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Abstract

In this paper we consider the quadratic optimization which is split
into: convex quadratic maximization and convex quadratic minimiza-
tion. Based on optimality conditions(local and global),we propose algo-
rithms for solving those problems. The proposed algorithms use linear
programming as subproblems and generate a sequence of local maxi-
mizers and global minimizers. It has been shown that the algorithms
are convergent under appropriate conditions. Numerical results are pro-
vided.
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1 Introduction

Consider an extremum problem of a quadratic function over a polyhedral set
D ⊂ Rn:

f(x) = 〈Cx, x〉 + 〈d, x〉 + q −→ max(min), x ∈ D, (1.1)

where C is an n × n matrix, d, x ∈ Rn, and D bounded polyhedral set of Rn.
Here 〈·, ·〉 denotes the scalar product of two vectors.
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Quadratic programming plays an important role in mathematical program-
ming. For example, quadratic programming surve as auxiliary problems for
nonlinear programming in its linearized problems or in optimization problems
approximated by quadratic functions. Also this has many applications in sci-
ence, technology, statistics and economics. There are a number of methods for
solving problem (1.1) as convex problem such as the interior point methods,
the projected gradient method, the conditional gradient method, the proximal
algorithm, penalty methods, finite step algorithm and so on [1, 3, 7]. Then
well known optimality condition for problem (1.1) is in Rockafellar [4]. Also,
the quadratic maximization problem is known as ” NP” problem. There are
many methods [2, 5, 6] and algorithms devoted to solution of the quadratic
maximization over convex sets.

The paper is organized as follows. In section 2 we consider quadratic convex
maximization problem and apply global optimality condition [5] to this. We
propose some finite algorithms by approximation of the level sets of the objec-
tive function with a finite number of points and solving linear programming as
auxiliary problems. In section 3 we consider the quadratic minimization prob-
lem over polyhedral set and recall the conditional gradient method for solving
this problem. In the last section we present numerical solutions obtained by the
proposed algorithms for quadratic maximization and minimization problems.

2 Quadratic Convex Maximization Problem

Consider the quadratic maximization problem.

f(x) = 〈Cx, x〉 + 〈d, x〉 + q −→ max, x ∈ D, (2.1)

where C is a positive semidefinite (n× n) matrix, and D ⊂ Rn is a polyhedral
set of Rn. A vector d ∈ Rn and a number q ∈ R are given. Then optimality
conditions [6] can be formulated as follows.

Theorem 2.1 [6] Let z ∈ D be such that f ′(z) �= 0. Then z is a solution of
problem (2.1) if and only if

〈f ′(y), x− y〉 � 0 for all y ∈ Ef(z)(f) and x ∈ D, (2.2)

where Ec(f) = {y ∈ Rn | f(y) = c}.
Approximation of the Level Set
Furthermore, to construct a numerical method for solving problem (2.1)

based on optimality conditions (2.2) we assume that C is a symmetric positive
defined n × n matrix. Then problem (2.1) can be written as follows.

f(x) = 〈Cx, x〉 + 〈d, x〉 + q −→ max, x ∈ D, (2.3)
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where D = {x ∈ Rn‖ Ax � b} and A is m × n matrix, b ∈ Rm.
Now introduce the definitions.

Definition 2.1 The set Ef(z)(f) defined by

Ef(z)(f) = {y ∈ Rn | f(y) = f(z)}

is called the level set of f at z.

Definition 2.2 The set Am
z defined by

Am
z = {y1, y2, . . . , ym | yi ∈ Ef(z)(f), i = 1, 2, . . . , m} (2.4)

is called the approximation set to the level set Ef(z)(f) at the point z.

Note that a checking the optimality conditions (2.2) requires to solve linear
programming problems:

〈f ′(y), x − y〉 −→ max, x ∈ D.

for each y ∈ Ef(z)(f).
We need to find an appropriate approximation set such that one could check
the optimality conditions at a finite number of points.

The following lemma shows that finding a point on the level set of f(x) is
computationally possible.

Lemma 2.1 Let a point z ∈ D and a vector h ∈ Rn satisfy 〈f ′(z), h〉 < 0.
Then there exists a positive number α such that z + αh ∈ Ef(z)(f).
Proof. Note that 〈Ch, h〉 > 0, and

〈2Cz + d, h〉 < 0. (2.5)

Construct a point yα for α > 0 defined by

yα = z + αh.

Solve the equation f(yα) = f(z) with respect to α. In fact, we have

〈Cyα, yα〉 + 〈d, yα〉 + q = f(z),

or equivalently,

〈C(z + αh), z + αh)〉 + 〈d, z + αh〉 + q = 〈Cz, z〉 + 〈d, z〉 + q

which yields

ᾱ = −〈2Cz + d, h〉
〈Ch, h〉 .
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By (2.5), we have ᾱ > 0 and consequently, yᾱ ∈ Ef(z)(f). �
For each yi ∈ Am

z , i = 1, 2, . . . , m solve the problem

〈f ′(yi), x〉 −→ max, x ∈ D. (2.6)

Let uj, j = 1, 2, . . . , m be solutions of those problems which always exist due
to their compact set D:

〈f ′(yj), uj〉 = max
x∈�

〈f ′(yj), x〉. (2.7)

Refer to the problems generated by (2.6) as auxiliary problems of the Am
z .

Define θm as follows:

θm = max
j=1,2,...,m

〈f ′(yj), uj − yj〉. (2.8)

The value of θm is said to be the approximate global condition value. There
are some properties of Am

z and θm.

Lemma 2.2 If for z ∈ D there is a point yk ∈ Am
z such that 〈f ′(yk), uk−yk〉 >

0, then

f(uk) > f(z)

holds, where uk ∈ D satisfies 〈f ′(yk), uk〉 = max
x∈�

〈f ′(yk), x〉.
Proof. By the definition of uk, we have

max
x∈�

〈f ′(yk), x − yk〉 = 〈f ′(yk), uk − yk〉.

Since f is convex, we have

f(u) − f(v) � 〈f ′(v), u − v〉
for all u, v ∈ Rn [7]. Therefore, the assumption in the lemma implies that

f(uk) − f(z) = f(uk) − f(yk) � 〈f ′(yk), uk − yk〉 > 0.

�
Define the approximation set Am

z by

Am
z = {y1, y2, . . . , ym | yi ∈ Ef(z)(f), yi = αi · ai, i = 1, . . . , m}, (2.9)

where αi = 〈2Cz+d,ai〉
〈Cai,ai〉 , i = 1, 2, . . . , m, ai is i−th row of A, i = 1, 2, . . . , m

Then an algorithm for solving (2.3) is described in the following.

Algorithm MAX
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Input: A convex quadratic function f and D.
Output: An approximate solution x to problem (2.3); i.e., an approximate
global maximizer of f over D.

Step 1. Choose a point x0 ∈ D. Set k := 0.
Step 2. Find a local maximizer zk ∈ D by the conditional gradient method
starting with an initial approximation point xk.
Step 3. Construct an approximation set Am

zk at the point zk by formulas (2.9).
Step 4. For each yi ∈ Am

zk , i = 1, 2, . . . , m solve the problems

〈f ′(yi), x〉 −→ max, x ∈ D.

Step 5. Find a number j ∈ {1, 2, . . . , m} such that

θk
m = 〈f ′(yj), uj − yj〉 = max

i=1,2,...,m
〈f ′(yi), ui − yi〉.

Step 6. If θk
m > 0 then xk+1 := uj, k := k+1 and go to step 1. Otherwise,

zk is an approximate maximizer and terminate.

Theorem 2.2 If θk
m > 0 for k = 1, 2, ..., then Algorithm MAX converges to

a global solution in a finite number of steps .

Proof immediate from lemma 2.2 and the fact that convex function reaches
its local and global solutions at vertices of the polyhedral set D.

3 Quadratic Convex Minimization Problem

Consider the quadratic minimization problem over a box constraint.

f(x) = 〈Cx, x〉 + 〈d, x〉 + q −→ min, x ∈ D, (3.1)

D = {x ∈ Rn | Ax � b }.
where C is a symmetric positive semidefinite n×n matrix and and A is m×n
matrix, b ∈ Rm,

Theorem 3.1 [1] Let z ∈ D. Then z is a solution of problem (3.1) if and only
if

〈f ′(z), x − z〉 � 0 for all x ∈ D. (3.2)

We show that how to apply the conditional gradient method for solving
problem (3.1). It can be easily checked that the function f(x) defined by (3.1)
is strictly convex quadratic function. Its gradient is computed as:

f ′(x) = 2Cx + d
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Lemma 3.1 The gradient f ′(x) satisfies the Lipshitz condition with a constant
L = 2‖C‖.
Proof. Compute ‖f ′(u) − f ′(v)‖ for arbitrary points u, v ∈ D. Then we have
‖f ′(u) − f ′(v)‖ = 2‖C(u − v)‖ � 2‖C‖‖u − v‖ which completes the proof.

The Conditional Gradient Algorithm [7]
Step 1. Choose a tolerance ε > 0, and a feasible point x0 ∈ D, and set k = 0.
Step 2.Solve a linear programming

min
x∈�

〈f ′(xk), x〉.

Let xk be a solution to this problem
Step 3. Compute the value ηk :

ηk = 〈f ′(xk), xk − xk〉.
Step 4. If |ηk| < ε stop.
Step 5. Solve the one dimensional minimization problem

min
0�α�1

f ′(xk + α(xk − xk))

Let α∗
k be solution to this problem

Step 6. Update xk+1 = xk + α∗
k(x

k − xk), set k = k + 1 and goto step 2.

Convergence of the algorithm is given by the following proposition.

Theorem 3.1 [1] Under the assumption of lemma 3.1, the sequence {xk}
generated by the Algorithm is a minimizing sequence, i,e

lim
k→∞

f(xk) = min
x∈�

f(x).

Numerical Experiments

The proposed algorithms for quadratic maximization and minimization prob-
lems have been tested on the following type problems. The algorithms are
coded in Matlab. Dimensions of the problems were ranged from 50 up to 1000.
Computational time,and global solutions are given in the following tables.

Problem 1

min
x∈�

(〈Dx, x〉 + 〈C, x〉)
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subject to

D = {x ∈ Rn | Ax � b }
where

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

n n − 1 n − 2 ... 2 1
n − 1 n n − 1 ... 3 2
n − 2 n − 1 n ... 4 3

... ... ... ... ... ...

... ... ... ... ... ...
1 2 3 ... n − 1 n

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =
(

1 1 1 ... 1 1
)
.

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

n n − 1 n − 2 ... 2 1
0 n − 1 n − 2 ... 2 1
0 0 n − 2 ... 2 1
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, b =
(

n n − 1 n − 2 ... 2 1
)
.

Problem 2

max
x∈�

(
1

2
〈Cx, x〉 − 〈D, x〉)

subject to

D = {x ∈ Rn | Ax � b }
where

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

n n − 1 n − 2 ... 2 1
n − 1 n n − 1 ... 3 2
n − 2 n − 1 n ... 4 3

... ... ... ... ... ...

... ... ... ... ... ...
1 2 3 ... n − 1 n

⎞
⎟⎟⎟⎟⎟⎟⎠

, D =
(

1 1 1 ... 1 1
)
.

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 ... 1 1
0 1 1 ... 1 1
0 0 1 ... 1 1
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, b =
(

n n − 1 n − 2 ... 2 1
)
.
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Table

problem n Initial value Global value Computing time (sec)
1 50 757.7227 83.9451 2.146355
1 100 2.0482e+03 167.3381 5.714530
1 200 5.3532e+03 328.3788 58.954438
1 300 9.2657e+03 486.6070 244.188724
1 500 1.8272e+04 803.1214 6414.808224
1 1000 4.5054e+04 1250.3421 12786.432541
2 50 68.124e+003 185.013e+003 1.321540
2 100 136.9696e+003 326.1658e+003 14.625021
2 200 266.668e+003 600.0045e+003 140.132843
2 300 536.865e+003 897.2135e+003 340.672472
2 500 756.1232e+04 980.1256e+004 5913.358211
2 1000 4512.1265e+04 8131.16785e+04 15786.432541

Conclusion

To provide a unified view, we considered the quadratic programming problem
consisting of convex quadratic maximization and convex quadratic minimiza-
tion. Based on global optimizality conditions by Strekalovsky [5,6] and classical
local optimality conditions [1], we proposed some algorithms for solving the
above problem. Under appropriate conditions we have shown that the pro-
posed algorithms converges to a global solution in a finite number of steps.
The Algorithm MAX generates a sequence of local maximizers and and uses
linear programming at each iteration which makes algorithm easy to implement
numerically.
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