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Abstract

A subset D of a group G is called a D-set if every element of G

which is not in D has its inverse in D. In this paper, we gave some of

the properties of a D-set.
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1 Introduction

Some investigations in group theory are concerned with finding a subset H of

a group G which is also a group under the same operation (in this case, H is

called a subgroup of G). Some even endeavored to find all subgroups of a given
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group and how each of these subsets are related. In contrast to such idea, we

introduced in this research special subsets of a group which are normally not

subgroups. A subset D of a group G is called a D-set if every element of G

which is not in D has its inverse in D. It will be shown that a proper subset

of a group, which is a D-set, is not a subgroup.

The following concepts are taken from [1], [2] and [3].

A binary operation on a nonempty set G is a function G × G → G. A

semigroup is a nonempty set G together with a binary operation on G which

is associative. A group is a semigroup which contains an element e with the

property that ge = g = eg for all g ∈ G (in this case we call e the identity

element); and for each g ∈ G, there exists h ∈ G such that gh = e = hg.

Let G and H be semigroups. A function f : G → H is a homomorphism

if for all a, b ∈ G, f(ab) = f(a)f(b). If f is surjective, then we call f an

epimorphism. On the other hand, a bijective homomorphism is called an iso-

morphism.

2 Results

We now give some properties of a D-set.

Theorem 2.1 Let G be a group. Then

i. The set T of all D-sets of G is a semigroup under the set operation

union.

ii. The set TC of complements of all D-sets of G is a semigroup under the

set operation intersection.

Proof : Let D1, D2 ∈ T and consider G\(D1 ∪ D2). Let x ∈ G\(D1 ∪ D2).

Then x /∈ D1 ∪D2, that is, x /∈ D1 and x /∈ D2. Since D1 and D2 are D-sets,

x−1 ∈ D1 and x−1 ∈ D2. Thus, x−1 ∈ D1 ∪ D2. This shows that D1 ∪ D2 is

a D-sets of G. Since associativity holds for the operation union of sets, T is a

semigroup.

Let E1, E2 ∈ TC . Thus, G\E1 and G\E2 are D-sets of G. By the first part,

(G\E1) ∪ (G\E2) is also a D-set. Since (G\E1) ∪ (G\E2) = G\(E1 ∩ E2), we

get E1 ∩ E2 ∈ TC . Finally, since associativity holds for intersection, TC is a

semigroup. �

Theorem 2.2 Let D be a D-set and x ∈ G such that x2 = e. Then x ∈ D.
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Proof : Suppose x /∈ D. Since D is a D-set, there exists y ∈ D such that

xy = e. Note that y is necessarily x−1. Since x2 = e, x = x−1 = y ∈ D. This

is a contradiction. Hence, x ∈ D. �

The elements of order 2 of a group are what we called involutions. Theorem

2.2 suggests that involutions together with the identity element belong to any

D-set of G. The next theorem compares the cardinality of a D-set and its

complement. We borrow a convention from [4] which states that for sets X

and Y , |X| ≺ |Y | only if there exists an injection f : X → Y .

Theorem 2.3 Let D be a D-set of a group G. Then |G\D| ≺ |D|.

Proof : Define f : G\D → D by f(x) = x−1. Let x, y ∈ G\D. Then by the

uniqueness of the inverse, we have, x = y ⇔ x−1 = y−1 ⇔ f(x) = f(y). Hence,

f is a well-defined injection. Accordingly, |G\D| ≺ |D|. �

For a finite group G, it is evident that a D-set has more elements than its

complement.

Theorem 2.4 Let G be a group and x ∈ G. Then T (x) = {D ∈ T : x ∈ D}
is a sub-semigroup of T .

Proof : All we need is to show the closure property. Let G be a group containing

an element x and T be the set of all D-sets of G. Let T (x) = {D ∈ T : x ∈ D}
and suppose Di and Dj be any two elements of T (x). By Theorem 2.1, Di∪Dj

is also in T . But since x is clearly in Di ∪ Dj, then Di ∪ Dj must also be in

T (x). �

Theorem 2.5 Let x be a non-identity element of a group G. Then x is an

involution if and only if T (x) = T .

Proof : Suppose x is an involution of G. Then by Theorem 2.2, x is in every

D-set of G. Hence, T (x) ⊇ T . Since T (x) ⊆ T , we have T (x) = T

Conversely, assume that T (x) = T and x is not an involution. If x is non-

involution and x is not the identity, then x−1 6= x. Note that if D is a D-set,

then (D\{x})∪{x−1} is a D-set that do not contain x. This is a contradiction.

Hence, x must be an involution. �

Theorem 2.6 Let G be a group with an element x whose order is 2. Then

any D-set of G contains a nontrivial subgroup of G.
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Proof : Let D be a D-set of G. If x ∈ G is of order 2 then 〈x〉 = {x, e} with

x2 = e. By Theorem 2.2, x ∈ D. Hence, 〈x〉 ⊆ D. �

The concept of D-set can be used to characterize groups and subgroups.

The following theorems reveal how D-set show that a subgroup is improper

and when can the group be trivial.

Theorem 2.7 G has a trivial D-set if and only if G is trivial.

Proof : Suppose G is a trivial group. Then G = {e} is a D-set of G.

Conversely, suppose that G has a trivial D-set and G is a nontrivial group.

Then there exists a non-identity element x in G. Note that x is necessarily

in G\{e}. Since {e} is a D-set, there exists y ∈ {e} (i.e. y = e) such that

xy = e. This implies that x = e. This is a contradiction. Hence G must be

trivial. �

Theorem 2.8 Let T be the set of all D-set of G and S = {x ∈ G :

x2 = e}. Then |T | = 1 if and only if G = S.

Proof : Assume that |T | = 1 and S 6= G. Then there exists x ∈ G\S such that

x2 6= e (i.e. x 6= x−1). Let D ∈ T and consider the following cases:

Case 1: x /∈ D
If x /∈ D, then D ∪ {x} is another D-set of G, contradicting the fact that

D is the only D-set of G.

Case 2: x ∈ D
If x ∈ D, then (D\{x}) ∪ {x−1} is another D-set of G, contradicting the

assumption that D is the only D-set of G.

Hence, S must be equal to G.

Conversely, suppose G = S. Note that for any D in T , S ⊆ D. Hence,

S ⊆ D ⊆ G, which implies that D = G. Accordingly, |T | = 1. �

In the next theorem, the usual subgroup notation will be used; that is,

H ≤ G denotes that H is a subgroup of G.

Theorem 2.9 Let H ≤ G. Then H contains a D-set of G if and only if

H = G.

Proof : Suppose H contains a D-set D of G and H 6= G. Then there exists

x ∈ G\H. Since x /∈ H, x must also be not in D. This implies that x−1 is in

D. But this means that x = (x−1)−1 is in H. This is a contradiction. Thus,

H = G.

If H = G, then G is a D-set of G contained in H. �
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Remark 2.10 If each nontrivial subgroup contains a D-set of a nontrivial

group G then G is simple.

To see this, suppose that G is a nontrivial group which is not simple. This

means that G has a proper nontrivial normal subgroup H. Assume that each

nontrivial subgroup contains a D-set of G. Accordingly, H must contain a

D-set of G. By Theorem 2.9, H = G which is a contradiction.

Theorem 2.11 Let G1 and G2 be groups, and φ : G1 → G2 be an epimorphism

of groups.

i. If D1 is a D-set of G1, then φ(D1) is a D-set of G2.

ii. If D2 is a D-set of G2, then φ
−1(D2) is a D-set of G1.

Proof : Let D1 be a D-set of G1 and y ∈ G2\φ(D1), then there exists x ∈ G1

such that y = φ(x). Note that x ∈ G1\D1, otherwise, y = φ(x) ∈ φ(D1). Since

D1 is a D-set, x−1 ∈ D1. Necessarily, φ(x−1) ∈ φ(D1). Hence, there exists

z = φ(x−1) ∈ φ(D1) such that yz = φ(x)φ(x−1) = φ(xx−1) = φ(e1) = e2. This

shows that φ(D1) is a D-set of G2.

Let D2 be a D-set of G2 and x ∈ G1\φ−1(D2). Note that φ(x) /∈ D2,

otherwise x ∈ φ−1(D2). Since D2 is a D-set, φ(x)−1 = φ(x−1) ∈ D2. Hence

x−1 ∈ φ−1(D2). This shows that φ−1(D2) is a D-set of G1. �

This section culminates with a theorem which shows that the families T of

D-sets of a group and TC of their corresponding complements are structurally

alike.

Theorem 2.12 T is isomorphic to TC.

Proof : We form φ : T → TC defined by φ(D) = G\D, where D ∈ T and

thus G\D must be in TC . Then φ is obviously a bijection. Now, let D1

and D2 be in T . This means that G\D1 and G\D2 are in TC . Further

φ(D1 ∪ D2) = G\(D1 ∪ D2) = (G\D1) ∩ (G\D2) = φ(D1) ∩ φ(D2). Hence,

φ : T → TC is an isomorphism. �
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