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Universidad Católica del Norte
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Abstract

In this paper we give a sufficient condition for the existence and con-
struction of a symmetric nonnegative matrix with prescribed spectrum,
and a sufficient conditon for the existence and construction of a 4 × 4
symmetric nonnegative matrix with prescribed spectrum and diagonal
entries. This last condition is independent of the sufficient condition
given by Fiedler [LAA 9 (1974) 119-142]. We also give some partial
answers on an open question of Guo [LAA 266 (1997) 261-270] about
symmetric nonnegative matrices.
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1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) is the problem of finding
necessary and sufficient conditions for the existence of an entrywise nonnega-
tive matrix with prescribed complex spectrum Λ = {λ1, λ2, ..., λn}. A complete
solution to this problem is only known for lists of n ≤ 4 numbers. If there
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exists a nonnegative matrix A with spectrum Λ, we say that Λ is realizable
and that A is the realizing matrix. If the nonnegative matrix A is required to
be symmetric we have the symmetric nonnegative inverse eigenvalue problem
(SNIEP). The first results related with the SNIEP were obtained by Fiedler
[2] in 1974. Sufficient conditions for the problem to have a solution have been
obtained, among other, in chronological order, in [2, 11, 8, 9, 5]. In [12], Spec-
tor gives a necessary and sufficient condition for the SNIEP, in the case n = 5
with

∑5
i=1 λi = 0 :

Theorem 1.1 Spector [12] Let Λ = {λ1, λ2, . . . , λ5} be a list of real numbers
with

∑5
i=1 λi = 0. Then Λ is the spectrum of a symmetric nonnegative matrix

if and only if
i) S1(Λ) =

∑5
i=1 λi = 0,

ii) S3(Λ) =
∑5

i=1 λ3
i ≥ 0,

iii) λ2 + λ5 ≤ 0.

Based in a result of Horn [4] we give, in section 2, a new constructible sufficient
condition for the existence of a symmetric nonnegative matrix with prescribed
spectrum.
The following result, which has been exploited with success in connection with
the NIEP, is a rank-r perturbation result, due to Rado and introduced by
Perfect [6], which shows how to modify r eigenvalues of an n×n matrix, via a
rank−r perturbation, without changing any of the remaining n−r eigenvalues.

Theorem 1.2 Rado [6] Let A be an n × n arbitrary matrix with spectrum
Λ = {λ1, λ2, . . . , λn}. Let X = [x1 | · · · | xr] be such that rank(X) = r and
Axi = λixi, i = 1, . . . , r, r ≤ n. Let C be an r×n arbitrary matrix. Then A+
XC has eigenvalues μ1, . . . , μr, λr+1, . . . λn, where μ1, . . . , μr are eigenvalues
of the matrix Ω + CX with Ω = diag{λ1, . . . , λr}.

The case r = 1 in Theorem 1.2, constitutes a well known theorem of Brauer [1,
Theorem 27], also exploited with success in connection with the NIEP. In [9]
the authors introduce a symmetric version of Rado’s Theorem 1.2, that is, if
A and C are symmetric, and x1,x2, . . . ,xr are orthonormal eigenvectors of A,
then A + XCXT is also symmetric with eigenvalues μ1, . . . , μr, λr+1, . . . , λn,
where μ1, . . . , μr are eigenvalues of the matrix Ω+C. To applied this symmetric
version, we need to guarantee the existence of an r× r symmetric nonnegative
matrix B = Ω + C with prescribed eigenvalues and diagonal entries. This is a
difficult open problem, for which some conditions are known [2]. In section 3
we give an independent sufficient condition for n = 4.

In [3] Guo shows that if a list of complex numbers Λ = {λ1, λ2, ..., λn}, with
λ1 ≥ |λi| , i = 2, . . . , n, and λ2 being real, is realizable, then the perturbed list
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Λε = {λ1 + ε, λ2 ± ε, λ3, ..., λn} is also realizable. Guo set the question: if Λ is
symmetrically realizable, is Λε symmetrically realizable? This is still an open
question, which we consider in section 4. We shall need the following result
due to Fiedler:

Lemma 1.1 Fiedler If the lists of real numbers {α1, α2, . . . , αm} and
{β1, β2, . . . , βn} are symmetrically realizable and α1 ≥ β1, then for any δ ≥ 0,

Λ = {α1 + δ, β1 − δ, α2, . . . , αm, β2, . . . , βn}

is also symmetrically realizable.

We observe that Lemma 1.1 is a particular case (r = 2) of the Rado result.

The paper is organized as follows: In section 2 we give a sufficient condition
for the existence of a symmetric nonnegative matrix with prescribed spectrum.
This condition generates an algorithmic procedure to compute a solution ma-
trix. In section 3, we introduce a sufficient condition for the existence of a 4×4
symmetric nonnegative matrix with prescribed spectrum and diagonal entries.
This condition is independent of the Fiedler’s sufficient condition given in [2,
Theorem 4.4]. In section 4 we discuss about an open question of Guo [3] for
symmetric nonnegative matrices and we give some partial answers. We also
show some exemples to illustrate the results.

2 A sufficient condition for SNIEP

Let Λ = {λ1, λ2, ..., λn} be a list of real numbers with λi ≥ λi+1, i = 1, ..., n−1
and λ1 ≥ |λi|, i = 2, ..., n. We shall say that Λ is symmetrically realizable, if
there exists a symmetric nonnegative matrix A with spectrum Λ. The origin
of this section is the following result, due to Horn [4]:

Theorem 2.1 Horn [4] Let {μi}n
i=1 and {λi}n+1

i=1 be two sequences of real num-
bers such that λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μn ≥ λn+1. Let
D = diag{μ1, μ2, ..., μn}. Then there exists a real number a and a vector y ∈ R

n

such that {λ1, λ2, . . . , λn+1} is the spectrum of the symmetric matrix

A =

[
D y
yT a

]
.

Next, we give the following sufficient condition, for the existence and construc-
tion of a symmetric nonnegative matrix with prescribed spectrum.
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Theorem 2.2 Let the lists of real numbers Λ = {λ1, λ2, . . . , λn+1} and
Γ = {μ1, μ2, ..., μn} be satisfying

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μn ≥ λn+1,

with
∑n+1

i=1 λi −
∑n

i=1 μi ≥ 0. Let P be an orthogonal matrix and
D = diag{μ1, μ2, ..., μn}. If Γ is symmetrically realizable by the nonnegative
matrix B = PDP T , and y = (y1, y2, ..., yn)

T ∈ R
n is such that Py ≥ 0, where

y2
i = − Πj(μi−λj)

Πj,j �=i(μi−μj)
, then Λ is symmetrically realizable.

Proof. Let a = Σn+1
i=1 λi − Σn

i=1μi ≥ 0.
Consider the orthogonal matrix

Q =

[
P 0
0 1

]
.

From Theorem 2.1, the matrix

A =

[
D y
yT a

]

has the spectrum Λ = {λ1, λ2, . . . , λn+1}. Since B is nonnegative and Py ≥ 0,
it follows that the matrix

A =

[
P 0
0 1

] [
Dμ y
yT a

] [
P T 0
0 1

]
=

[
B Py

(Py)T a

]

is nonnegative with spectrum Λ.
Although the above result is not easy to apply, it allow us to decide about the
realizability of certain lists, for which other criteria give no realizability infor-
mation. The following examples show the usefulness of the sufficient condition
given by Theorem 2.2

Example 2.1 Consider the lists Λ = {6, 1, 1,−4,−4}. According to the Spec-
tor condition [12], Λ is symmetrically realizable. According to Lemma 1 in
[10], Λ is also the spectrum of a 5×5 nonnegative symmetric circulant matrix,
but as far as we know, no other criterion in the literature about the problem
allow us to decide about the symmetric realizability of this list. To construct
a realizing matrix we take the auxiliary list Γ = {4, 1,−1,−4}, interlacing the
list Λ. Then a = 0. Γ is realized by

B = Pdiag{4, 1,−1,−4}P T =

⎡
⎢⎢⎣

0 3 0 0

3 0 0 2
3

√
14

0 0 0 4
3

0 2
3

√
14 4

3
0

⎤
⎥⎥⎦ ,
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where

P =

⎡
⎢⎢⎣

2
15

√
15 − 1

30

√
210 − 1

30

√
210 2

15

√
15

8
45

√
15 − 1

90

√
210 1

90

√
210 − 8

45

√
15

1
90

√
210 8

45

√
15 − 8

45

√
15 − 1

90

√
210

1
30

√
210 2

15

√
15 2

15

√
15 1

30

√
210

⎤
⎥⎥⎦ .

We compute y = (
√

48
5
, 0,−

√
42
5
, 0)T . Then the matrix

A =

[
P 0
0 1

] [
diag{4, 1,−1, 4} y

yT 0

] [
P T 0
0 1

]

=

⎡
⎢⎢⎢⎢⎣

0 3 0 0 3

3 0 0 2
3

√
14 5

3

0 0 0 4
3

2
3

√
14

0 2
3

√
14 4

3
0 0

3 5
3

2
3

√
14 0 0

⎤
⎥⎥⎥⎥⎦ ,

is symmetric nonnegative with spectrum Λ.

Example 2.2 Let us consider the list Λ = {9, 8,−3,−5,−7}. The Spector
necessary condition iii), in Theorem 1.1, is not satisfied for the shifted list
Λ− 2

5
(zero trace). We show that Λ is the spectrum of a symmetric nonnegative

matrix: Let Γ = {9, 3,−3,−7}. Then D = diag{9, 3,−3,−7}, a = 0, y =
(0,

√
40, 0, 0)T ,

P =

⎡
⎢⎢⎢⎣

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

⎤
⎥⎥⎥⎦ , Py ≥ 0,

and

B = PDP T =

⎡
⎢⎢⎣

0 3 0 0
3 0 0 0
0 0 1 8
0 0 8 1

⎤
⎥⎥⎦ .

Thus,

A =

⎡
⎢⎢⎢⎢⎣

0 3 0 0
√

20

3 0 0 0
√

20
0 0 1 8 0
0 0 8 1 0√
20

√
20 0 0 0

⎤
⎥⎥⎥⎥⎦

is symmetric nonnegative with spectrum Λ.



1166 Ricardo L. Soto and Elvis Valero

The procedure in the above examples requires to find a 4×4 orthogonal matrix
P such that PDP T is nonnegative whith D = diag{μ1, . . . , μ4}, and Py ≥ 0.
Then we have

Corollary 2.1 Let Λ = {λ1, λ2, λ3, λ4, λ5}, Γ = {μ1, μ2, μ3, μ4} be such that
λi ≥ μi ≥ λi+1, i = 1, . . . , 4, Σ5

i=1λi − Σ4
i=1μi ≥ 0, y ∈ R

4. If any of the
following statement is true:

1. P1y ≥ 0 ∧ μ3 ≥ 0 > μ4,
2. P2y ≥ 0 ∧ μ2 ≥ 0 > μ3 ∧ μ2 ≥| μ3 |,
3. P3y ≥ 0 ∧ μ2 ≥ 0 > μ3 ∧ μ2 <| μ3 |,
4. P4y ≥ 0 ∧ μ1 ≥ 0 > μ2,

where

P1 =

⎡
⎢⎢⎣

1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎢⎣

0 1√
2

− 1√
2

0

0 1√
2

1√
2

0
1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

⎤
⎥⎥⎥⎦

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
μ1+μ3√

2
√

μ1−μ2
−
√

−(μ2+μ3)√
2
√

μ1−μ2
0 − 1√

2√
μ1+μ3√

2
√

μ1−μ2
−
√

−(μ2+μ3)√
2
√

μ1−μ2
0 1√

2√
−(μ2+μ3)√
2
√

μ1−μ2

√
μ1+μ3√

2
√

μ1−μ2
− 1√

2
0√

−(μ2+μ3)√
2
√

μ1−μ2

√
μ1+μ3√

2
√

μ1−μ2

1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

P4 =

⎡
⎢⎢⎢⎢⎣

√
μ1

√
μ1+μ2√

2
√

μ1+μ2−μ3
√

μ1−μ2
−

√−μ2
√

μ1+μ2√
2
√

μ1+μ2−μ3
√

μ1−μ2
−

√−μ3√
2
√

μ1+μ2−μ3
− 1√

2√
μ1

√
μ1+μ2√

2
√

μ1+μ2−μ3
√

μ1−μ2
−

√−μ2
√

μ1+μ2√
2
√

μ1+μ2−μ3
√

μ1−μ2
−

√−μ3√
2
√

μ1+μ2−μ3

1√
2√

μ1
√−μ3√

μ1+μ2−μ3
√

μ1−μ2
−

√−μ2
√−μ3√

μ1+μ2−μ3
√

μ1−μ2

√
μ1+μ2√

μ1+μ2−μ3
0√−μ2√

μ1−μ2

√
μ1√

μ1−μ2
0 0

⎤
⎥⎥⎥⎥⎦ ,

then Λ is symmetrically realizable.

Proof. We recall that y ∈ R
4 is defined by y2

i = − Πj(μi−λj)

Πj,j �=i(μi−μj)
. We shall

consider only the case 1. The proofs for the other cases are similar
1. P1y ≥ 0 and μ3 ≥ 0 > μ4. Then we define the symmetric matrix

A =

⎡
⎢⎢⎢⎢⎣

1√
2

0 0 − 1√
2

0
1√
2

0 0 1√
2

0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

μ1 0 0 0 y1

0 μ2 0 0 y2

0 0 μ3 0 y3

0 0 0 μ4 y4

y1 y2 y3 y4 a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1√
2

1√
2

0 0 0

0 0 1 0 0
0 0 0 1 0

− 1√
2

1√
2

0 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
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A =

⎡
⎢⎢⎢⎢⎣

1
2
μ1 + 1

2
μ4

1
2
μ1 − 1

2
μ4 0 0 1

2

√
2y1 − 1

2

√
2y4

1
2
μ1 − 1

2
μ4

1
2
μ1 + 1

2
μ4 0 0 1

2

√
2y1 + 1

2

√
2y4

0 0 μ2 0 y2

0 0 0 μ3 y3
1
2

√
2y1 − 1

2

√
2y4

1
2

√
2y1 + 1

2

√
2y4 y2 y3 a

⎤
⎥⎥⎥⎥⎦ .

It is clear that μ1 ≥ |μi| , i = 2, 3, 4. Thus 1
2
μ1 ± 1

2
μ4 ≥ 0. As μ3 ≥ 0, then

μ2 ≥ 0. Finally, since (P1y)T ≥ 0, A is symmetric nonnegative with spectrum
Λ.

3 Symmetric matrices with prescribed spec-

trum and diagonal entries

A perturbation result, due to Rado, Theorem 1.2, has been very useful for both
problems, the NIEP and the SNIEP. To apply this result, we need conditions
for the existence of an r × r, r < n, matrix with prescribed eigenvalues and
diagonal entries. This is the problem we consider in this section: Given two
lists of real numbers Λ = {λ1, λ2, ..., λn}, and D = {d1, d2, ..., dn}, satisfying
λ1 ≥ |λi|, i = 2, ..., n, λ1 ≥ λ2 ≥ · · · ≥ λn, and d1 ≥ d2 ≥ · · · ≥ dn ≥ 0, respec-
tively, find sufficient conditions for the existence of a symmetric nonnegative
matrix A with spectrum Λ and diagonal entries di ∈ D. Since we are given the
diagonal entries d1, d2, ..., dn, and we look for a symmetric nonnegative matrix
A with spectrum Λ, this problem is also a completion problem. This is a dif-
ficult open problem, for which necessary and sufficient conditions are known
only for the cases n = 2 and n = 3 [2]. For n ≥ 4 Fiedler gave the following
sufficient condition [2]:

Theorem 3.1 [2] Let λ1 ≥ λ2 ≥ · · · ≥ λn and d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 be
given. If∑t

i=1 λi ≥
∑t

i=1 di, t = 1, 2, . . . , n − 1,∑n
i=1 λi =

∑n
i=1 di

λk ≤ dk−1, k = 2, ..., n − 1,

then there exists a symmetric nonnegative matrix with spectrum {λ1, λ2, . . . , λn}
and diagonal entries d1, d2, . . . , dn.

Next we give the following sufficient condition for the case n = 4. Since we
consider the case λ2 ≥ d1, our condition is independent from the condition of
Theorem 3.1. In orden to simplify the statement of this result let λ1 ≥ λ2 ≥
λ3 ≥ λ4 and d1 ≥ d2 ≥ d3 ≥ d4 be lists of real numbers, with

∑4
i=1 λi =
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∑4
i=1 di, and λ2 ≥ d1 ≥ λ3. Then we define

b = (λ1 − d1)(λ2 − d1)(d1 − λ3)(d1 − λ4)

c = (d1 − d3)
2(d1 − d2)

2 + 4b

μ1 =
d2 + d3

2
+

1

2

√
2
√

c + (d1 − d2)2 + (d1 − d3)2

μ2 = d1

μ3 =
d2 + d3

2
− 1

2

√
2
√

c + (d1 − d2)2 + (d1 − d3)2,

and

a =
√

(μ1 − d2)(μ1 − d3)

y2
1 = −(μ1 − λ1)(μ1 − λ2)(μ1 − λ3)(μ1 − λ4)

(μ1 − μ2)(μ1 − μ3)

y2
3 = −(μ3 − λ1)(μ3 − λ2)(μ3 − λ3)(μ3 − λ4)

(μ3 − μ1)(μ3 − μ2)

m = 4a2 + (d2 − d3)
2.

Theorem 3.2 Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 and d1 ≥ d2 ≥ d3 ≥ d4 be lists of real
numbers with

∑4
i=1 λi =

∑4
i=1 di, and λ2 ≥ d1 ≥ λ3. If the inequalities

i) (λ1 − d2)(λ1 − d3)
2 − (λ1 − d3)(d1 − d2)(d1 − d3) ≥

(λ2 − d1)(d1 − λ3)(d1 − λ4)

ii) (λ1 − d1)(λ2 − d1)(d1 − λ3)(d1 − λ4) ≥
(λ2 − d2)(λ2 − d3)((λ2 − d2)(λ2 − d3) − (d1 − d2)(d1 − d3))

iii) (λ1 − d1)(λ2 − d1)(d1 − λ3)(d1 − λ4) ≥
(d3 − λ3)(d2 − λ3)((d3 − λ3)(d2 − λ3) − (d1 − d2)(d1 − d3))

iv) (d3 − λ4)
2(d2 − λ4)

2 − (d1 − d2)(d1 − d3)(d3 − λ4)(d2 − λ4) ≥
(λ1 − d1)(λ2 − d1)(d1 − λ3)(d1 − λ4)

v) ‖v3‖ (d2 − d3 +
√

m)y1 ≥ ‖v1‖ (d3 − d2 +
√

m)y3,

where

v1 =

⎡
⎣ 0

d2−d3+
√

m
2a

1

⎤
⎦ , v2 =

⎡
⎣ 1

0
0

⎤
⎦ , v3 =

⎡
⎣ 0

d2−d3−√
m

2a

1

⎤
⎦ ,

are satisfied, then there exists a symmetric nonnegative matrix with eigenvalues
λ1, λ2, λ3, λ4 and diagonal entries d1, d2, d3, d4.
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Proof. Let

B =

⎡
⎣ d1 0 0

0 d2 a
0 a d3

⎤
⎦

be a matrix with eigenvalues μ1, μ2, μ3. Then d1 = μ2 and
a =

√
(μ1 − d2)(μ1 − d3). Now we show that the μ′

is interlace the λ′
is. From

inequality i) we have

4(λ1 − d1)(λ2 − d1)(d1 − λ3)(d1 − λ4) ≥
4(λ1 − d1)(λ2 − d1)(d1 − λ3)(d1 − λ4)

,

that is,

2(λ1 − d3)(λ1 − d2) − (d1 − d3)(d1 − d2) ≥
√

c

2(λ1(λ1 − d3) − d2(λ1 − d3)) + d2(d1 − d3) − d1(d1 − d3) ≥
√

c

2(λ2
1 − λ1d2 − λ1d3 + d2d3) − d2d3 + d1d2 + d1d3 − d2

1 ≥
√

c

4λ2
1 − 4λ1(d2 + d3) + 2d2d3 + 2d1d2 + 2d1d3 − 2d2

1 ≥ 2
√

c

and

(2λ1 − (d2 + d3))
2 ≥ 2

√
c + d2

1 − 2d1d2 + d2
2 + d2

1 − 2d1d3 + d2
3

2λ1 − (d2 + d3) ≥
√

2
√

c + (d1 − d2)2 + (d1 − d2)2

λ1 ≥ d2 + d3

2
+

1

2

√
2
√

c + (d1 − d2)2 + (d1 − d2)2

λ1 ≥ μ1.

In the same way, from inequality ii) we have

√
c ≥ 2(λ2 − d2)(λ2 − d3) − (d1 − d2)(d1 − d3)√
c ≥ 2(λ2

2 − λ2d2 − λ2d3 + d2d3) + d1d2 + d1d3 − d2
1 − d2d

and

2
√

c + d2
1 − 2d1d2 − 2d1d3 ≥ 4λ2

2 − 4λ2(d2 + d3) + 2d2d3√
2
√

c + (d1 − d2)2 + (d1 − d2)2 ≥ 2λ2 − (d2 + d3)

d2 + d3

2
+

1

2

√
2
√

c + (d1 − d2)2 + (d1 − d2)2 ≥ λ2

μ1 ≥ λ2.

In a similar way we have from inequalities iii) and iv) that λ3 ≥ μ3 ≥ λ4,
and since d1 = μ2, then
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λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ λ3 ≥ μ3 ≥ λ4.

Now, let

P =

[
v1

‖v1‖ | v2 | v3

‖v3‖
]

,

where

‖v1‖ =

√
1

4a2
(d2 − d3 +

√
m)2 + 1

‖v2‖ = 1

‖v3‖ =

√
1

4a2
(d2 − d3 −

√
m)2 + 1.

P is orthogonal and B = PDP T , where D = diag{μ1, μ2, μ3}. Thus we have

A =

[
P 0
0 1

] [
diag(μ1, μ2, μ3) y
yT d4

] [
P T 0
0 1

]

=

[
B Py
(Py)T d4

]

Finally, from v) we may see from straightforward calculation that Py ≥ 0,
where the entries of the vector y are computed as in Theorem 2.2. Thus, A
is a 4 × 4 symmetric nonnegative matrix with eigenvalues λ1, λ2, λ3, λ4 and
diagonal entries d1, d2, d3, d4.

Example 3.1 Consider the lists 5, 4, 0,−3 and 3, 3, 0, 0. These lists satisfy all
inequalities of Theorem 3.2. Then we may compute the symmetric nonnegative
matrix

A =

⎡
⎢⎢⎣

3 0 0
√

6

0 3
√

6 0

0
√

6 0 2√
6 0 2 0

⎤
⎥⎥⎦ ,

with the desired eigenvalues and diagonal entries. Note that, since λ2 > d1,
the Fiedler’s sufficient conditions does not work here.

Example 3.2 Consider the lists 7, 5, 0,−4, and 4, 4, 0, 0. We compute the in-
terlacing numbers μ1 = 6, μ2 = 4, μ3 = −2, and a = 2

√
3. Then we have
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PDP T =

⎡
⎣ 0 1 0

1
2

√
3 0 −1

2
1
2

0 1
2

√
3

⎤
⎦

⎡
⎣ 6 0 0

0 4 0
0 0 −2

⎤
⎦

⎡
⎣ 0 1

2

√
3 1

2

1 0 0

0 −1
2

1
2

√
3

⎤
⎦

=

⎡
⎣ 4 0 0

0 4 2
√

3

0 2
√

3 0

⎤
⎦ = B

and

A =

⎡
⎢⎢⎣

4 0 0 2
√

2

0 4 2
√

3 1
4

√
45 − 1

4

√
21

0 2
√

3 0 1
4

√
63 + 1

4

√
15

2
√

2 1
4

√
45 − 1

4

√
21 1

4

√
63 + 1

4

√
15 0

⎤
⎥⎥⎦

with the desired spectrum and diagonal entries.

4 On an open question of Guo

In this section we give some partial answers to the following question of Guo
[3]: If the list Λ = {λ1, λ2, . . . , λn} is symmetrically realizable, and ε > 0, is
Λε = {λ1 + ε, λ2 ± ε, λ3, . . . , λn} also symmetrically realizable? First we show
that a list Λ, which satisfies the Spector’s conditions also satisfies one of the
Guo perturbations:

Proposition 4.1 Let Λ = {λ1, λ2, . . . , λ5}, with
∑5

i=1 λi = 0, be symmetri-
cally realizable. Then Λ−

ε = {λ1 + ε, λ2 − ε, λ3, λ4, λ5} is also symmetrically
realizable.

Proof. We have

s1(Λ
−
ε ) = λ1 + ε + λ2 − ε + λ3 + λ4 + λ5 = 0.

Since 3ελ2
1 + 3ε2λ1 − 3ελ2

2 + 3ε2λ2 ≥ 0, then

s3(Λ
−
ε ) = (λ1 + ε)3 + (λ2 − ε)3 + λ3

3 + λ3
4 + λ3

5

= λ3
1 + λ3

2 + λ3
3 + λ3

4 + λ3
5 + 3ελ2

1 + 3ε2λ1 − 3ελ2
2 + 3ε2λ2

≥ 0

Finally, it is clear that λ2 − ε + λ5 ≤ 0. Then Λ−
ε is symmetrically realizable.
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Theorem 4.1 Let Λ = {λ1, λ2, . . . , λn} be a symmetrically realizable list.
Then for all ε > 0 there exists δ > 0 such that

Λε,δ = {λ1 + ε, λ2 ± εδ, ..., λn}
is symmetrically realizable.

Proof. Let A = PDP T ≥ 0 be a symmetric nonnegative matrix with
spectrum Λ, where P = [p1 | p2 | · · · | pn] is an orthogonal matrix and
D = diag{λ1, λ2, . . . , λn}.
Then we have

A = λ1p1p
T
1 + λ2p2p

T
2 + · · · + λnpnp

T
n . (1)

First, we consider the case A reducible, i.e. A = ⊕r
i=1Ai is a direct sum of

irreducible symmetric matrices.
Without loss of generality we assume that λ1 ∈ σ(A1), λ2 ∈ σ(A2). Let x1,x2

be unitary eigenvectors of A1 and A2, associated to λ1, and λ2, respectively.
Then

p1 =

[
x1

0

]
, p2 =

[
0
x2

]
.

Thus the matrices p1p
T
1 , p2p

T
2 are nonegative and

A+
ε = λ1p1p

T
1 + λ2p2p

T
2 + · · · + λnpnp

T
n + ε(p1p

T
1 + p2p

T
2 )

= (λ1 + ε)p1p
T
1 + (λ2 + ε)p2p

T
2 + ... + λnpnp

T
n

is nonnegative with spectrum Λ+
ε = {λ1 + ε, λ2 + ε, ..., λn}.

On the other hand, since λ1 ≥ λ2, we have from Lemma 1.1 that for ε > 0,

Λ−
ε = {λ1 + ε, λ2 − ε, λ3, . . . , λn}

is symmetrically realizable. Note that for the reducible case, δ = 1.
Now we consider the irreducible case. Let A = PDP T ≥ 0 the symmetric
matrix which realizes Λ. Then the Perron eigenvector p1 is positive. Thus, for
p2, the eigenvector associated to λ2, there exists δ > 0 such that

p1p
T
1 ± δp2p

T
2 ≥ 0.

Observe that δ may be taken as δ = minij{δij : (p1p
T
1 )i,j ± δij(p2p

T
2 )i,j ≥ 0}.

It follows that ε(p1p
T
1 ± δp2p

T
2 ) ≥ 0, for all ε > 0.

Thus, the symmetric nonnegative matrix

Aε = λ1p1p
T
1 + λ2p2p

T
2 + ... + λnpnp

T
n + ε(p1p

T
1 ± δp2p

T
2 )

= (λ1 + ε)p1p
T
1 + (λ2 ± δε)p2p

T
2 + λ3p3p

T
3 + · · · + λnpnp

T
n

has spectrum {λ1 + ε, λ2 ± εδ, λ3, . . . , λn}.
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Corollary 4.1 If Λ = {λ1, λ2, . . . , λn} is symmetrically realizable by a matrix
A = A1 ⊕ A2, shuch that λ1 ∈ A1, λ2 ∈ A2, then for all ε > 0 the list
Λε = {λ1 + ε, λ2 ± ε, ..., λn} is also symmetrically realizable.

Corollary 4.2 Let Λ = {λ1, λ2, . . . , λn} be a symmetrically realizable list. If
the unitary eigenvectors x,y, associated respectively to λ1, λ2, are such that
xxT ± yyT ≥ 0, then Λε = {λ1 + ε, λ2 ± ε, ..., λn} is symmetrically realizable.

Proof. Let

A = λ1xxT + λ2yyT + λ3p3p
T
3 + ... + λnpnp

T
n ≥ 0

a symmetric matrix realizing Λ = {λ1, λ2, . . . , λn}. Since xxT ±yyT ≥ 0, then
from Theorem 4.1 the lists {λ1 + ε, λ2 ± ε, ..., λn} are symmetrically realizable.

In [7, Theorem 11], the author shows that Λ = {λ1, λ2, . . . , λn}, with λ1 ≥
λ2 ≥ · · · ≥ λn, is realizable by a nonnegative matrix if

λ1 + λn +
∑
Sk<0

Sk ≥ 0, (2)

where Sk = λk + λn−k+1, k = 2, . . . , n. This sufficient condition is called the
S1 criterion. In [8] it was shown that if Λ satisfies condition (2), then Λ is also
realizable by a symmetric nonnegative matrix. Next we show that the Guo’s
question, introduced at the begining of this section, has a positive answer for
this kind of realizations.

Theorem 4.2 If Λ = {λ1, λ2, . . . , λn} is S1-realizable, then

Λε = {λ1 + ε, λ2 ± ε, λ3, . . . , λn}
is symmetrically realizable.

Proof. It is clear that Λ is symmetrically realizable and that we may assume
λ1 + ε + λn +

∑
Sk<0 Sk = 0. Consider the partition of Λε into

Λ1 = {λ1 + ε, λn}, Λ2 = {λ2 ± ε, λn−1},
Λk = {λk, λn−k+1}, k = 3, . . . ,

[n

2

]
,

with Λn+1
2

= {λn+1
2
} for n odd. From now on we shall consider n as even

number. The proof for odd n is similar. Observe that some of the lists Λk can
be realizable, while some other are nonnrealizable. Without loss of generality
we assume that Λ2, Λ3, . . . , Λt, t ≤ [

n
2

]
, are nonrealizable ( Sk < 0 for k =

2, . . . , t), and that Λt+1, . . . , Λ[n
2 ]

(if there is some one) are realizable lists



1174 Ricardo L. Soto and Elvis Valero

(Sk ≥ 0 for k = t+1, . . . ,
[

n
2

]
) by, we say, the nonnegative symmetric matrices

Bk, k = t+1, . . . ,
[

n
2

]
, respectively. Then B = ⊕Bk is symmetric nonnegative

with spectrum Λt+1 ∪ · · · ∪Λ[n
2 ]

. Let us consider now, if there is some one, the

nonnrealizable lists Λk, k = 2, 3, . . . , t, together with the realizable list Λ1. We
renumber the 2t elements in ∪Λk, k = 1, . . . , t, as

λ1 ≥ λ2 ≥ · · · ≥ λt ≥ λt+1 ≥ · · · ≥ λ2t.

For each one of the lists Λk, k = 1, 2, . . . , t, we define the associated symmetric
realizable lists

Γk = {−λ2t−k+1, λ2t−k+1}.

We start by merging the lists

Γ1 = {−λ2t, λ2t} and Γ2 = {−λ2t−1, λ2t−1}.

Let δ2 = −λ2t−1 − λ2 + ε = −S2 Then δ2 = −S2 > 0 and from Lemma 1.1 we
have that

Ω2 = {−λ2t + δ2,−λ2t−1 − δ2, λ2t−1, λ2t}
= {−λ2t − λ2t−1 − λ2 + ε, λ2 − ε, λ2t−1, λ2t}

is symmetrically realizable by a 4 × 4 matrix. Next we merge Ω2 with Γ3 =
{−λ2t−2, λ2t−2}, and obtain for δ3 = −(λ3 + λ2t−2) = −S3,

Ω3 = {−λ2t − λ2t−1 − λ2 + ε + δ3,−λ2t−2 − δ3, λ2 − ε, λ2t−2, λ2t−1, λ2t}
= {−λ2t − λ2t−1 − λ2t−2 − λ2 − λ3 + ε, λ3, λ2 − ε, λ2t−2, λ2t−1, λ2t},

which is symmetrically realizable by a 6×6 matrix. We continue this procedure
until in the last step we merge

Ωt−1 = {−λ2t −
t−1∑
k=2

Sk + ε, λt−1, ∗, . . . , ∗} with Γt = {−λt+1, λt+1},

to obtain, with δt = St = −(λt + λt+1),

Λ−
ε = {−λ2t −

t∑
k=2

Sk + ε, λt, ∗, . . . , ∗}

Λ−
ε = {−λn −

∑
Sk<0

Sk + ε, λt, ∗, . . . , ∗}

{λ1 + ε, λ2 − ε, λ3, . . . , λn},
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which is symmetrically realizable.
For the list Λ+

ε = {λ1 + ε, λ2 + ε, λ3, . . . , λn} we observe that if λ2 + λn−1 ≥ 0,
then S2 = λ2 + ε + λn−1 ≥ 0 and

λ1 + ε + λn +
∑
Sk

Sk ≥ 0, (3)

while if λ2 + λn−1 < 0, then S2 = λ2 + ε + λn−1 ≥ 0 and (3) is also satisfied, or
S2 = λ2 + ε + λn−1 < 0 with

S2 = λ2 + ε + λn−1 > λ2 + λn−1

and (3) is again satisfied. Hence, Λ+
ε is S1-realizable and from [8, Lemma 4]

it is symmetrically realizable, we say, by a nonnegative matrix A. Thus, Λ
symmetrically realizable by A ⊕ B.
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