Convexity and Two Piece Property
in n-Hyperbolic Spaces

M. Beltagy
Mathematics Department, Faculty of Science
Tanta University, Tanta, Egypt

S. Shenawy
Modern Academy for Engineering and Technology in Maadi
Maadi, Egypt

A. Elsharkawy
Mathematics Department, Faculty of Science
Tanta University, Tanta, Egypt

Copyright © 2014 M. Beltagy, S. Shenawy and A. Elsharkawy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A subset A of H^n, $n \geq 2$, has horosphere two piece property if any horosphere cuts A into at most two pieces. A subset A of H^n has totally geodesic two piece property if any totally geodesic hypersurface in H^n, $n \geq 2$, cuts A into at most two pieces. In this article we study some geometric properties of convexity and these types of two piece property in H^n and the relations between them.

Mathematics Subject Classification: 53C42, 52A05

Keywords: Convex set, h-convex set, Supporting horosphere, Supporting totally geodesic hypersurface, T-exposed points, H-exposed points and Tight immersions
1 Introduction

The notions of convexity and two piece property are very interesting, useful and have many applications in both geometry and analysis [1, 3]. Convexity and two piece property have been generalized in many aspects and for different reasons [1, 3, 4]. In this article we introduce two generalizations of two piece property in the hyperbolic space H^n, namely, horosphere and totally geodesic two piece properties and we study some important related concepts in geometry.

2 Notations and Definitions

Let p and q be two points in H^n, $n \geq 2$, the distance between p and q is denoted by $d(p, q)$. The geodesic sphere $S(p, r)$ of center p in H^n and radius r is given by $S(p, r) = \{ x \in H^n : d(p, x) = r \}$.

Let p, q be two points in H^n. For each $v \in T_pH^n$ and each $s \geq 0$ define

$$b_{vs}(q) = s - d(\alpha(s), q)$$

where $\alpha(s)$ is a unit speed geodesic with properties $\alpha(0) = p$ and $\alpha'(0) = v$. The functions b_{vs} are all smooth except at $\alpha(s)$, increasing with s and absolutely bounded by $d(\alpha(0), q)$. Hence the function $b_v = \lim_{s \to \infty} b_{vs}$ is defined everywhere on H^n. Call $H_v = b_v^{-1}(0)$ the horosphere and $D_v = b_v^{-1}((0, \infty))$ the horodisc characterized by v. The function b_v is called the Busemann function [5].

An alternative geometric definition of horosphere is introduced as follows. Let α be the geodesic ray starting at $p = \alpha(0)$ with $\alpha'(0) = v$, and consider the geodesic spheres through p with center $\alpha(t)$, $t > 0$. As t goes to infinity, these spheres converge to the horosphere H_v through p. Roughly speaking, we can define horospheres in H^n as the limit of a specific geodesic sphere sequence as the radius tends to infinity [5].

Let A be a subset of H^n, $n \geq 2$. A is said to be convex if for each pair of points x, y in A, the geodesic segment joining x and y is contained in A. A convex subset $A \subset H^n$ is said to be strictly convex if its boundary ∂A contains no geodesic segments, for example closed geodesic balls and closed horodesics in H^n are strictly convex sets [2]. It is clear that the intersection of two convex sets in H^n is again convex [4]. Any point in H^n is a pole i.e all geodesics from a point in H^n do not intersect.

A is said to have totally geodesic two piece property (in brief TTPP) if any totally geodesic hypersurface in H^n cuts A into at most two pieces. A is said
to have horosphere two piece property (in brief HTPP) if any horosphere cuts A into at most two pieces.

A horosphere H_v is said to be a supporting horosphere of a subset A in H^n if

1. the intersection of H_v and \bar{A} is non empty.

2. A is a subset of \bar{D}_v, where \bar{D}_v is the corresponding closed horodisc of H_v [4], for example any geodesic ball in H^n is supported at each boundary point by a horosphere.

Any horodisc D_v is supported at each boundary point by a horosphere.
A totally geodesic hypersurface T in H^n is said to be a supporting totally geodesic hypersurface of a subset A in H^n if

1. the intersection of T and \bar{A} is non empty.

2. A lies on one side of T, for example any geodesic ball in H^n is supported at each boundary point by a totally geodesic hypersurface.

Definition 1 A subset A of H^n with $\text{int}(A) \neq \emptyset$ is said to be h-convex if A is supported at each boundary point of A by a horosphere H_v for some v.

A point p in a subset A of H^n is said to be H-exposed point of A if A is supported by a horosphere H_v at p, for some v, and H_v intersects A only at p [4]. A point p in a subset A of H^n is said to be T-exposed point of A if A is supported by a totally geodesic hypersurface T at p and T intersects A only at p.

For example all boundary points of a geodesic ball are H-exposed and T-exposed points, while the boundary points of a horodisc are T-exposed but not H-exposed.

One may say that Busemann functions in Hyperbolic space H^n play the same role of height functions in Euclidean space E^n. Consequently we may state the following definition.

Definition 2 A subset A of H^n is said to be tight if each Busemann function b_v when restricted to A has one strict local maximum at most.
3 Results

In this section we present the main results of this paper and we begin with the following lemmas.

Lemma 3 Any convex subset of \(H^n \) has TTPP.

Proof 4 Suppose that a convex subset \(A \) of \(H^n \) does not have TTPP. Then there exists a totally geodesic hypersurface \(T \) which cuts \(A \) into more than two pieces. Suppose that \(T \) cuts \(A \) into three pieces \(A_1, A_2 \) and \(A_3 \), then at least two of the pieces, say \(A_1 \) and \(A_2 \), lie on one side of \(T \). Let \(p \) and \(q \) be two points in \(A_2 \) and \(A_1 \) respectively as indicated in Figure 1. Since \(T \) is convex and each point in \(H^n \) is a pole, the geodesic segment \([pq]\) lies completely in one side of \(T \). Thus \([pq]\) \(\not\subset \) \(A \) i.e \(A \) is not convex which is a contradiction and the proof is complete.

![Figure 1:](image)

Remark 5 The converse of the above lemma is not generally true. For example the area between two concentric geodesic circles (annulus) in \(H^2 \) has TTPP but it is not convex as in Figure 2.

Lemma 6 Let \(A \) be a closed subset of \(H^n \) with smooth boundary and \(\text{int} \; A \neq \emptyset \). \(A \) is convex if and only if \(A \) is supported at each boundary point by a totally geodesic hypersurface.

Proof 7 Suppose that \(A \) is supported at every boundary point by a totally geodesic hypersurface. Let \(y \) be any point in \(H^n \) and does not belong to \(A \). Since \(A \) is closed, there is a totally geodesic hypersurface \(T_y \) supports \(A \) and
separates \(y \) from \(A \). It is clear that \(A \) is the intersection of all closed half-spaces generated by \(T_y \) for every \(y \) not in \(A \). Thus \(A \) is convex.

Conversely suppose that \(A \) is not supported at a boundary point \(p \) by a totally geodesic hypersurface \(T \), then \(A \) does not lie in one side of \(T \); i.e., \(T \) must cut the interior of \(A \). Let \(q \) be a point in \(\text{int} A \) and lies on \(T \). Let \(B(q, \epsilon) \) be a geodesic ball about \(q \) with sufficiently small radius \(\epsilon \). The geodesic cone with base \(B(q, \epsilon) \) and vertex \(p \) shows that \(A \) is not convex. This completes the proof.

From Lemma 3 and Lemma 5 we have

Corollary 8 Suppose that \(A \) is a closed subset of \(H^n \) with smooth boundary and \(\text{int} A \neq \emptyset \). If \(A \) is supported at each boundary point by a totally geodesic hypersurface \(T \), then \(A \) has TTPP.

Lemma 9 Suppose that \(A \) is a closed subset of \(H^n \) with smooth boundary and \(\text{int} A \neq \emptyset \). If each boundary point is \(T \)-exposed, then \(A \) is strictly convex.

Proof 10 Suppose that each boundary point is \(T \)-exposed. Then \(A \) is supported at each boundary point by \(T \) and \(T \cap A \) is a singleton. From the above lemma \(A \) is convex. Since \(T \cap A \) is a singleton and \(T \) is convex, there is no geodesic segment in the boundary of \(A \); i.e., \(A \) is strictly convex.

From Lemma 3 and Lemma 7 we have

Corollary 11 Suppose that \(A \) is a closed subset of \(H^n \) with smooth boundary and \(\text{int} A \neq \emptyset \). If each boundary point is \(T \)-exposed, then \(A \) has TTPP.

Lemma 12 If \(A \) is a subset of \(H^n \) with smooth boundary. Then any \(H \)-exposed point of \(A \) is \(T \)-exposed.
Proof 13 Suppose that p is an arbitrary H-exposed point of a subset A of H^n. Then there exists a supporting horosphere H_v, for some v, with $H_v \cap A = \{p\}$ and A is a subset of D_v. Since D_v is supported by a totally geodesic hypersurface T at p, A is also supported by T at p and $T \cap A = \{p\}$ i.e p is T-exposed point.

Remark 14 The converse of the above lemma is not generally true, for example, as indicated in Figure 3, p is T-exposed point but it is not H-exposed.

![Figure 3: p is T-exposed but it is not H-exposed.](image)

From Lemma 7 and Lemma 9 we have

Corollary 15 Let A be a closed subset of H^n with smooth boundary and $\text{int} A \neq \emptyset$. If each boundary point is H-exposed, then A is strictly convex.

Theorem 16 Let A be a subset of H^n with smooth boundary and $\text{int} A \neq \emptyset$. If A has HTTP, then A has TTTP.

Proof 17 Suppose that A does not have TTTP. Then there exists a totally geodesic hypersurface T which cuts A into at least three pieces. Let p be a point belonging to ∂A and lies on T. Let $H_v(p)$ be the horosphere passing through p, where v is a normal vector to ∂A at p, then $H_v(p)$ cuts A into at least three pieces since H_v lies on one side of T and it cuts at least one of the pieces in this side to at least two pieces. Thus A does not have HTTP.

Remark 18 The converse of the above theorem is not generally true. For example a triangle in H^2 has TTTP and does not have HTTP as shown in Figure 4.

Proposition 19 Let A be a closed subset of H^2 having TTTP, and $\text{int} A \neq \Phi$. Let p and q be any two points in $\text{int} A$. If $[pq] \subset \text{int} A$, then $A \setminus [pq]$ has TTTP.
Figure 4: TTPP but not HTPP

Proof 20 Suppose that $A \setminus [pq]$ does not have TTPP, then there exists a geodesic γ that cuts $A \setminus [pq]$ into more than two pieces. But γ cuts A into at most two pieces, thus $[pq]$ cuts one of the two pieces. Therefore $[pq]$ must cut the boundary of A since $[pq]$ meets T once. Thus $[pq]$ is not contained in the interior which is a contradiction.

Using a similar proof, we get the following proposition:

Proposition 21 Let A be a closed subset of H^2 having HTPP, and $\text{int}A \neq \emptyset$. Let p and q be any two points in $\text{int}A$. If $[pq] \subset \text{int}A$, then $A \setminus [pq]$ has HTPP.

Proposition 22 Let A be a closed subset of H^2 having TTPP, B be a convex subset of A and both $\text{int}A$ and $\text{int}B$ are non-empty. If $B \cap \partial A = \emptyset$, then $A \setminus B$ has TTPP.

Proof 23 Suppose that $A \setminus B$ does not have TTPP, then there exists a geodesic γ that cuts $A \setminus B$ into more than two pieces. But γ cuts A into at most two pieces, therefore B intersects one of the two pieces into at least two pieces i.e. B must intersects the boundary of A since B is convex. This contradiction completes the proof.

Using a similar proof, we get the following proposition:

Proposition 24 Let A be a closed subset of H^2 having HTPP, B be a convex subset of A and both $\text{int}A$ and $\text{int}B$ are non empty. If $B \cap \partial A = \emptyset$, then $A \setminus B$ has HTPP.

Remark 25 In Proposition 15 if we replace convexity of B by TTPP, then $A \setminus B$ does not necessarily have TTPP. For example if A is a geodesic ball in H^2 and B is the area between two concentric geodesic balls in $\text{int}A$, then $A \setminus B$ does not have TTPP as shown in Figure 5.
Theorem 26 Suppose that A is a closed subset of H^n with smooth boundary and $\text{int} A \neq \emptyset$. If A is h-convex, then A is strictly convex.

Proof 27 First suppose that A is h-convex. Then A is supported at each boundary point by a horosphere. Since D_v is supported by a totally geodesic hypersurface T, A is also supported by T at each boundary point. From Lemma 5 A is convex.

Second suppose that A is not strictly convex. Then there is a geodesic segment, say $[pq]$ in the boundary of A and $[pq]$ is contained in a totally geodesic hypersurface. Let r be any point on $[pq]$ and H_v be a horosphere at r where v is in the direction of the interior of A. Since D_v is supported by a totally geodesic hypersurface T at r, A is not supported by a horosphere H_v at r. Therefore A is not h-convex.

Remark 28 The converse of the above lemma is not generally true, for example the closed half space generated by any totally geodesic hypersurface T is not h-convex but it is convex.

From Lemma 3 we have

Corollary 29 Suppose that A is a closed subset of H^n with smooth boundary and $\text{int} A \neq \emptyset$. If A is h-convex, then A has TTPP.

From the definition of horosphere we conclude that any geodesic ball $B(x, r)$ in H^n is h-convex and hence it has TTPP.

Theorem 30 Suppose that A is a compact subset of H^n with smooth boundary and $\text{int} A \neq \emptyset$. If A has HTPP, then A is tight.

Proof 31 Suppose that A is not tight. Then there exist at least two strict local maxima (say p and q) of a Busemann function b_v, for some v restricted on A. We have two cases:
1. If \(p \) and \(q \) satisfy \(b_v(p) = b_v(q) \) as shown in Figure 6 case 1. Let \(H_v \) be the base of the Busemann function and \(H'_v \) be a parallel horosphere to \(H_v \) which is tangent to \(\partial A \) at \(p \) and \(q \). Moving \(H'_v \) parallel to itself in a sufficiently small neighborhood in the direction of interior of \(A \), we find that the resulting horosphere cuts \(A \) into more than two pieces i.e \(A \) does not have HTPP.

2. If \(p \) and \(q \) satisfy \(b_v(p) \neq b_v(q) \) as shown in Figure 6 case 2. As in the first case let \(H_v \) be the base of the Busemann function and \(H'_v \) be a parallel horosphere to \(H_v \) which is tangent to \(\partial A \) only at \(p \). Moving \(H'_v \) parallel to itself in a sufficiently small neighborhood in the direction of interior of \(A \), we find that the resulting horosphere cuts \(A \) into more than two pieces i.e \(A \) does not have HTPP.

\[\]

Theorem 32 Suppose that \(A \) is a closed subset of \(H^n \) with smooth boundary and \(\text{int} \ A \neq \Phi \). If \(A \) is \(h \)-convex, then \(A \) is has HTPP.

Proof 33 Suppose that \(A \) does not have HTPP. Then there exists a horosphere \(H_v \) which cuts \(A \) into more than two pieces and at least two pieces in one side of \(D_v \). Suppose that \(H_v \) is the base of the Busemann function when restricted on \(A \). Let \(p \) and \(q \) be two points on the boundary of \(A \) and each in one piece we have two cases:

1. If \(p \) and \(q \) satisfy \(b_v(p) \neq b_v(q) \) as shown in Figure 6 case 2. Let \(H_v \) be the base of the Busemann function when restricted on \(A \) and \(H'_v \) be a parallel horosphere to \(H_v \) which is tangent to \(\partial A \) only at \(p \) and cuts the interior of \(A \) i.e \(A \) is not supported by \(H'_v \) at \(p \).

2. If \(p \) and \(q \) satisfy \(b_v(p) = b_v(q) \) as shown in Figure 6 case 1. Let \(H_v \) be the base of the Busemann function when restricted on \(A \). Make a small variation of \(v \) to \(v_1 \) and draw a horosphere \(H_{v_1} \) at a point \(p' \in \partial A \)
sufficiently close to p such that $b_{v_1}(p') \neq b_{v_1}(q)$. As in the first case A is not supported by H_{v_1} at p.

The two cases imply that A is not h-convex.

From Theorem 22 and Theorem 23 we have

Corollary 34 If A is a closed h-convex subset of H^n with smooth boundary and int$A \neq \Phi$ then A is tight.

Remark 35 The following suggests topics may be considered in future as open problems:

1. Almost all results of this article can be proved in any complete simply connected Riemannian manifold without focal points.

2. Two piece property in S^n deserves a deep discussion as S^n is not free from focal points.

References

Received: November 1, 2013