k-* Paranormal Composition Operator

Anuradha Gupta

Delhi College of Arts and Commerce
University of Delhi, Netaji Nagar
New Delhi 110023, India
dishna2@yahoo.in

Pooja Sharma

Department of Mathematics
University of Delhi
Delhi 110007, India
pooja.20.sh@gmail.com

Copyright © 2013 Anuradha Gupta and Pooja Sharma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this article, composition operators and weighted composition operator of k-* Paranormal operators, $(M,k)^*$ class of operators and their adjoints are characterized in L^2 spaces. We also discuss the relationship between $(M,k)^*$ class and k-* Paranormal operators.

Mathematics Subject Classification: 47B20, 47B33, 47E30

Keywords: k-* Paranormal operators, $(M,k)^*$ class of operators, Composition operators, Weighted composition operators.

Introduction

Let H be an infinite dimensional complex separable Hilbert space and $B(H)$ the algebra of all bounded linear operators defined on Hilbert space H. Let $T \in B(H)$. An operator T is called Normal if $TT^* = T^*T$, quasi-normal if $T(T^*T) = (T^*T)T$, it is hyponormal if $T^*T \geq TT^*$, which is equivalent to the condition $\|T^*x\| \leq \|Tx\|$, for all x in H. We say that an operator T is
quasi-hyponormal if \(T^*T^2 \geq (T^*)^2 \), which is equivalent to the condition
\[\|T^2x\| \geq \|T^*Tx\|, \text{ for all } x \text{ in } H. \]
We say that an operator \(T \) is \(*\)-Paranormal if \(\|T^*x\|^2 \leq \|T^2x\| \|x\|, \) for all unit vectors \(x \) in \(H \) or \(\|T^*x\|^2 \leq \|T^2x\|, \) for all unit vectors \(x \) in \(H \). An operator \(T \) is called \(k\)-* Paranormal operator if \(\|T^*x\|^k \leq \|T^kx\|, \) for all unit vectors \(x \) in \(H \) and \(k \geq 2 \) [11].

In general, \(k\)-* Paranormal \(\Rightarrow \) \(*\)-Paranormal, \(k \geq 2 \)
An operator \(T \) is of \((M,k)\)* class if \(T^{*k}T^k \geq (TT^*)^k \), for \(k \geq 1 \), which is equivalent to the condition \(\|T^kx\| \geq \|(TT^*)^{k/2}\|, \) for all \(x \) in \(H \) and \(k \geq 1 \) [8].

Let \((X, \Sigma, \lambda)\) be a sigma-finite measure space. The relation of being almost everywhere, denoted by a.e., is an equivalence relation in \(L^2(X, \Sigma, \lambda) \) and this equivalence relation splits \(L^2(X, \Sigma, \lambda) \) into equivalence classes. Let \(T \) be a measurable transformation from \(X \) into itself. \(L^2(X, \Sigma, \lambda) \) is denoted by \(L^2(\lambda) \).

The equation \(C_Tf = f \circ T, \ f \in L^2(\lambda) \) defined a composition transformation on \(L^2(\lambda) \). \(T \) induces a composition operator \(C_T \) on \(L^2(\lambda) \) if

(i) the measure \(\lambda \circ T^{-1} \) is absolutely continuous with respect to \(\lambda \).

(ii) the Radon-Nikodym derivative \(\frac{d(\lambda T^{-1})}{d\lambda} \) is essentially bounded.

Harrington and Whitley [4] have shown that if \(C_T \in B(L^2(\lambda)) \), then \(C_T^*C_Tf = f_Tf \) and \(C_TC_T^*f = (f_T \circ T)Pf \), for all \(f \) in \(L^2(\lambda) \), where \(P \) denotes the projection of \(L^2(\lambda) \) onto \(R(C_T) \). Thus it follows that \(C_T \) had dense range iff \(C_T^*C_T \)

is the operator of multiplication by \(f_T \circ T \), where \(f_T \) denotes \(\frac{d(\lambda T^{-1})}{d\lambda} \), the Radon Nikdoym Derivative. Every essentially bounded complex-valued measurable function \(f_T \) induces a bounded operator \(M_{f_T} \) on \(L^2(\lambda) \) which is defined by \(M_{f_T}f = f_Tf \), for every \(f \) in \(L^2(\lambda) \).

Further, \(C_T^*C_T = M_{f_T} \). Let us denote \(\frac{d(\lambda T^{-1})}{d\lambda} \) by \(h \) and \(\frac{d(\lambda T^k)}{d\lambda} \) by \(h_k \) where \(k \) is a positive integer greater than or equal to 1.

Then \(C_T^*C_T = M_h \) and \(C_T^*C_T^* = M_{h^2} \). In general, \(C_T^*C_T^k = M_{h_k} \) where \(M_{h_k} \)

is the multiplication operator on \(L^2(\lambda) \) induced by complex valued measurable function \(h_k \).

Let the set \(A \) be contained in the space \(X \) then the characteristic function of \(A \), written \(\chi_A \), is the function on \(A \) defined by:

\[
\chi_A(x) = 1, \text{ for } x \in A; \quad \chi_A(x) = 0, \text{ for } x \in (X - A)
\]

1 \(k\)-* Paranormal and \((M,k)\)* Composition Operators

In this section we characterize \(k\)-* Paranormal composition operator, \((M,k)\)* composition operator.
Theorem 1.1 ([3, Proposition 2.2]). For each positive integer \(k \geq 2 \), an operator \(T \in B(H) \) is \(k^* \)-Paranormal iff \(T^{*k}T^k - k\mu^{k-1}TT^* + (k-1)\mu kI \geq 0 \), for all \(\mu > 0 \).

Using this theorem, we characterize the \(k^* \)-Paranormal composition operators on \(L^2(\lambda) \) in the following.

Theorem 1.2. For each positive integer \(k \geq 2 \), \(C_T \in B(L^2(\lambda)) \) is \(k^* \)-Paranormal operator iff \(h_k - k\mu^{k-1}(h \circ T)P + (k-1)\mu k \geq 0 \), for all \(\mu > 0 \), where \(P \) denotes the Projection of \(L^2(\lambda) \) onto \(R(C_T) \).

Proof. For each positive integer \(k \geq 2 \)

\(C_T \) is \(k^* \)-Paranormal operator iff

\[
C_T^{*k}C_T^k - k\mu^{k-1}C_TC_T^* + (k-1)\mu kI \geq 0,
\]

for all \(\mu > 0 \).

Thus,

\[
\langle (C_T^{*k}C_T^k - k\mu^{k-1}C_TC_T^*) + (k-1)\mu kI \rangle(g), g \rangle \geq 0,
\]

for all \(g \) in \(L^2(\lambda) \) and for all \(\mu > 0 \).

\[
\Leftrightarrow \langle (C_T^{*k}C_T^k - k\mu^{k-1}C_TC_T^*) + (k-1)\mu kI \rangle(\chi_E), \chi_E \rangle \geq 0,
\]

for every characteristic function \(\chi_E \) of \(E \) in \(\Sigma \) such that \(\lambda(E) < \infty \).

Since, \(C_T^{*k}C_T^k = M_{h_k} \) and \(C_TC_T^* = M_{(h \circ T)p} \).

Therefore,

\[
\langle (M_{h_k} - k\mu^{k-1}M_{(h \circ T)p} + (k-1)\mu kI) \rangle(\chi_E), \chi_E \rangle \geq 0
\]

for every characteristic function \(\chi_E \) of \(E \) in \(\Sigma \) such that \(\lambda(E) < \infty \)

\[
\Leftrightarrow \int_E (M_{h_k} - k\mu^{k-1}M_{(h \circ T)p} + (k-1)\mu kI)(\chi_E)d\lambda \geq 0
\]

for every characteristic function \(\chi_E \) of \(E \) in \(\Sigma \) such that \(\lambda(E) < \infty \)

\[
\Leftrightarrow \int_E (h_k - k\mu^{k-1}(h \circ T)P + (k-1)\mu k) d\lambda \geq 0,
\]

for every \(E \) in \(\Sigma \) such that \(\lambda(E) < \infty \)

\[
\Leftrightarrow h_k - k\mu^{k-1}(h \circ T)P + (k-1)\mu k \geq 0, \text{ for every } \mu > 0
\]

Hence, \(C_T \) is \(k^* \)-Paranormal operator iff \(h_k - k\mu^{k-1}(h \circ T)P + (k-1)\mu k \geq 0 \) for every \(\mu > 0 \). \(\square \)
Corollary 1.3. Let \(C_T \in B(L^2(\lambda)) \) with dense range. Then \(C_T \) is \(k^* \) Paranormal operator iff \(h^k \circ T \leq h_k \) a.e.

Proof. Since, \(C_T \in B(L^2(\lambda)) \) has dense range. Therefore

\[
C_TC^*_Tf = M(h \circ T)f = (h \circ T)f
\]

Now,

\[
C_T \text{ is } k^* \text{ Paranormal} \\
\iff h_k - k\mu^{k-1}(h \circ T) + (k - 1)\mu^k \geq 0, \quad \text{for every } \mu > 0 \\
\iff (h \circ T)^k \leq h_k \text{ a.e.} \\
\iff h^k \circ T \leq h_k \text{ a.e.}
\]

\[\square \]

Example 1.4. Let \(X = \mathbb{N} \) and let \(\lambda \) be a counting measure on \(X \). Define \(T : \mathbb{N} \to \mathbb{N} \) by

\[
T(1) = T(2) = 1; \quad T(3) = 2 \\
T(4n + m - 1) = n + 2, \quad \text{for } m = 1, 2, 3, 4 \text{ and } n \in \mathbb{N}.
\]

Then, for each \(k \geq 3 \)

\[
(h^k \circ T)(n) \leq h_k(n) \text{ a.e., for every } n \in \mathbb{N}.
\]

Hence, \(T \) is \(k^* \) Paranormal operator.

Theorem 1.5. For each positive integer \(k \geq 2 \), \(C^*_T \) is \(k^* \) Paranormal operator iff

\[
h_k \circ T^kP_k - k\mu^{k-1}h + (k - 1)\mu^k \geq 0 \quad \text{a.e., for every } \mu > 0
\]

where \(P_k \) is the projection of \(L^2(\lambda) \) onto \(\overline{R(C^*_T)} \).

Proof. \(C^*_T \) is \(k^* \) Paranormal operator iff

\[
C^*_TC^*_k - k\mu^{k-1}C^*_TC_T + (k - 1)\mu^kI \geq 0, \quad \text{for every } \mu > 0.
\]

Thus

\[
\langle (C^*_TC^*_k - k\mu^{k-1}C^*_TC_T + (k - 1)\mu^kI)(\chi_E), \chi_E \rangle \geq 0,
\]

for every characteristic function \(\chi_E \) of \(E \) in \(\Sigma \) such that \(\lambda(E) < \infty \) and for every \(\mu > 0 \)

\[
\iff h_k \circ T^kP_k - k\mu^{k-1}h + (k - 1)\mu^k \geq 0 \text{ a.e., for every } \mu > 0.
\]

\[\square \]
Corollary 1.6. Let $C^*_T \in B(L^2(\lambda))$ with dense range. Then, C^*_T is k^* Paranormal operator iff $h^k \leq h_k \circ T^k$.

Proof. Since $C^*_T \in B(L^2(\lambda))$ has dense range therefore C^*_T is k^* Paranormal iff $h_k \circ T^k - k\mu^{k-1}h + (k-1)\mu^k \geq 0$ a.e., for all $\mu > 0$ iff $h^k \leq h_k \circ T^k$ a.e. \[
\]

Theorem 1.7 ([7]). If C_T is a composition operator on $L^2(\lambda)$, then C_T is of class $(M, k)^*$ if and only if

$$
\|h_k^\frac{1}{2} \chi_E\| \geq \|(h \circ T)^{k/2}P(\chi_E)\|, \text{ for all } \chi_E \in L^2(\lambda)
$$

where P is the projection onto $\overline{R(C_T)}$.

Fahri and Muhib [3] has characterized $(M, k)^*$ class of operators as follows:

Theorem 1.8. $T \in (M, k)^*$ iff $T^kT^k + 2\mu(TT^*)(TT^*)^k + \mu^2TT^kT^k \geq 0$, for all $\mu > 0$.

Theorem 1.9. For each positive integer $k \geq 1$, a composition operator on $L^2(\lambda)$ is of class $(M, k)^*$ iff $h_k + 2\mu(h \circ T)P + \mu^2h_k$ a.e., for all $\mu > 0$.

Proof.

C_T is of class $(M, k)^*$

$\Leftrightarrow C^*TC^*_T + 2\mu(C_TC^*_T)^k + \mu^2C^*TC^*_T \geq 0$ a.e., for all $\mu > 0$

$\Leftrightarrow \langle C^*TC^*_T + 2\mu(C_TC^*_T)^k + \mu^2(C^*TC^*_T)(\chi_E), \chi_E \rangle \geq 0,$

for every $\chi_E \in L^2(\lambda)$ and for every $\mu > 0$.

$\Leftrightarrow \langle (M_{h_k} + 2\mu M_{(h \circ T)h_k} + \mu^2M_{h_k})(\chi_E), \chi_E \rangle \geq 0,$

for every $\chi_E \in L^2 \in L^2(\lambda)$ and for every $\mu > 0$.

$\Leftrightarrow \int_E (h_k + 2\mu(h \circ T)^kp + \mu^2h_k) d\lambda \geq 0$ a.e., for every $\mu > 0$

and for every $E \in \Sigma$ with $\lambda(E) < \infty$

$\Leftrightarrow h_k + 2\mu(h \circ T)^kp + \mu^2h_k \geq 0$ a.e., for every $\mu > 0$

$\Leftrightarrow h_k + 2\mu(h^k \circ T)p + \mu^2h_k \geq 0$ a.e., for every $\mu > 0$

\[
\]

Corollary 1.10. If $C_T \in B(L^2(\lambda))$ and has dense range. Then C_T is of class $(M, k)^*$ iff $(h_k \circ T) \leq h_k$ a.e.

Proof. $C_T \in B(L^2(\lambda))$ with dense range is of class $(M, k)^*$ iff $h_k + 2\mu(h^k \circ T) + \mu^2h_k \geq 0$ a.e., for every $\mu > 0$ iff $h^k \circ T \leq h_k$ a.e. (using the elementary property of real quadratic form). \[
\]
Theorem 1.11. A composition operator $C_T \in B(L^2(\lambda))$ with dense range is k-* Paranormal operator iff it is of class $(M, k)^*$, for all $k \geq 2$.

Proof. [7, Theorem 2.1] If $C_T \in (M, k)^*$, $k \geq 2$, then C_T is k-* Paranormal operator.

Conversely, let $C_T \in B(L^2(\lambda))$ be a composition operation with dense range which is k-* Paranormal operator.

Then, by Theorem 1.2

\[
\begin{align*}
 h_k - k\mu^{k-1}(h \circ T) + (k-1)\mu^k &\geq 0 \quad \text{a.e., for all } \mu > 0 \\
 (h \circ T)^k &\leq h_k \quad \text{a.e.} \\
 h_k - (h \circ T)^k &\leq 0 \quad \text{a.e.} \\
 \int_E (h_k - (h \circ T)^k) d\lambda &\geq 0 \quad \text{for every } E \in \Sigma \text{ with } \lambda(E) < \infty \\
 \int_E (Mh_k - M^{k}_{h\circ T})(\chi_E) d\lambda &\geq 0 \quad \text{a.e., for every } E \in \Sigma \text{ with } \lambda(E) < \infty \\
 \langle (C_T^* C_T^k - (C_T C_T^*)^k)(\chi_E), \chi_E \rangle &\geq 0, \quad \text{for every } \chi_E \in L^2(\lambda) \\
 C_T \text{ of class } (M, k)^* \quad \text{(by definition of } (M, k)^*)
\end{align*}
\]

\[\square\]

2 Weighted Composition Operators

In this section we characterize the weighted k-* Paranormal composition operators and weighted $(M, k)^*$ class of composition operators.

A weighted composition operator W induced by T is defined as $Wf = w(f \circ T)$, is a complex-valued Σ measurable function. When $w = 1$, we say that W is a composition operator.

Let w_k denote $w(w \circ T)(w \circ T^2) \circ (w \circ T^{k-1})$. Then,

\[W^k f = w_k(f \circ T)^k.\]

To examine the weighted composition operators effectively, Alan Lambert [1] associated conditional expectation operator E with T as $E(\cdot \mid T^{-1}\Sigma) = E(\cdot)$. $E(f)$ is defined for each non-negative measurable function $f \in L^p(\lambda)$, $p \geq 1$ and is uniquely determined by conditions:

(i) $E(f)$ is $T^{-1}\Sigma$ measurable

(ii) If B is any $T^{-1}\Sigma$ measurable set for which $\int_B f d\lambda$ converges,

\[\int_B f d\lambda = \int_B E(f) d\lambda\]
An operator of $L^p(\lambda), E$ is the projection onto the closure of range of T and E is the identity on $L^p(\lambda), p \geq 1$ iff $T^{-1}\Sigma = \Sigma$. Detailed discussion of E is found in [5], [6], [10]. The following properties due to Cambell and Jamison [5] is well known.

Proposition 2.1. For $w \geq 0$

(i) $W^*Wf = h[E(w^2)] \circ T^{-1}f$

(ii) $WW^*f = w(h \circ T)E(wf)$

Since $W^kf = w_k(f \circ T^k)$ and $W^{*k}f = h_kE(w_kf) \circ T^k$, we have

$$W^{*k}W^k f = h_kE(w_k^2) \circ T^{-k}f, \quad \text{for every } f \in L^p(\lambda), (p \geq 1).$$

Now we give a characterization of k^* Paranormal weighted composition operators and $(M, k)^*$ class of weighted composition operators.

Theorem 2.1. For each positive integer $k \geq 2$. Let $W \in B(L^2(\lambda))$. Then, W is k^* Paranormal operator iff

$$h_kE(w_k^2) \circ T^{-k} - k\mu^{k-1}w(h \circ T)E(w) + (k - 1)\mu^k \geq 0 \quad \text{a.e., for all } \mu > 0.$$

Proof. W is k^* Paranormal

\[\Leftrightarrow W^{*k}W^k - k\mu^{k-1}WW^* + (k - 1)\mu^k I \geq 0 \text{ a.e.; for every } \mu > 0 \]

\[\Leftrightarrow \int_E (h_kE(w_k^2) \circ T^{-k} - k\mu^{k-1}w(h \circ T)E(w) + (k - 1)\mu^k I) \mu \geq 0 \]

a.e., for every $\mu > 0$ and for every $E \in \Sigma$ with $\lambda(E) < \infty$

i.e.

$$h_kE(w_k^2) \circ T^{-k} - k\mu^{k-1}w(h \circ T)E(w) + (k - 1)\mu^k \geq 0 \text{ a.e., for every } \mu > 0.$$

\[\Box \]

Corollary 2.2. Let $T^{-1}\Sigma = \Sigma$ Then, W is k^* Paranormal operator iff

$$h_kw_k^2 \circ T^{-k} - k\mu^{k-1}w(h \circ T)w + (k - 1)\mu^k \geq 0 \quad \text{a.e., for every } \mu > 0.$$

Theorem 2.3. Let $W \in B(L^2(\lambda))$ and $k \geq 1$. Then, W is of class $(M, k)^*$ operators iff

$$h_kE(w_k^2) \circ T^k + 2\mu(w(h \circ T)E(W))^k + \mu^2h_kE(w_k^2) \geq 0 \text{ a.e., for every } \mu > 0.$$
A. Gupta and P. Sharma

Proof. W is of class $(M, k)^*$

\[\iff W^* w^k + 2\mu(WW^*)^k + \mu^2 W^*kW^k \geq 0 \quad \text{a.e., for every } \mu > 0 \]

\[\iff \int_E [h_k E(w_k^2) \circ T^{-k} + 2\mu(w(h \circ T)E(w)) + \mu^2 h_k E(w_k^2)]d\lambda \geq 0, \]

for every $\mu > 0$ and for every $E \in \Sigma$ with $\lambda(E) < \infty$

\[\iff h_k E(w_k^2) \circ T^{-k} + 2\mu(w(h \circ T)E(w))^k + \mu^2 h_k E(w_k^2) \geq 0 \quad \text{a.e., for every } \mu > 0. \]

\[\square \]

Corollary 2.4. Let $T^{-1}\Sigma = \Sigma$. Then, W is of class $(M, k)^*$ operators iff $(w(h \circ T)w)^k \leq h_k(w_k^2)$.

References

Received: November, 2012