R}(A) \).
2. There exists a positive number \(\lambda \) such that \(BB^* \leq \lambda AA^* \).
3. There exists \(C \in \mathcal{B}(H) \) such that \(AC = B \).
If one of these conditions holds then there exists a unique operator $D \in B(H)$ such that $AD = B$ and $\mathcal{R}(D) \subseteq \overline{\mathcal{R}(A^*)}$ and $\mathcal{N}(D) = \mathcal{N}(B)$. Moreover

$$\|D\| = \inf\{\lambda > 0 : BB^* \leq \lambda AA^*\}.$$

This solution will be called a reduced solution of the equation $BX = C$.

If we denote by $B_A(H)$ the subalgebra of $B(H)$ of all bounded operators which admit an A-adjoint operator then

$$B_A(H) = \{ T \in B(H) : T^* R(A) \subset R(A) \}.$$

Furthermore, applying Douglas theorem we can see that

$$B_A^s(H) = \{ T \in B(H) : T^* R(A^s) \subset R(A^s) \} = \{ T \in B(H) : R(A^s T^* A^s) \subseteq R(A) \}.$$

The relationship between the above sets is proved in [4].

Proposition 2.1 Let $A \in B(H)^+$ then $B_A(H) \subseteq B_A^s(H)$.

Remark 2.2 $B_A(H) \subseteq B_A^s(H)$ for all $s \in (0,1)$. More generally, if $0 < s < s' < 1$ then $B_A^s(H) \subseteq B_A^{s'}(H)$. Moreover, $B_A^s(H) = B_A^{s'}(H)$ if and only if $R(A)$ is closed. See [4].

If an operator equation $BX = C$ has solution then it is easy to see that he distinguished solution of Douglas theorem is given by B^1C. Therefore, given $T \in B_A(H)$, if we denote by $T^{(s),A}$ the unique A-adjoint operator of T whose range is included in $\overline{R(A)}$ then

$$T^{(s),A} = A^s T^* A.$$

In view of Theorem 2.1,

$$AT^{(s),A} = T^* A, \quad R(T^{(s),A}) \subseteq \overline{R(A)} \quad \text{and} \quad N(T^{(s),A}) = N(T^* A).$$

Note that if S is an A-adjoint of T then $S = T^{(s),A} + Z$, with $Z \in B(H)$ such that $R(Z) \subset N(A)$.

Observe that if T is A-selfadjoint it is does not mean, in general, that $T = T^{(s),A}$. In fact $T = T^{(s),A}$ if and only if T is A-selfadjoint and $R(T) \subset \overline{R(A)}$. It is also clear that T has a unique A-adjoint (namely $T^{(e),A}$) if and only if A is injective. If this is the case, then we get the equality $(T^{(s),A})^{(s),A} = T$.

In the following proposition we collect some properties of $T^{(s),A}$. For its proof see [2, 3].
Proposition 2.2 Let $T \in \mathcal{B}_A(\mathcal{H})$. Then the following statements hold.

1. $T^{(*)}_A \in \mathcal{B}_A(\mathcal{H})$, $(T^{(*)}_A)^{(s)}_A = P_{\mathcal{R}(A)}TP_{\mathcal{R}(A)}$ and $(T^{(*)}_A)^{(s)}_A = T^{(*)}_A$.
2. If $S \in \mathcal{B}_A(\mathcal{H})$ then $TS \in \mathcal{B}_A(\mathcal{H})$ and $(TS)^{(s)}_A = S^{(*)}AT^{(*)}_A$.
3. $T^{(*)}_AT$ and $TT^{(*)}_A$ are A-selfadjoint.
4. $\|T\|_A = \|T^{(*)}_A\|_A = \|T^{(*)}AT\|_A = \|TT^{(*)}_A\|_A$.
5. $\|S\|_A = \|T^{(*)}_A\|_A$ for every $S \in \mathcal{B}(\mathcal{H})$ which is an A-adjoint of T.
6. If $S \in \mathcal{B}_A(\mathcal{H})$ then $\|TS\|_A = \|ST\|_A$.

Nevertheless, $T^{(*)}_A$ is not in general the unique A-adjoint of T that realizes the minimal norm.

The following classes of operators are studied in [2, 28, 32].

Any operator $T \in \mathcal{B}(\mathcal{H})$ is

1. A-contraction if $\|T\xi\|_A \leq \|\xi\|_A$ for every $\xi \in \mathcal{H}$, or equivalently if $T^*AT \leq A$.
2. A-isometry if $T^*AT = A \iff \|T\xi\|_A = \|\xi\|_A \quad \forall \xi \in \mathcal{H}$.
3. A-normal if $T^*AT = TAT^* \iff \|T\xi\|_A = \|T^*\xi\|_A \quad \forall \xi \in \mathcal{H}$.
4. A-partial isometry if $\|T\xi\|_A = \|\xi\|_A \quad \forall \xi \in N(A^*)^{\perp\perp}$.
5. A-unitary if $T^*AT = TAT^* = A \iff \|T^*\xi\|_A = \|T\xi\|_A = \|\xi\|_A \quad \forall \xi \in \mathcal{H}$.
6. A-hyponormal if $TAT^* \leq T^*AT \iff \|T^*\xi\|_A \leq \|T\xi\|_A \quad \forall \xi \in \mathcal{H}$.
7. A-quasi-isometry if and only if, $T^*AT = T^*AT^2 \iff \|T\|_A = \|T^2\|_A$.
8. A-m-isometry if $\sum_{k=0}^{m} (-1)^k \binom{m}{k} T^{m-k}AT^{m-k} = 0$

$\iff \sum_{k=0}^{m} (-1)^k \binom{m}{k} \|T^{m-k}\xi\|_A^2 = 0 \quad \forall \xi \in \mathcal{H}$.

The following proposition gives a necessary and sufficient condition for with $T \in \mathcal{B}_A(\mathcal{H})$ belongs to $\mathcal{B}_{A^2}(\mathcal{H})$. For its proof see [24].

Proposition 2.3 (1) If $T \in \mathcal{B}_A(\mathcal{H})$. Then $T \in \mathcal{B}_{A^2}(\mathcal{H})$ if and only if

$$\left(\frac{T^{(*)}_A}{\sqrt{2}}\right)^* \in \mathcal{B}_A(\mathcal{H}).$$

(2) If $T \in \mathcal{B}_A(\mathcal{H})$ is such that $T^* \in \mathcal{B}_A(\mathcal{H})$, then $T^{(*)}_A \in \mathcal{B}_{A^2}(\mathcal{H})$ and

$$T^{(*)}_A \in \mathcal{B}_{A^2}(\mathcal{H}) \quad \text{and} \quad \left(\frac{T^{(*)}_A}{\sqrt{2}}\right)^* = \left(\frac{T^*}{\sqrt{2}}\right)^*, \quad \text{or equivalently} \quad \left(\frac{T^{(*)}_A}{\sqrt{2}}\right)^* = \left[\left(\frac{T^*}{\sqrt{2}}\right)^*\right]^{(*)}_A.$$
Definition 2.2 ([28]) $T \in \mathcal{B}_A(H)$ is an A-normal operator if

$$TT^{(s)A} = T^{(s)A}T.$$

Definition 2.3 ([29]) An operator $T \in \mathcal{B}_A(H)$ is called A-quasinormal if T commutes with $T^{(s)A}T$ i.e.,

$$TT^{(s)A}T = T^{(s)A}T^2.$$

Remark 2.3 Every A-normal operator is an A-quasinormal operator.

In the following theorem we give conditions under which an A-quasinormal operator T is an A-normal operator.

Theorem 2.2 Let $T \in \mathcal{B}_A(H)$. The following properties hold

1. If T is invertible A-quasinormal then T is A-normal.

2. Assume that $N(A)$ is a invariant subspace for T, then

(a) If T and $T - I$ are A-quasinormal then T is A-normal, where I indicates the identity operator.

(b) $T - \lambda I$ is A-quasinormal for all $\lambda \in \mathbb{C}$ if and only if T is A-normal.

Proof. (1) $TT^{(s)A}T = T^{(s)A}T^2 \implies TT^{(s)A} = T^{(s)A}T$ as T is invertible.

(2) First we see that the condition on $T - I$ implies

$$TT^{(s)A}T - TT^{(s)A} - TP_{\mathcal{R}(A)}T + 2T - T^{(s)A}T + T^{(s)A} - P_{\mathcal{R}(A)} = T^{(s)A}T^2 - 2T^{(s)A}T + T^{(s)A} - P_{\mathcal{R}(A)}T^2 + 2PT - P_{\mathcal{R}(A)}.$$

Therefore, since T is A-quasinormal, we have $TT^{(s)A} = T^{(s)A}T$.

(3) Assume that $T - \lambda I$ is A-quasisinormal for all $\lambda \in \mathbb{C}$, we have

$$(T - \lambda I)(T - \lambda I)^{(s)A}(T - \lambda I) = (T - \lambda I)^{(s)A}(T - \lambda I)^2, \ \forall \lambda \in \mathbb{C}$$

which implies that

$$TT^{(s)A}T - T^{(s)A}T^2 - \lambda(TT^{(s)A} - T^{(s)A}T) = 0, \ \forall \lambda \in \mathbb{C}.$$

We deduce that T is A-normal.

The following proposition gives a characterization of an A-quasinormal operator.
Proposition 2.4 Let $T \in B_A(\mathcal{H})$, $X = T + T^{(*)}T$ and $Y = T - T^{(*)}T$. Then

(1) T is A-quasinormal if and only if X commutes with Y.

(2) If T is A-quasinormal then $TT^{(*)}T$ commutes with X and Y.

Proof. (1) A simple computation shows that

$$XY = YX \iff TT^{(*)}T = T^{(*)}T^2.$$

(2) By the hypothesis

$$TT^{(*)}T(T \pm T^{(*)}T) = (T \pm T^{(*)}T)TT^{(*)}T.$$

3 Classes of operators on semi-Hilbertian spaces (A-posinormal operators)

In this section we define the class of A-posinormal operators and give some equivalent relation about it.

An operator $T \in B(\mathcal{H})$ is said to be posinormal (the word 'posinormal' stands for positive-normal) if there exists a $P \in B(\mathcal{H})^+$ such that $TT^* = T^*PT$. Or equivalently, $T \in B(\mathcal{H})$ is posinormal if there exists a co-isometry $V^* \in B(\mathcal{H})$ a positive operator $P \in B(H)$ such that $T = T^*PV^*$. The operator T is said to be conditionally totally posinormal, shortened to $T \in CTP(\mathcal{H})$, if $T - \lambda I$ is posinormal for all $\lambda \in \mathbb{C}$, and is totally posinormal, shortened to $T \in TP(\mathcal{H})$, if all operators $T - \lambda I$, $\lambda \in \mathbb{C}$, are posinormal and have a common interrupter positive operator. The class of posinormal operators contains in particular, the classes consisting of hyponormal operators ($TT^* \leq T^*T$), M-hyponormal ($|(T - \lambda I)^*|^2 \leq M|(T - \lambda I)|^2$ for some real $M > 0$). It is known that $T \in CTP(\mathcal{H})$ if and only if it is dominant operators ($|(T - \lambda I)^*|^2 \leq M\lambda|(T - \lambda I)|^2$) for some real number $M > 0$ and all complex number λ.

Posinormal operators were first introduced and studied by H. C. Rhaly [30] and have also been studied by some authors; see, for instance, the papers by M. Itoh [18] and by I. H. Jeon, S. H. Kim, E. Ko [17], S. Mecheri [25] and B. P. Duggal and C. Kubrusly [12], A. Bucur [6].

An operator T is said to be p-hyponormal if $(T^*T)^p \geq (TT^*)^p$, and p-posinormal if $c^2(T^*T)^p \geq (TT^*)^p$ for some $c > 0$. It is clear that 1-hyponormal and 1-posinormal are hyponormal and posinormal, respectively. For a positive integer k and a positive number $0 < p \leq 1$, An operator T is said to be

(1) (p, k)-quasihyponormal if

$$T^k((T^*T)^p - (TT^*)^p)T^k \geq 0,$$
(2) \((p,k)\)-quasiposinormal if
\[
T^k \left(c(T^*T)^p - (TT^*)^p \right) T^k \geq 0 \quad \text{for some} \; c > 0.
\]

It is easy that every \((p,1)\)-quasihyponormal is \(p\)-quasihyponormal and \((p,1)\)-quasiposinormal is \(p\)-quasiposinormal. By the definition, it is clear that
\[
p - \text{hyponormal} \subset p - \text{posinormal} \subset (p,k) - \text{quasiposinormal}.
\]

\(p\)-Hyponormal, \(p\)-posinormal, \(p\)-quasihyponormal, and \((p,k)\)-quasihyponormal operators have been studied by many authors see for instance [19], [22] and references therein. and it is known that hyponormal operators have many interesting properties similar to those of normal operators(See [6], [7], [8]).

Theorem 3.1 ([18]) For \(T \in \mathcal{B}(\mathcal{H})\), the following statements are equivalent:

1. \(T\) is posinormal
2. \(\mathcal{R}(T) \subset \mathcal{R}(T^*)\)
3. \(TT^* \leq \lambda^2 T^*T\) for some \(\lambda > 0\); and
4. there exists \(S \in \mathcal{B}(\mathcal{H})\) such that \(T = T^*S\).

Moreover, if (1),(2),(3) and (4) hold, then there is a unique operator \(S\) such that

(a) \(||S|| = \inf\{\mu | TT^* \leq \mu T^*T\}\)
(b) \(\mathcal{N}(T) = \mathcal{N}(S)\); and
(c) \(\mathcal{R}(S) \subset \overline{\mathcal{R}(T)}\).

Definition 3.1 We say that \(T \in \mathcal{B}(\mathcal{H})\) is an \(A\)-positive if \(AT \in \mathcal{B}(\mathcal{H})^+\) or equivalently
\[
\langle T\xi | \xi \rangle_A \geq 0 \quad \forall \xi \in \mathcal{H}.
\]

Example 3.1 If \(T \in \mathcal{B}_A(\mathcal{H})\), then \(T^{(\star)A}\) and \(TT^{(\star)A}\) are \(A\)-positive.

Remark 3.1 An operator \(T\) is \(A\)-positive if and only if \(A^\dagger T\) is \(A^\dagger\)-positive.

Lemma 3.1 ([15]) Let \(A \in \mathcal{B}(\mathcal{H})^+\) and \(T \in \mathcal{B}(\mathcal{H})\). The following assertions are equivalent:

1. \(T\) is \(A\)-positive operator.
2. \(T \in \mathcal{B}_{A^\dagger}(\mathcal{H})\) and \(A^\dagger T(A^\dagger)^\dagger \in \mathcal{B}(\mathcal{H})^+\) where \(A^\dagger T(A^\dagger)^\dagger\) denotes the unique bounded linear extension of \(A^\dagger T(A^\dagger)^\dagger\) on \(\mathcal{B}(\mathcal{H})\).
Lemma 3.2 ([15]) Let $A, T \in \mathcal{B}(\mathcal{H})^+$. The following assertions are equivalent:

1. T is an A-positive operator ,
2. T is an $A^{\frac{1}{2}}$-positive operator.

The following Lemma is inspired from the work of M.C. Gonzalez (see [2], [3], [4]).

Lemma 3.3 Let $A \in \mathcal{B}(\mathcal{H})^+$, then we have

1. $\mathcal{N}(A) = \mathcal{N}(A^{\frac{1}{2}})$
2. $\mathcal{R}(A) \subset \mathcal{R}(A^{\frac{1}{2}}) \subset \overline{\mathcal{R}(A)}$.
3. $\mathcal{R}(A)$ is closed if and only if $\mathcal{R}(A) = \mathcal{R}(A^{\frac{1}{2}})$.

Proof.

1. It is clear that $\mathcal{N}(A^{\frac{1}{2}}) \subset \mathcal{N}(A)$. Conversely, if $\xi \in \mathcal{N}(A)$ then $A^{\frac{1}{2}}\xi \in R(A^{\frac{1}{2}}) \cap \mathcal{N}(A^{\frac{1}{2}}) = \mathcal{R}(A^{\frac{1}{2}}) \cap \mathcal{R}(A^{\frac{1}{2}}) \perp = \{0\}$. Hence, $A^{\frac{1}{2}}\xi = 0$ and $\mathcal{N}(A) = \mathcal{N}(A^{\frac{1}{2}})$.

2. $\mathcal{R}(A) \subset \mathcal{R}(A^{\frac{1}{2}})$ obviously. Let $u = \xi + \eta \in \mathcal{H}$ with $\xi \in \mathcal{N}(A^{\frac{1}{2}})$ and $\eta = \lim_{n \to \infty} A^{\frac{1}{2}}\eta_n \in \overline{\mathcal{R}(A^{\frac{1}{2}})} = \mathcal{N}(A^{\frac{1}{2}}) \perp = \mathcal{N}(A) \perp$. then $A^{\frac{1}{2}}u = \lim_{n \to \infty} A\eta_n \in \overline{\mathcal{R}(A)}$. Thus, $\mathcal{R}(A^{\frac{1}{2}}) \subset \overline{\mathcal{R}(A)}$.

3. If $\mathcal{R}(A)$ is closed, $(2) \implies \mathcal{R}(A^{\frac{1}{2}}) = \overline{\mathcal{R}(A)}$. Conversely, if $\mathcal{R}(A^{\frac{1}{2}}) = \overline{\mathcal{R}(A)}$, then for each $\xi \in \mathcal{N}(A) \perp$ there exists $\eta \in \mathcal{N}(A) \perp$ such that $A^{\frac{1}{2}}\xi = A\eta$. Then $A^{\frac{1}{2}}(\xi - A^{\frac{1}{2}}\eta) = 0$ and $\xi = A^{\frac{1}{2}}\eta \in \mathcal{R}(A^{\frac{1}{2}})$. Therefore $\mathcal{R}(A^{\frac{1}{2}}) \subset \mathcal{R}(A^{\frac{1}{2}})$ and so $A^{\frac{1}{2}}$ has closed range. Now, by hypothesis $\mathcal{R}(A) = \mathcal{R}(A^{\frac{1}{2}})$, then $\overline{\mathcal{R}(A)} \subset \mathcal{R}(A) \subset \overline{\mathcal{R}(A)}$, namely, $\mathcal{R}(A)$ is closed.

Definition 3.2 T is said to be A-posinormal if there exists a A-positive operator P such that

$$TAT^* = T^*APT.$$

Here, an operator P is called A-interrupter. The class of all A-posinormal operators in $\mathcal{B}(\mathcal{H})$ is denoted by $\mathcal{P}_A(\mathcal{H})$. T is A-coposinormal if T^* is A-posinormal.

Remark 3.2 Every A-normal operator is an A-posinormal with interrupter is $P = I$.

Remark 3.3 Every A-hyponormal operator with A invertible is A-posinormal.
Example 3.2 Let $T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^2)$ and $A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^2)^+$. By a simple computation we have that $TAT^* \neq T^*AT$. Hence T is not A-normal. On the other hand, consider a operator $P = \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^2)$. Then $AP \geq 0$ and $TAT^* = T^*APT$. Hence T is A-posinormal.

From Example 3.2 we conclude that A-posinormal operators are not necessary A-normal.

Definition 3.3 We say that $T \in \mathcal{B}(\mathcal{H})$ is

1. conditionally totally A-posinormal provided that $T - \lambda I$ is A-posinormal for all $\lambda \in \mathbb{C}$.
2. totally A-posinormal if all operators $T - \lambda I$ are A-posinormal for all $\lambda \in \mathbb{C}$ and have a common A-interrupter A-positive operator.

Theorem 3.2 Let $A \in \mathcal{B}(\mathcal{H})^+$ and $T \in \mathcal{B}(\mathcal{H})$ such that T is A-posinormal. The following statements hold.

1. $TAT^* \leq cT^*AT$ for some $c > 0$.
2. $\mathcal{R}(TA^\frac{1}{2}) \subseteq \mathcal{R}(T^*A^\frac{1}{2})$.
3. There exists $S \in \mathcal{B}(\mathcal{H})$ such that $TA^\frac{1}{2} = T^*A^\frac{1}{2}S$.
4. There exists a positive operator P such that $TAT^* = T^*A^\frac{1}{2}PA^\frac{1}{2}T$.

Proof. (1) Since T is A-posinormal there is A-positive operator $P \in \mathcal{B}(\mathcal{H})$ such that $TAT^* = T^*APT$.

$$TAT^* = T^*APT \implies \langle AT^*\xi \mid T^*\xi \rangle = \langle APT\xi \mid T\xi \rangle$$
$$\implies \langle T^*\xi \mid T^*\xi \rangle_A = \langle PT\xi \mid T\xi \rangle_A$$
$$\implies \|T^*\xi\|_A^2 \leq \|PT\xi\|_A\|T\xi\|_A$$

Since P is A-positive $\|PT\xi\|_A \leq c\|T\xi\|_A$ for some $c > 0$ (see Lemma 3.1)

Hence

$$\|T^*\xi\|_A^2 \leq c\|T\xi\|_A^2.$$ This fact implies that $TAT^* \leq cT^*AT$ and we get that

$$(TA^\frac{1}{2})(TA^\frac{1}{2})^* \leq c(A^\frac{1}{2}T)^*(A^\frac{1}{2}T).$$

By Douglas theorem it follows that (2) and (3) hold.
(4) Assume that $T A^{\frac{1}{2}} = T^* A^{\frac{1}{2}} S$ for some $S \in \mathcal{B}(\mathcal{H})$, then

$$T A^* = T^* A^{\frac{1}{2}} S S^* A^{\frac{1}{2}} T.$$

Put $P = SS^*$, P is positive and satisfy $T A^* = T^* A^{\frac{1}{2}} P A^{\frac{1}{2}} T$.

Proposition 3.1 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$, the following statements are equivalent:

(1) T is A-posinormal.

(2) $T A^* \leq c T^* A T$ for some $c > 0$.

(3) $\mathcal{R}(T A^{\frac{1}{2}}) \subseteq \mathcal{R}(T^* A^{\frac{1}{2}})$.

(4) There exists $S \in \mathcal{B}(\mathcal{H})$ such that $T A^{\frac{1}{2}} = T^* A^{\frac{1}{2}} S$.

(5) There exists a positive operator P such that $T A^* = T^* A^{\frac{1}{2}} P A^{\frac{1}{2}} T$.

Proof. By Theorem 3.2 we have that $(1) \implies (2) \implies (3) \implies (4) \implies (5)$.

To prove that $(5) \implies (1)$. If $T A^* = T^* A^{\frac{1}{2}} P A^{\frac{1}{2}} T$ we have

$$T A^* = T^* A A^{-\frac{1}{2}} P A^{\frac{1}{2}} T,$$

As $Q = A^{-\frac{1}{2}} P A^{\frac{1}{2}}$ is A-positive, thus T is A-posinormal.

Corollary 3.1 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$. Then T is A-posinormal if and only if T is posinormal.

Proof.

T is posinormal $\iff \mathcal{R}(T) \subseteq \mathcal{R}(T^*) \iff \mathcal{R}(T A^{\frac{1}{2}}) \subseteq \mathcal{R}(T^* A^{\frac{1}{2}})$ (as A invertible) $\iff T$ is A - posinormal (Proposition 3.1).

Lemma 3.4 Let $T, S \in \mathcal{B}(\mathcal{H})$ then the following statements hold

(1) If $T \geq S$ then $B^* T B \geq B^* S B$, for all $B \in \mathcal{B}(\mathcal{H})$.

(2) If range of B is dense in \mathcal{H}, then

$$T \geq S \iff B^* T B \geq B^* S B.$$

Proof. (1) Let $T \geq S$. then we get the following relation

$$\langle B^* T B \xi | \xi \rangle = \langle T B \xi | B \xi \rangle \geq \langle S B \xi | B \xi \rangle \geq \langle B^* S B \xi | \xi \rangle, \forall \xi \in \mathcal{H}.$$

(2) Let $B^* T B \geq B^* S T$. Then we have

$$\langle B^* T B \xi | \xi \rangle \geq \langle B^* S B \xi | \xi \rangle \implies \langle T B \xi | B \xi \rangle \geq \langle S B \xi | \xi \rangle, \forall \xi \in \mathcal{H}.$$

Hence $T \geq S$ on $\mathcal{R}(B)$ because B has a dense range in \mathcal{H}, we have $T \geq S$ on \mathcal{H}.
Corollary 3.2 If T is A-posinormal with A-interrupter P and $A \geq AP$, then T is A-hyponormal.

Proof. Since T is A-posinormal we have that $TAT^* = T^*APT$, for some P with $AP \geq 0$. From Lemma 3.4 and the hypothesis $A \geq AP$ we deduce that $T^*AT \geq T^*APT = TAT^*$ and hence, T is A-hyponormal.

In the following theorem we collect some properties of the class $\mathcal{P}_A(\mathcal{H})$.

Theorem 3.3 (1) If T is of class $\mathcal{P}_A(\mathcal{H})$ then λT is of class $\mathcal{P}_A(\mathcal{H})$.

(2) If $T, S \in \mathcal{B}(\mathcal{H})$ such that T is self-adjoint, $TS = ST$ and S is of class $\mathcal{P}_A(\mathcal{H})$ then TS is of class $\mathcal{P}_A(\mathcal{H})$.

(3) If A is invertible and T, S are of class $\mathcal{P}_A(\mathcal{H})$ such that T commutes with S and S^* both, then TS is of class $\mathcal{P}_A(\mathcal{H})$.

(4) If A is invertible and T is of class $\mathcal{P}_A(\mathcal{H})$ then so any $S \in \mathcal{B}(\mathcal{H})$ that is A-unitary equivalent to T i.e., $S = V^*TV$ where V is A-unitary operator.

Proof. (1) clear.

(2) Since S if A-posinormal, $SAS^* = S^*APS$. Therefore

$$(TS)A(TS)^* = TSAS^*T = TS^*APST = (TS)^*AP(TS).$$

It follows that TS is A-posinormal.

(3) Since T is A-posinormal these exist a constant $c > 0$ such that $TAT^* \leq cT^*AT$. By Lemma 3.4 we have

$$TAT^* \leq cT^*AT \implies STAT^*S^* \leq cST^*ATS^*$$
$$\implies T(SAS^*)T^* \leq cT^*(SAS^*)T$$
$$\implies T(SAS^*)T^* \leq cc'T^*S^*AST$$
as S is A-posinormal

Hence,

$$TSA(TS)^* \leq cc'(TS)^*A(TS).$$

(4) We have

$$SAS^* = V^*TVAV^*T^*V$$
$$= V^*TAT^*V \text{ (as } V \text{ is } A\text{-unitary})$$
$$\leq cV^*(T^*AT)V \text{ (as } T \text{ is } A\text{-posinormal})$$
$$\leq V^*T^*VAV^*TV$$
$$\leq cS^*AS.$$
Remark 3.4 Theorem 3.3 (1) ensures that a complex multiplication of a A-posinormal operator is again A-posinormal (i.e., the class of A-posinormal operators is closed under scalar multiplication).

Since γT is A-posinormal for all $\gamma \geq 0$ whenever T is A-posinormal. It follows that the collection of all A-posinormal operators is a cone in $B(\mathcal{H})$.

The following example shows that if T is A-posinormal it is not necessary that T^* is A-posinormal.

Example 3.3 Let $\mathcal{H} = l_2(\mathbb{C})$, the unilateral shift operator on \mathcal{H} is defined by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$. It is know that $T^*(x_1, x_2, ...) = (x_2, x_3, ...)$, and easily to check that $\mathcal{R}(T) \subset \mathcal{R}(T^*)$ hence T is I-posinormal operator. Clearly that $\mathcal{R}(T) \neq \mathcal{R}(T^*)$, therefore T^* is not I-posinormal.

Proposition 3.2 Let $T \in B(\mathcal{H})$. If T and T^* are A-posinormal operators then

$$\mathcal{R}(TA^\frac{1}{2}) = \mathcal{R}(T^*A^\frac{1}{2}).$$

Proof. Since T and T^* are A-posinormal operator $\mathcal{R}(TA^\frac{1}{2}) \subseteq \mathcal{R}(T^*A^\frac{1}{2})$ and $\mathcal{R}(T^*A^\frac{1}{2}) \subseteq \mathcal{R}(TA^\frac{1}{2})$. Hence

$$\mathcal{R}(TA^\frac{1}{2}) = \mathcal{R}(T^*A^\frac{1}{2}).$$

Corollary 3.3 Let $T \in B(\mathcal{H})$ such that T and T^* are I-posinormal. Then the following properties hold

1. $\mathcal{R}(T^nT^*) = \mathcal{R}(T^{n+1})$ and $\mathcal{R}(T^*T^n) = \mathcal{R}(T^{n+1}).$

2. $\mathcal{N}(TT^*) = \mathcal{N}(TT^n)$ and $\mathcal{N}(T^*T^n) = \mathcal{N}(T^{n+1}).$

Proof. (1) Let $\xi \in \mathcal{R}(T^nT^*)$ there exists $\eta \in \mathcal{H}$ such that $\xi = T^nT^*\eta$, but there exists $\eta_1 \in \mathcal{H}$ such that $T^*\eta = T_1\eta$, therefore $\xi = T^nT_1\eta = T^{n+1}\eta_1$ hence $\xi \in \mathcal{R}(T^{n+1})$. Now let $\xi \in \mathcal{R}(T^nT^*)$ there exists $\eta \in \mathcal{H}$ such that $\xi = T^nT^*\eta$, but there exists $\eta_1 \in \mathcal{H}$ such that $T\eta = T^*\eta_1$, therefore $\xi = T^nT^*\eta_1$ hence $\xi \in \mathcal{R}(T^nT^*)$ and $\mathcal{R}(T^nT^*) = \mathcal{R}(T^{n+1}).$

by similar way we have $\mathcal{R}(T^nT) = \mathcal{R}(T^{n+1}).$

(2) Since $\mathcal{R}(T^nT^*) = \mathcal{R}(T^{n+1})$ then $\mathcal{R}(T^nT^*)^\perp = \mathcal{R}(T^{n+1})^\perp$ hence $\mathcal{N}((T^nT^*)^*) = \mathcal{N}(T^{n+1})$ so $\mathcal{N}(TT^*) = \mathcal{N}(T^{n+1})$ by the same way we get $\mathcal{N}(T^*T^n) = \mathcal{N}(T^{n+1}).$

Proposition 3.3 If T is of class $\mathcal{P}_A(\mathcal{H})$, then we have

1. $A^\frac{1}{2}TA^\frac{1}{2}$ is posinormal.

2. If $TA = AT$, then TA and $TA^\frac{1}{2}$ are posinormal.

3. If $TA = AT$ and the A-interrupter P of T is positive then T is of class $\mathcal{P}_{A^\frac{1}{2}}(\mathcal{H})$.

Proof. (1) Since T is A-posinormal, by Theorem 3.2 we have $TAT^* = T^*A^\frac{1}{2}PA^\frac{1}{2}T$ with $P \geq 0$. Hence

$$A^\frac{1}{2}T^*A^\frac{1}{2}T^*A^\frac{1}{2} = A^\frac{1}{2}T^*A^\frac{1}{2}PA^\frac{1}{2}TA^\frac{1}{2}.$$

Thus,

$$(A^\frac{1}{2}T^\frac{1}{2}A^\frac{1}{2})(A^\frac{1}{2}T^\frac{1}{2}A^\frac{1}{2})^* = (A^\frac{1}{2}T^\frac{1}{2}A^\frac{1}{2})^*PA^\frac{1}{2}TA^\frac{1}{2}.$$

It follows that $A^\frac{1}{2}TA^\frac{1}{2}$ is posinormal.

(2) If $TA = AT$ we have $TA^\frac{1}{2} = A^\frac{1}{2}T$. Thus TA is posinormal and moreover

$$(TA^\frac{1}{2})^* = P(TA^\frac{1}{2}), \quad P \geq 0.$$

It follows that $TA^\frac{1}{2}$ is posinormal.

(3) Since T is A-posinormal and $AT = TA$,

$$A(TT^* - T^*PT) = 0.$$

By Lemma 3.3

$$A^\frac{1}{2}(TT^* - T^*PT) = 0,$$

and

$$TA^\frac{1}{2}T^* = T^*A^\frac{1}{2}PT.$$

From Lemma 3.2, P is $A^\frac{1}{2}$-positive, hence T is of class $\mathcal{P}_{A^\frac{1}{2}}(\mathcal{H})$.

Proposition 3.4 Let $A \in \mathcal{B}(\mathcal{H})_+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$ such that $A^\frac{1}{2}TA^\frac{1}{2}$ is posinormal then T is A-posinormal.

Proof. By the assumption there exist a positive operator P such that

$$A^\frac{1}{2}TAT^*A^\frac{1}{2} = A^\frac{1}{2}T^*A^\frac{1}{2}PA^\frac{1}{2}TA^\frac{1}{2}$$

and hence

$$TAT^* = T^*A^\frac{1}{2}PA^\frac{1}{2}T = T^*AA\frac{1}{2}PA^\frac{1}{2}T.$$

Corollary 3.4 Given $A, P \in \mathcal{B}(\mathcal{H})_+$ and let $T \in \mathcal{B}(\mathcal{H})$ such that $TA = AT$. Then the following statements are equivalents

(1) T is A-posinormal with A-interrupter P.

(2) T is $A^\frac{1}{2}$-posinormal with $A^\frac{1}{2}$-interrupter P.

Proof. (1) \implies (2) Follows from Proposition 3.3.

(2) \implies (1) $TA^\frac{1}{2}T^* = T^*A^\frac{1}{2}PT \implies TAT^* = T^*APT$ since $AT = TA$. As $P \geq 0$ and $A^\frac{1}{2}$-positive it is A-positive by Lemma 3.2. Thus T is A-posinormal.
Proposition 3.5 Assume that $A \in \mathcal{B}(\mathcal{H})^+$ has a dense range and let $T \in \mathcal{B}(\mathcal{H})$ such that $A^{\frac{1}{2}}T A^{\frac{1}{2}}$ is posinormal then there exist a constant $c > 0$ for which $T A T^* \leq c T^* A T$.

Proof. Since $A^{\frac{1}{2}}T A^{\frac{1}{2}}$ is posinormal, by Theorem 3.1 there is $c > 0$ such that

$$\left(A^{\frac{1}{2}}T A^{\frac{1}{2}} \right) \left(A^{\frac{1}{2}}T A^{\frac{1}{2}} \right)^* \leq c \left(A^{\frac{1}{2}}T A^{\frac{1}{2}} \right)^* \left(A^{\frac{1}{2}}T A^{\frac{1}{2}} \right)$$

and hence $A^{\frac{1}{2}}T A T^* A^{\frac{1}{2}} \leq c A^{\frac{1}{2}}T^* A T A^{\frac{1}{2}}$. As range of A is dense we have by Lemma 3.4

$$A^{\frac{1}{2}}T A T^* A^{\frac{1}{2}} \leq c A^{\frac{1}{2}}T^* A T A^{\frac{1}{2}} \implies T A T^* \leq c T^* A T$$

Theorem 3.4 If T is A-posinormal with A-interrupter P such T has dense range and A is one to one, then P is unique.

Proof. Assume P_1 and P_2 both serve as A-interrupters for T. Then $T^* A P_1 T = T A T^* = T^* A P_2 T$. Since T has dense range, T^* is one to one and, consequently, $A(P_1 - P_2)T = 0$. We again apply the fact that T has dense range to conclude that $A(P_1 - P_2) = 0$. Since A is one to one, $P_1 - P_2 = 0$.

Proposition 3.6 [(20)] If T is posinormal, then $\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$; in particular $\mathcal{N}(T)$ is a reducing subspace for the posinormal operator T.

Lemma 3.5 Let $A \in \mathcal{B}(\mathcal{H})^+$ is one to one and T is an A-posinormal operator then

1. $\mathcal{N}(T) \subset \mathcal{N}(T^*)$
2. $\mathcal{N}(T^2) = \mathcal{N}(T)$.
3. $\mathcal{N}(TA^{\frac{1}{2}}) \subset \mathcal{N}(T^* A^{\frac{1}{2}})$.

Proof. (1) Let $\xi \in \mathcal{N}(T)$, since T is A-posinormal we have that $T A T^* \xi = 0$, which implies $\| (T A^{\frac{1}{2}})^* \xi \| = 0$, and hence $A^{\frac{1}{2}} T^* \xi = 0$. Thus $T^* \xi \in \mathcal{N}(A^{\frac{1}{2}}) = \mathcal{N}(A)$.

(2) It suffices to show that $\mathcal{N}(T^2) \subset \mathcal{N}(T)$. If $\xi \in \mathcal{N}(T^2)$ then, by (1) $T \xi \in \mathcal{N}(T^*)$ so that $T^* T \xi = 0$ which implies $\| T \xi \|^2 = \langle T^* T \xi \mid \xi \rangle = 0$, and hence $\xi \in \mathcal{N}(T)$.

(3) Let $\xi \in \mathcal{H}$ such that $T A^{\frac{1}{2}} \xi = 0$. Since T is posinormal, $T A T^* A^{\frac{1}{2}} \xi = 0$.

Thus

$$(T A^{\frac{1}{2}})(T A^{\frac{1}{2}})^* A^{\frac{1}{2}} \xi = 0 \implies \| (T A^{\frac{1}{2}})^* A^{\frac{1}{2}} \xi \|^2 = 0
\implies (T A^{\frac{1}{2}})^* A^{\frac{1}{2}} \xi = 0
\implies A^{\frac{1}{2}} T^* A^{\frac{1}{2}} \xi = 0.$$
Remark 3.5 If \mathcal{M} is a closed subspace of \mathcal{H}, $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp$. If T is in $\mathcal{B}(\mathcal{H})$, then T can be written as a 2×2 matrix with operators entries, $T = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix}$ where $W \in \mathcal{B}(\mathcal{M})$, $X \in \mathcal{B}(\mathcal{M}^\perp, \mathcal{M})$, $Y \in \mathcal{B}(\mathcal{M}^\perp, \mathcal{M})$, and $Z \in \mathcal{B}(\mathcal{M}^\perp)$ (cf. Conway [10]).

A subspace \mathcal{M} is a reducing subspace for T (or \mathcal{M} reduces T) if it is both T and T^*-invariant (equivalently) if both \mathcal{M} and \mathcal{M}^\perp are T-invariant.

Proposition 3.7 Let $A \in \mathcal{B}(\mathcal{H})^+$ be one to one and T is an A-posinormal operator then $\mathcal{N}(T)$ reduces T.

Proof. It is known that $\mathcal{N}(T)$ is T-invariant. Consider the decomposition $\mathcal{H} = \mathcal{N}(T) \oplus \mathcal{N}(T)^\perp$. Since $T = \begin{pmatrix} O & X \\ O & Z \end{pmatrix}$ and $T^* = \begin{pmatrix} O & O^* \\ X^* & Z^* \end{pmatrix}$, for the proof, it suffices to show that $X = O$. We have for all $\xi \in \mathcal{N}(T)$, $T^*(\xi \oplus 0) = 0 \oplus X^*(\xi)$. Then $\mathcal{N}(T)^\perp \subset \mathcal{N}(T^*)$ by Lemma 3.5, so that $X^* = O$ and hence $X = O$, which implies that $T = \begin{pmatrix} O & O \\ O & Z \end{pmatrix}$ that is $\mathcal{N}(T)$ reduces T.

Remark 3.6 If $A \geq 0$ and invertible then $A^{-1} \geq 0$.

Corollary 3.5 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and let $T \in \mathcal{B}(\mathcal{H})$. Assume that $AT = TA$ then $T \in \mathcal{P}_A(\mathcal{H}) \iff T \in \mathcal{P}_{A^{-1}}(\mathcal{H})$.

Proof. By using Proposition 3.1 (2) and Lemma 3.4 we have

\[
TAT^* \leq cT^*AT \iff A^{-1}\left(TAT^*\right)A^{-1} \leq cA^{-1}\left(T^*AT\right)A^{-1} \\
\iff TA^{-1}T^* \leq cT^*A^{-1}T.
\]

Proposition 3.8 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible. If T is invertible operator then T and T^{-1} are A-posinormal.

Proof. We have

\[
TAT^* = T^*A\left(A^{-1}(T^*)^{-1}TAT^\ast T^{-1}\right)T.
\]

A direct computation shows that $A^{-1}(T^*)^{-1}TAT^\ast T^{-1}$ is A-positive. Hence T is A-posinormal.

\[
T^{-1}A(T^{-1})^* = (T^{-1})^*A\left(A^{-1}T^{-1}T^*A(T^{-1})^*T\right)T^{-1}.
\]

By direct computation we show that $A^{-1}T^{-1}A(T^{-1})^*T$ is A-positive, hence T^{-1} is A-posinormal.
Remark 3.7 Since the set of invertible operators from $\mathcal{B}(\mathcal{H})$ is open in $\mathcal{B}(\mathcal{H})$, this shows that the set of A-posinormal operators whenever A is invertible is topologically large.

Corollary 3.6 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$ then $T - \lambda I$ is A-posinormal for $\lambda \notin \sigma(T)$ (spectrum of T).

Corollary 3.7 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$. Then $(T - \lambda I)$ is A-posinormal for all $\lambda \in \mathcal{C}$ if and only if $(T - \lambda I)$ is A-posinormal for all $\lambda \in \mathbb{C}$.

Proof. Assume that $(T - \lambda I)$ is A-posinormal for all $\lambda \in \mathcal{C}$ and let $\lambda \notin \sigma(T)$ then $(T - \lambda I)$ is invertible and hence $(T - \lambda I)$ is A-posinormal by Corollary 3.5., the other direction is clear.

The proof of the following corollary is straightforward and will be omitted.

Corollary 3.8 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$. Assume that T is invertible. If P serves as the A-interrupter for the A-posinormal operator T^*, then P is invertible and $AP^{-1}A^{-1}$ serves as the A^{-1}-interrupter of the A^{-1}-posinormal operator T^{-1}.

Proposition 3.9 Let A and B are positive operators such that $A + B$ is invertible, then

$$\mathcal{P}_A(\mathcal{H}) \cap \mathcal{P}_B(\mathcal{H}) \subset \mathcal{P}_{A+B}(\mathcal{H})$$

Proof. Assume that T is of class $\mathcal{P}_A(\mathcal{H}) \cap \mathcal{P}_B(\mathcal{H})$, then there exists A-positive operator P_1 and B-positive operator P_2 such that

$$TAT^* = T^*AP_1T \quad \text{and} \quad TBT^* = T^*BP_2T.$$

It follows that

$$T(A + B)T^* = TAT^* + TBT^* = T^*AP_1T + T^*BP_2T = T^*(AP_1 + BP_2)T.$$

From the hypothesis we have

$$T(A + B)T^* = T^*(A + B)(A + B)^{-1}(AP_1 + BP_2)T.$$

Since $(A + B)^{-1}(AP_1 + BP_2)$ is $(A + B)$-positive, T is of class $\mathcal{P}_{A+B}(\mathcal{H})$.

Proposition 3.10 Let $T \in \mathcal{P}_A(\mathcal{H})$ with A-interruptor P. If P is invertible then PTP^* is of class $\mathcal{P}_{(P^*)^{-1}AP^{-1}}(\mathcal{H})$ with same interruptor.
Proof. Since T is of class $\mathcal{P}_A(\mathcal{H}) : TAT^* = T^*APT$.

$$PTP^*(P^*)^{-1}AP^{-1}PTP^* = PT^*P^*(P^*)^{-1}AP^{-1}PTP^*.$$

Since P is invertible-A interruptor of T we have

$$\langle (P^*)^{-1}AP^{-1}P\xi | \xi \rangle = \langle A\xi | P^{-1}\xi \rangle = \langle AP(P^{-1}\xi) | P^{-1}\xi \rangle \geq 0.$$

Hence, P is $(P^*)^{-1}AP^{-1}$-positive.

Theorem 3.5 Assume that T is A-posinormal with A-interruptor P and Q is positive operator satisfying $A \geq QAQ \geq AP$, then the operator $S = QTQ$ is A-hyponormal.

Proof. Put $[S^*, S]_A = S^*AS - SAS^*$ we have

$$[S^*, S]_A = QT^*QAQTQ - QTQAQT^*Q = QT^*QAQTQ + QT^*APTQ + QTAT^*Q - QTQAQT^*Q = QT^*(QAQ - AP)TQ + QT(A - QAQ)T^*Q$$

Therefore

$$\langle [S^*, S]_A u | u \rangle = \langle (QAQ - AP)TQu | TQu \rangle + \langle (A - QAQ)T^*Qu | T^*Qu \rangle \geq 0.$$

Proposition 3.11 Let $A \in \mathcal{B}(\mathcal{H})^+$ be invertible and $T \in \mathcal{B}(\mathcal{H})$. If T is A-posinormal and normal then T^n is A-posinormal for $n = 1, 2,$

Proof. We use an induction. Clearly, it is true for $n = 1$. Suppose $T^kAT^k \leq c_kT^kAT^k$ for $1 \leq k \leq n$ and $c_k \geq 0$. Then

$$T^{n+1}AT^{n+1} = T(T^nAT^n)T^* \leq c_nT(T^nAT^n)T^* \leq c_nT^*(TAT^*)T^n \leq c_nc_1T^{*n+1}AT^{n+1}.$$

Hence T^{n+1} is A-posinormal.

4 Tensor products of A-posinormal operators

Let $\mathcal{H} \otimes \mathcal{H}$ denote the completion, endowed with a reasonable uniform crossnorm, of the algebraic tensor product $\mathcal{H} \otimes \mathcal{H}$ of \mathcal{H} with \mathcal{H}. Given non-zero
Let $T, S \in \mathcal{B}(\mathcal{H})$, let $T \otimes S \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ denote the tensor product on the Hilbert space $\mathcal{H} \otimes \mathcal{H}$, when $T \otimes S$ is defined as follows

$$
\langle T \otimes S(\xi_1 \otimes \eta_1) | (\xi_2 \otimes \eta_2) \rangle = \langle T\xi_1 | \xi_2 \rangle \langle S \eta_1 | \eta_2 \rangle.
$$

The operation of taking tensor products $T \otimes S$ preserves many properties of $T, S \in \mathcal{B}(\mathcal{H})$, but by no means all of them. Thus, whereas $T \otimes S$ is normal if and only if T and S are normal [16], there exist paranormal operators T and S such that $T \otimes S$ is not paranormal [1]. In [13], Duggal showed that if for non-zero $T, S \in \mathcal{B}(\mathcal{H}), T \otimes S$ is p-hyponormal if and only if T and S are p-hyponormal. Thus result was extended to p-quasihyponormal operators in [19].

In the following study we will prove a necessary and sufficient condition for $T \otimes S$ to be A-posinormal, where T and S are both non-zero operators.

Recall that $(T \otimes S)^*(T \otimes S) = T^*T \otimes S^*S$ and so, by the uniqueness of positive square roots, $|T \otimes S|^r = |T|^r \otimes |S|^r$ for any positive rational number r. From the density of of the rationals in the reals, we obtain $|T \otimes S|^p = |T|^p \otimes |S|^p$ for every positive real number p. Observe also that

$$
A \otimes B = (A \otimes I)(I \otimes B) = (I \otimes B)(A \otimes I).
$$

The following elementary results on tensor products of operators will be used often (and without further reference) in the sequel: $T_1 \otimes S_1 = T_2 \otimes S_2$ if and only if there exists a scalar $d \neq 0$ such that $T_1 = dT_2$ and $S_1 = d^{-1}S_2$. If T_k and S_k ($k = 1, 2$) are positive operators, then $T_1 \otimes S_1 = T_2 \otimes S_2$ if and only if there exists a scalar $d > 0$ such that $T_1 = dT_2$ and $S_1 = d^{-1}S_2$. The proofs to these results are to be found in the papers by Hou [16] and Stochel [31].

Lemma 4.1 If $T_1 \geq T_2 \geq 0$ and $S_1 \geq S_2 \geq 0$, then $T_1 \otimes S_1 \geq T_2 \otimes S_2 \geq 0$.

Proof. By Assumptions we have $\langle T_1 \xi | \xi \rangle \geq \langle T_2 \xi | \xi \rangle \ \forall \ \xi \in \mathcal{H}$ and $\langle S_1 \eta | \eta \rangle \geq \langle S_2 \eta | \eta \rangle \ \forall \ \eta \in \mathcal{H}$. Thus

$$
\langle T_1 \xi | \xi \rangle \langle S_1 \eta | \eta \rangle \geq \langle T_2 \xi | \xi \rangle \langle S_2 \eta | \eta \rangle,
$$

and hence

$$
\langle T_1 \otimes S_1(\xi \otimes \eta) | \xi \otimes \eta \rangle \geq \langle T_2 \otimes S_2(\xi \otimes \eta) | \xi \otimes \eta \rangle.
$$

Proposition 4.1 ([31]) Let $T_1, T_2, S_1, S_2 \in \mathcal{B}(\mathcal{H})$ be positive operators. If $T_1 \neq 0$ and $S_1 \neq 0$, then the following conditions are equivalents

1. $T_1 \otimes S_1 \leq T_2 \otimes S_2$
2. There exists $c > 0$ such that $T_1 \leq cT_2$ and $S_1 \leq c^{-1}S_2$.

In the following theorem we generalize theorem 2.4 in [31] to the space \((\mathcal{H}, \langle \ | \rangle_A)\).

Theorem 4.1 Let \(A, B \in \mathcal{B}(\mathcal{H})^+\). If \(T \in \mathcal{B}_A(\mathcal{H})\) and \(S \in \mathcal{B}_B(\mathcal{H})\) are nonzero operators, then the following properties hold.

1. \(T \otimes S\) is \((A \otimes B)\)-quasi-isometry \(\iff\) \(\alpha T\) is \(A\)-quasi-isometry and \(\alpha^{-1} S\) is \(B\)-quasi-isometry for some constant \(\alpha \neq 0\).

2. \(T \otimes S\) is \((A \otimes B)\)-isometric \(\iff\) \(\alpha T\) is \(A\)-isometry and \(\alpha^{-1} S\) is \(B\)-isometry for some constant \(\alpha \neq 0\).

3. \(T \otimes S\) is \((A \otimes B)\)-unitary \(\iff\) \(\alpha T\) is \(A\)-unitary and \(\alpha^{-1} S\) is \(B\)-unitary for some constant \(\alpha \neq 0\).

4. \(T \otimes S\) is \((A \otimes B)\)-selfadjoint \(\iff\) \(\alpha T\) is \(A\)-selfadjoint and \(\alpha^{-1} S\) is \(B\)-selfadjoint for some constant \(\alpha \neq 0\).

5. \(T \otimes S\) is \((A \otimes B)\)-positive \(\iff\) \(\alpha T\) is \(A\)-positive and \(\alpha^{-1} S\) is \(B\)-positive for some constant \(\alpha \neq 0\).

6. \(T \otimes S\) is \((A \otimes B)\)-normal \(\iff\) \(T\) is \(A\)-normal and \(S\) is \(B\)-normal.

7. \(T \otimes S\) is \((A \otimes B)\)-hyponormal \(\iff\) \(T\) is \(A\)-hyponormal and \(S\) is \(B\)-hyponormal.

8. \(T \otimes S\) is \((A \otimes B)\)-quasinormal \(\iff\) \(T\) is \(A\)-quasinormal and \(S\) is \(B\)-quasinormal.

Proof. (1)

\[
(T \otimes S) \text{ is } (A \otimes B) - \text{ quasi-isometry} \\
\iff (T \otimes S)^*(A \otimes B)(T \otimes S) = (T \otimes S)^{*2}(A \otimes B)(T \otimes S)^2 \\
\iff T^* AT \otimes S^* BS = T^{*2} AT^{2} \otimes S^{*2} BS^{2} \\
\iff \exists \ d > 0 : T^* AT = dT^{*2} AT^{2} \text{ and } S^* BS = d^{-1} S^{*2} BS^{2} \\
\iff (\sqrt{d}T)^* A(\sqrt{d}T) = (\sqrt{d}T)^{*2} A(\sqrt{d}T)^2 \text{ and} \\
(\sqrt{d^{-1}}S)^* A(\sqrt{d^{-1}}S) = (\sqrt{d^{-1}}S)^{*2} A(\sqrt{d^{-1}}S)^2.
\]

(2) "\(\Rightarrow\)" Assume that \(T \otimes S\) is \((A \otimes B)\)-isometry, then

\[(T \otimes S)^*(A \otimes B)(T \otimes S) = A \otimes B \implies T^* AT \otimes S^* BS = A \otimes B.
\]

Since the operators involved in the above inequalities are positive and nonzero, it follows by Proposition 4.1 that there is a constant \(d > 0\) such that

\[T^* AT = dA \text{ and } S^* BS = d^{-1} B.
\]

This implies that...
\[
\left(\frac{1}{\sqrt{d}} T \right)^* A \left(\frac{1}{\sqrt{d}} T \right) = A \quad \text{and} \quad \left(\sqrt{d} S \right)^* B \left(\sqrt{d} S \right) = B,
\]

we obtain the desired result. The converse implication is obvious. In the same way, we may deduce (3) , (4) and (5).

(6)

\[
\begin{align*}
(T \otimes S) & \text{ is } (A \otimes B) - \text{normal} \\
& \iff (T \otimes S)(T \otimes S)^{(*) \otimes B} = (T \otimes S)^{(*) \otimes B} (T \otimes S) \\
& \iff TT^{(*) \Lambda} \otimes BS^{(*) \Lambda} = T^{(*) \Lambda} T \otimes S^{(*) \Lambda} S.
\end{align*}
\]

(1) First case: if A or B is injective.

Multiplying the both side of this equality by $(A \otimes B)$ we obtained

\[
ATT^{(*) \Lambda} \otimes BSS^{(*) \Lambda} = AT^{(*) \Lambda} T \otimes BS^{(*) \Lambda} S.
\]

Since the operators involved in the above equality are positive, it follows that there exists a scalar $d > 0$ such that

\[
ATT^{(*) \Lambda} = dAT^{(*) \Lambda} T \quad \text{and} \quad BSS^{(*) \Lambda} = d^{-1} BS^{(*) \Lambda} S.
\]

Hence

\[
ATT^{(*) \Lambda} = AdT^{(*) \Lambda} T \quad \text{and} \quad BSS^{(*) \Lambda} = Bd^{-1} S^{(*) \Lambda} S.
\]

Thus,

\[
TT^{(*) \Lambda} = dT^{(*) \Lambda} T \quad \text{and} \quad SS^{(*) \Lambda} = d^{-1} S^{(*) \Lambda} S,
\]

and it follows that

\[
\|TT^{(*) \Lambda}\|_A = d\|T^{(*) \Lambda} T\| \quad \text{and} \quad \|SS^{(*) \Lambda}\| = d^{-1}\|S^{(*) \Lambda} S\|.
\]

Consequently $d = 1$.

(2) General case: A and B are not necessary injective. There exists a scalar $d \neq 0$ such that

\[
TT^{(*) \Lambda} = dT^{(*) \Lambda} T \quad \text{and} \quad SS^{(*) \Lambda} = d^{-1} S^{(*) \Lambda} S.
\]

We deduce that $|d| = |d^{-1}| = 1$ and hence $d = 1$. The desired results are proved.

(7) By similar argument.
(8)

\[(T \otimes S) \text{ is } (A \otimes B) - \text{quasinormal} \]
\[\iff (T \otimes S)(T \otimes S)^{\ast}_{A \otimes B}(T \otimes S) = (T \otimes S)^{\ast}_{A \otimes B}(T \otimes S)^2 \]
\[\iff TT^{\ast}_A \otimes SS^{\ast}_B S = T^{\ast}T^2 \otimes S^{\ast}B \]
\[\iff \exists d \neq 0 : TT^{\ast}_A T = dT^{\ast}_A T^2 \text{ and } SS^{\ast}_B S = d^{-1}S^{\ast}B S^2 . \]

This in turn implies that

\[\left(T^{\ast}_A T \right)^2 = d\left(T^{\ast}_A T \right)^2 T^2 = d\left(T^2 \right)^{\ast}_A T^2 \]
and

\[\left(S^{\ast}_B S \right)^2 = d^{-1}\left(S^{\ast}_B S \right)^2 S^2 = d^{-1}\left(S^2 \right)^{\ast}B S^2 \]

Consequently

\[\| (T^{\ast}_A T)^2 \|_A = \|d\| \| (T^2 \right)^{\ast}_A T^2 \|_A \]
and

\[\| (S^{\ast}_B S)^2 \|_B = \|d^{-1}\| \| (S^2 \right)^{\ast}B S^2 \|_B , \]

which yields \(d = 1 \). Therefore \(T \) is \(A \)-quasinormal and \(S \) is \(B \)-quasinormal.

Theorem 4.2 Let \(A, B \in \mathcal{B}(\mathcal{H})^+ \) are invertible. Take nonzero \(T \) and \(S \) \(\mathcal{B}(\mathcal{H}) \). The tensor product \(T \otimes S \) is \((A \otimes B) \)-posinormal if and only if \(T \) is \(A \)-posinormal and \(S \) is \(B \)-posinormal.

Proof. Assume that \(T \) is \(A \)-posinormal and \(S \) is \(B \)-posinormal. By Theorem 3.1 there are a positive constants \(\alpha \) and \(\beta \) such that

\[TAT^{\ast} \leq \alpha T^{\ast}AT \text{ and } SBS^{\ast} \leq \beta S^{\ast}BS . \]

Since the operators involved in the above inequalities are positive, it follows that

\[TAT^{\ast} \otimes SBS^{\ast} \leq \alpha \beta T^{\ast}AT \otimes S^{\ast}BS \]

(See Lemma 4.1) , and therefore

\[(T \otimes S)(A \otimes B)(T \otimes S)^{\ast} \leq \alpha \beta (T \otimes S)^{\ast}(A \otimes B)(T \otimes S) \]

so that \(T \otimes S \) is \((A \otimes B) \)-posinormal as \((A \otimes B) \) is invertible.

Conversely, if \(T \otimes S \) is \((A \otimes B) \)-posinormal, there exists a positive constant \(d \) such that

\[(T \otimes S)(A \otimes B)(T \otimes S)^{\ast} \leq d(T \otimes S)^{\ast}(A \otimes B)(T \otimes S) , \]
which means that
\[TAT^* \otimes SBS^* \leq (d^{1/2}T^*AT) \otimes (d^{1/2}S^*BS). \]
Since the operators involved in the above inequalities are positive and nonzero, it follows by Proposition 4.1 that there is a constant \(\gamma > 0 \) such that
\[TAT^* \leq \gamma d^{1/2}T^*AT \] and \(SBS^* \leq \gamma^{-1}d^{1/2}S^*BS \)
so that \(T \) and \(S \) are \(A \)-posinormal and \(B \)-posinormal respectively.
In the general case we have the following generalization

Theorem 4.3 Let \(A_i \in \mathcal{B}(\mathcal{H})^+ \) and let \(T_i \in \mathcal{B}_{A_i}(\mathcal{H}) \) for \(i = 1, 2, \ldots, n \) and \(T_1 \otimes T_2 \otimes \ldots \otimes T_n \neq 0 \). Then the tensor product \(T_1 \otimes T_2 \otimes \ldots \otimes T_n \) on the Hilbert space \(\mathcal{H} \otimes \mathcal{H} \otimes \ldots \otimes \mathcal{H} \) is \((A_1 \otimes A_2 \otimes \ldots \otimes A_n)\)-posinormal if and only if \(T_i \) is \(A_i \)-posinormal operator for \(i = 1, 2, \ldots, n \).

Proof. By induction, it suffices to show that \(T_1 \otimes T_2 \) is \((A_1 \otimes A_2)\)-posinormal if and only if both \(T_1 \) is \(A_1 \)-posinormal and \(T_2 \) is \(A_2 \)-posinormal.

Assume that \(T_1 \otimes T_2 \neq 0 \) is \((A_1 \otimes A_2)\)-posinormal operator, then:

\[(T_1 \otimes T_2)(A_1 \otimes A_2)(T_1 \otimes T_2)^* = (T_1 \otimes T_2)(A_1 \otimes A_2)(P_1 \otimes P_2)(T_1 \otimes T_2).\]

Thus
\[T_1 A_1 T_1^* \otimes T_2 A_2 T_2^* = T_1^* A_1 P_1 T_1 \otimes T_2^* A_2 P_2 T_2. \]
Since the operators involved in the above equality are positive, it follows that there exists a scalar \(d > 0 \) such that
\[T_1 A_1 T_1^* = d T_1^* A_1 P_1 T_1 \quad \text{and} \quad T_2 A_2 T_2^* = d^{-1} T_2^* A_2 P_2 T_2. \]

Hence
\[T_1 A_1 T_1^* = T_1^* A_1 (dP_1) T_1 \quad \text{and} \quad T_2 A_2 T_2^* = T_2^* A_2 (d^{-1} P_2) T_2, \]
Since \(dP_1 \) is \(A_1 \)-positive and \(d^{-1} P_2 \) is \(A_2 \)-positive, it follows that \(T_1 \) is \(A_1 \)-posinormal and \(T_2 \) is \(A_2 \)-posinormal.

Conversely assume that \(T_i \) is \(A_i \)-posinormal for \(i = 1, 2 \), then
\[T_1 A_1 T_1^* = T_1^* A_1 P_1 T_1 \quad \text{and} \quad T_2 A_2 T_2^* = T_2^* A_2 P_2 T_2 \]
\[(T_1 \otimes T_2)(A_1 \otimes A_2)(T_1 \otimes T_2)^* = T_1 A_1 T_1^* \otimes T_2 A_2 T_2^* \]
\[= T_1^* A_1 P_1 T_1 \otimes T_2^* A_2 P_2 T_2 \]
\[= (T_1 \otimes T_2)^*(A_1 \otimes A_2)(P_1 \otimes P_2)(T_1 \otimes T_2). \]
Since \(P_1 \otimes P_2 \) is \((A_1 \otimes A_2)\)-positive it follows that \(T_1 \otimes T_2 \) is \((A_1 \otimes A_2)\)-posinormal.
Definition 4.1 Let $T, S \in \mathcal{B}(\mathcal{H})$. The tensor sum of T and S is the transformation $T \boxplus S : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ defined by

$$T \boxplus S = (T \otimes I) + (I \otimes S)$$

which is an operator in $\mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.

Remark 4.1 It is easily seen that $T \in \mathcal{B}(\mathcal{H})$ is A-posinormal for some $A \in \mathcal{B}(\mathcal{H})^+$ if and only if $T \otimes I$ is $(A \otimes I)$-posinormal (resp., $I \otimes T$ is $(I \otimes A)$-posinormal).

Basic operations with tensor sum of Hilbert space operators are summarized in the next proposition. For its proof see [21].

Proposition 4.2 Let $T, S, T_k, S_k \in \mathcal{B}(\mathcal{H})$ $k = 1, 2$ and $\alpha, \beta \in \mathbb{C}$. The following properties hold:

(1) $(\alpha + \beta)(T \boxplus S) = \alpha T \boxplus \beta S + \beta T \boxplus \alpha S$
(2) $(T_1 + T_2) \boxplus (S_1 + S_2) = T_1 \boxplus S_1 + T_2 \boxplus S_2$
(3) $(T_1 \boxplus S_1)(T_2 \boxplus S_2) = T_1 \otimes S_2 + T_2 \otimes S_1 + T_1 T_2 \boxplus S_1 S_2$
(4) $(T \boxplus S)^* = T^* \boxplus S^*$
(5) $\|T \boxplus S\| \leq \|T\| + \|S\|$.

In the following proposition we generalized the normality of $T \boxplus S$ proved in [20] to hyponormality.

Theorem 4.4 If T and S are hyponormal then $T \boxplus S$ is hyponormal.

Proof. Since T and S are hyponormal we have that $T^*T \geq TT^*$ and $S^*S \geq SS^*$.

In view of the fact that

$$T \otimes S = (T \otimes I)(I \otimes S) = (I \otimes S)(T \otimes I)$$

we have

$$(T \boxplus S)(T \boxplus S)^* = T \otimes S^* + T^* \otimes S + (TT^* \otimes I + I \otimes SS^*)$$
$$= T \otimes S^* + T^* \otimes S + (T^* \otimes I)(I \otimes S) + (T \otimes S)(I \otimes S^*)$$
$$\leq T \otimes S^* + T^* \otimes S + (T^* \otimes I)(T \otimes I) + (S^* \otimes I)(S \otimes I)$$
$$\leq T \otimes S^* + T^* \otimes S + T^* T \boxplus S^* S$$
$$\leq (T \boxplus S)^*(T \boxplus S).$$

It follows that $T \boxplus S$ is hyponormal.
References

Received: February 11, 2014