On Reverse Γ^*-Centralizer on Semiprime Γ-Ring with Involution

Ali Kareem Kadhim
School of Mathematical Sciences
Universiti Sains Malaysia, 11800 USM
Penang, Malaysia

Hajar Sulaiman
School of Mathematical Sciences
Universiti Sains Malaysia, 11800 USM
Penang, Malaysia

Abdul-Rahman Hammed Majeed
Department of Mathematics
University of Baghdad
Baghdad, Iraq

Copyright © 2014 Ali Kareem Kadhim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let M be a 2-torsion free semiprime Γ–ring with involution and $S : M \rightarrow M$ be an additive mapping satisfying $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$, and $\alpha, \beta \in \Gamma$. In this paper, we will prove that S is a reverse Γ^*–centralizer if it satisfies the relation $S(x\alpha y + y\alpha x) = S(x)\alpha y^* + y^*\alpha S(x) = x^*\alpha S(y) + S(y)\alpha x^*(x, y \in M$ and $\alpha \in \Gamma$).

Keywords: reverse Γ^*-centralizer, left(right)derivation, semiprime Γ-ring with involution
1 Introduction

Let M and Γ be additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$, then M is called a Γ-ring if for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied:

(i) $x\beta y \in M$.

(ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$.

(iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$. (see [6], [11])

Every ring M is a Γ-ring with $\Gamma = \Gamma$. However a Γ-ring need not be a ring. Γ-rings, more general than rings, were introduced by Nobusawa [4]. Bernes [2] slightly weakened the conditions in the definition of Γ-ring in the sense of Nobusawa. Bernes [2], Luh [8] and Kyuno [7] studied the structure of Γ-rings and obtained various generalizations of corresponding properties in ring theory. Following ideas from [1], Zalar [3] worked on centralizers of semiprime rings and proved that Jordan centralizers and centralizers of these rings coincide. Vukman [9, 10] developed some remarkable results using centralizers on prime and semiprime rings. Let M be a Γ-ring, then M is said to be a 2-torsion free if $2x = 0$ implies $x = 0$ for all $x \in M$. A Γ-ring M is said to be prime if $a\Gamma M \Gamma b = (0)$ with $a, b \in M$, implies $a = 0$ or $b = 0$ and semiprime if $a\Gamma M \Gamma a = (0)$ with $a \in M$ implies $a = 0$. Furthermore, M is said to be a commutative Γ-ring if $x\alpha y = y\alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$. Moreover, the set $Z(M) = x \in M : x\alpha y = y\alpha x$ for all $\alpha \in \Gamma$, $y \in M$ is called the center of the Γ-ring M. If M is a Γ-ring, then $[x, y]_\alpha = x\alpha y - y\alpha x$ is known as the commutator of x and y with respect to α, where $x, y \in M$ and $\alpha \in \Gamma$. We make the basic commutator identities:

\[
[x\alpha y, z]_\beta = [x, z]_\beta\alpha y + x[\alpha, \beta]_z y + x\alpha[y, z]_\beta \quad (1)
\]

\[
[x, y\alpha z]_\beta = [x, y]_\beta\alpha z + y[\alpha, \beta]_x z + y\alpha[x, z]_\beta \quad (2)
\]

and consider the following assumption:

(A) $x\alpha y\beta z = x\beta y\alpha z$, for all $x, y, z \in M$, and $\alpha, \beta \in \Gamma$.

According to assumption (A), and based on equations 1 and 2 reduce to $[x\alpha y, z]_\beta = [x, z]_\beta\alpha y + x\alpha[y, z]_\beta$ and $[x, y\alpha z]_\beta = [x, y]_\beta\alpha z + y\alpha[x, z]_\beta$.

Let us consider the following conditions:

Definition 1.1 [12] An additive mapping $D : M \rightarrow M$ is said to be a derivation if $D(x\alpha y) = D(x)\alpha y + x\alpha D(y)$ holds for all $x, y \in M$ and $\alpha \in \Gamma$.

Example 1 Let R be a ring, $M = M_{1\times 2}(R)$ and $\Gamma = \left\{ \begin{pmatrix} m & 0 \\ 0 & -m \end{pmatrix} \bigg| m \in \mathbb{Z} \right\}$, then M is a Γ-ring. We define $D : M \to M$ by $D(a \ b) = (0 \ -b)$ for all $a, b \in R$. By using the usual addition and multiplication on matrices of $M \times \Gamma \times M$, D is a derivation on M.

Definition 1.2 An additive mapping $(x \alpha x) \to (x \alpha x)^*$ on a Γ-ring M is called an involution if $(x \alpha y)^* = y^* \alpha x^*$ and $(x \alpha x)^{**} = x \alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$. A Γ-ring M equipped with an involution is called a Γ-ring M with involution (also known as Γ^*-ring).

Definition 1.3 An additive mapping $T : M \to M$ is left (right) reverse Γ^*-centralizer of a Γ-ring M with involution if $T(y \alpha x) = T(y)^* \alpha x^*$ ($T(x \alpha y) = x^* \alpha T(y)$) holds for all $x, y \in M$ and $\alpha \in \Gamma$.

Definition 1.4 An additive mapping $T : M \to M$ is left (right) Jordan Γ^*-centralizer of a Γ-ring M with involution if $T(x \alpha x) = T(x)^* \alpha x^*$ ($T(x \alpha x) = x^* \alpha T(x)$) for all $x \in M$ and $\alpha \in \Gamma$.

Note:

a. A reverse Γ^*-centralizer of Γ-ring M with involution is an additive mapping which is both a left and right reverse Γ^*-centralizer.

b. A Jordan Γ^*-centralizer of Γ-ring M with involution is an additive mapping which is both a left and right Jordan Γ^*-centralizer.

In this paper, we prove that an additive mapping $S : M \to M$ satisfying assumption (A) and satisfies the following relation:

(B) $S(x \alpha y + y \alpha x) = S(x)^* \alpha y^* + y^* \alpha S(x) = x^* \alpha S(y) + S(y)^* \alpha x^*$ for all $x, y \in M$ and $\alpha \in \Gamma$ is a reverse Γ^*-centralizer

2 Reverse Γ^*-Centralizer on Semiprime Γ-Ring with Involution

The following lemma will be used in the proofs of our main results.

Lemma 2.1 [5] Let M be a semiprime Γ-ring satisfying assumption (A) and $D : M \to M$ be a derivation of M and $a \in M$ be a fixed element, then we have:
(i) If \(D(x)\alpha D(y) = 0 \) for all \(x, y \in M \) and \(\alpha \in \Gamma \), then \(D = 0 \).

(ii) If \(a\alpha x - x\alpha a \in Z(M) \) for all \(x \in M \) and \(\alpha \in \Gamma \), then \(a \in Z(M) \).

Lemma 2.2 Let \(M \) be a semiprime \(\Gamma \)-ring with involution satisfying assumption (A). Let \(a \in M \) be a fixed element and let \(S(x) = a\alpha x^* + x^*\alpha a \) satisfying relation (B). Then \(a \in Z(M) \).

Proof. We have

\[
S(x\beta y + y\beta x) = S(x)\beta y^* + y^*\beta S(x)
= a\alpha(x\beta y + y\beta x)^* + (x\beta y + y\beta x)^*\alpha a
= (a\alpha x^* + x^*\alpha a)\beta y^* + y^*\beta(a\alpha x^* + x^*\alpha a)
= a\alpha y^*\beta x^* - y^*\alpha a\alpha x^* - x^*\alpha a\beta y^* + x^*\beta y^*\alpha a \text{ by assumption (A)}
= [a, y^*]_\alpha \beta x^* - x^*\beta[a, y^*]_\alpha
= [a, y^*]_\alpha \beta x^* = x^*\beta[a, y^*]_\alpha
\]

and then from part (ii) of Lemma 2.1, we get \(a \in Z(M) \).

Lemma 2.3 Let \(M \) be a semiprime \(\Gamma \)-ring with involution satisfying assumption (A). Then every mapping \(T \) of \(M \) satisfying relation (B) maps \(Z(M) \) into \(Z(M) \).

Proof. Take any \(c \in Z(M) \) and denote \(a = T(c) \). Then \(2T(c\alpha x) = T(c\alpha x + x\alpha c) = T(c)\alpha x^* + x^*\alpha T(c) = a\alpha x^* + x^*\alpha a \).

Now, we will show that \(S(x) = 2T(c\alpha x) \) satisfies relation (B):

\[
S(x\alpha y + y\alpha x) = 2T(c\beta(x\alpha y + y\alpha x)) = 2T((c\beta x)\alpha y + y\alpha(c\beta x))
= 2T((c\alpha y)\beta x + x\beta(c\alpha y)) = S(x)\alpha y^* + y^*\alpha S(x)
= S(y)\beta x^* + x^*\beta S(y)
\]

Hence, by Lemma 2.2, we get \(a \in Z(M) \). Thus, we prove the following main theorem

Theorem 2.4 Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring with involution and \(S : M \to M \) be an additive mapping which satisfying assumption (A) and satisfying relation (B), then \(S \) is a reverse \(\Gamma^* \)-centralizer of \(M \).

Proof: We have \(S(x\alpha y + y\alpha x) = S(x)\alpha y^* + y^*\alpha S(x) = x^*\alpha S(y) + S(y)\alpha x^* \).

Replacing \(y \) by \(x\beta y + y\beta x \), we get

\[
S(x\alpha(x\beta y + y\beta x)) + (x\beta y + y\beta x)\alpha x) = S(x)\alpha(x\beta y + y\beta x)^* + (x\beta y + y\beta x)^*\alpha S(x)
\]
Now it follows that \([S(x), x^*]_\alpha \beta y^* = y^* \beta [S(x), x^*]_\alpha\) holds for all \(x, y \in M\) and \(\alpha, \beta \in \Gamma\) and so we get \([S(x), x^*]_\alpha \in Z(M)\). The next goal is to show that \([S(x), x^*]_\alpha = 0\) holds.

Take any \(c \in Z(M)\), then

\[
2S(cax) = S(cax + xac) = S(c)ax^* + x^*aS(c) = 2S(x)ac^*.
\]

Using Lemma 2.3, we get

\[
S(cax) = S(x)ac^* = S(c)ax^*.
\]

Therefore,

\[
[S(x), x^*]_\alpha \beta c^* = S(x)ax^* \beta c^* - x^*aS(x)\beta c^* = S(c)bx^*ax^* - x^*aS(c)bx^* = [S(c), x^*]_\alpha \beta x^* = 0
\]

Since \([S(x), x^*]_\alpha\) itself is a central element, then

\[
2S(xax) = S(xax + xax) = S(x)ax^* + x^*aS(x) = 2S(x)ax^* = 2x^*aS(x)
\]

Hence, our goal is achieved.

Acknowledgements. This work is supported by the School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

References

Received: October 15, 2014; Published: November 27, 2014