On Density and Hypercyclicity

Parvin Karami

Department of Mathematics
Islamic Azad University, Branch of Mamasani
P.O.Box 7351754731, Mamasani, Iran
karami-pk67@yahoo.com

Mezban Habibi

Department of Mathematics
Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
P.O.Box 181 40, Lidingo, Stockholm, Sweden
habibi.m@iaudehdasht.ac.ir

Fatemeh Safari

department of mathematics
Islamic Azad University, branch of Mamasani
P.O.Box 7571763111, Mamasani, Iran
safari.s@iaudehdasht.ac.ir

Mohammad Zarrabi

department of mathematics
Islamic Azad University, branch of Mamasani
P.O.Box 7571763111, Mamasani, Iran
m-zarrabi86@yahoo.com

Copyright © 2013 Parvin Karami, Mezban Habibi, Fatemeh Safari and Mohammad Zarrabi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of the paper ahead Birhoff, Maclane, Godefroy-Shapiro and
Kitai-Getner-Shapiro and the results of their theorems and hypercyclic operators on space $H(C)$. In Birhoffs theorem is shown that, if b is non-zero, then the shift with the vector b is an hypercyclic operator. Maclane in 1952 showed that the Differentiation operator on $H(C)$ is an hypercyclic operator. Bourdon and Shapiro also studied the behavior of composition operators on this space.

Mathematics Subject Classification: 47A16, 47B37

Keywords: Hypercyclicity criterion, Hypercyclic vector, Density, Independently

1 Introduction

Let X be a Frechet space and T be a bounded linear operator on X. For each $x \in X$ put

\[\text{Orb}(T, x) = \{ T^n(x) : n \geq 0 \} = \{ x, Tx, T^2x, T^3x, \ldots \} \]

The set $\text{Orb}(T, x)$ is called orbit of vector x under the operator T and the operator T is called hypercyclic operator if there exist vector x in X such that the set $\text{Orb}(T, x)$ is dense in X, in this case the vector x is called hypercyclic vector for the operator. If X^* be the dual space of space X and both operators $T : X \rightarrow X$ and $T^* : X^* \rightarrow X^*$ are hypercyclic, then the operator T is called dual hypercyclic. For more information readers can see [1–5].

2 Preliminary Notes

Suppose that $H(C)$ be the space of all functions of one complex variable with the uniform convergence topology on compact subsets of C. Consider Banach space E, Frechet algebra by elements of dual space with uniform convergence topology over the balls of E. Space $H_{bc}(E)$ containing all bounded functions on compact subsets of E, the space $H_{bc}(E)$ includes all functions $f = \sum_{n=0}^{\infty} P_n$ in which

\[P_n \in \text{Span}\{ \varphi^n : \varphi E^* \} , \quad n = 0, 1, 2, 3, \ldots \]

\[\| P_n\|_1 = (\text{Sup}_{\|x\| < 1} |P_n|)_1 \rightarrow 0 , \quad n \rightarrow \infty \]

The operator $\phi : H(E) \rightarrow H(E)$ by definition $\phi(f) = Df$ is called differentiation operator. Let $\varphi \in H(C)$, then the operator $C_\varphi : H(C) \rightarrow H(C)$ by definition $C_\varphi(f) = f \circ \varphi$ on $H(C)$ is hypercyclic, if and only if the operator φ
is a shift with a non-zero vector $b \in C$. In other words, $\exists 0 \neq b \in C, \varphi(z) = z + b(\text{see}[1])$. Differentiation operator on $H(C)$ is a hypercyclic operator (see[6]). If $\phi(z) = \sum_{|\alpha| \geq 0} C_{\alpha} z^{\alpha}$ be non-constant entire function on C, Then the operator $\phi_{D} : H(C^{n}) \rightarrow H(C^{n})$ by definition $\phi_{D}(f) = \sum_{|\alpha| \geq 0} C_{\alpha} D^{\alpha} f$, $f \in H(C)$ is hypercyclic operator (see[10]). Also all continuous linear operator on $H(C^{n})$ substitute with translation, if and only if, be for one $\varphi \in H(C^{n})$ is of exponential form $T = \varphi' D$.

Theorem 2.1 (Hypercyclicity Criterion) Let X be an F-space and $T : X \rightarrow X$ be a continuous linear operator and assume that U, V are two dense subsets of X and $\{n_{k}\}_{k=1}^{\infty}$ be a sequence of positive integers, and there are sequences $S_{n_{k}} : V \rightarrow X$ of mapping such that,

1. $T^{n_{k}} \rightarrow 0, k \rightarrow \infty$, Pointwise on U
2. $S_{n_{k}} \rightarrow 0, k \rightarrow \infty$, Pointwise on V
3. $T^{n_{k}} S_{n_{k}} = I_{V}$

then the operator T is hypercyclic

3 Main Results

Theorem 3.1 If E be a Banach Space then the collection $B = \{e^{\varphi} : \varphi \in E^{*}\}$ is an independently linear subset of $H_{bc}(E)$.

Theorem 3.2 Let U be an open subset of E^{*}, then $S = \text{Span}\{e^{\varphi} : \varphi \in U\}$ is a dense subset of $H_{bc}(E)$.

Proof. Let $\varphi_{0} \in E^{*}$ and $\Lambda : H_{bc}(E) \rightarrow H_{bc}(E)$ by $\Lambda(\psi) = e^{\varphi_{0}} \cdot \psi$. Suppose $\psi_{1}, \psi_{2} \in H_{bc}(E)$ and $\Lambda(\psi_{1}) = \Lambda(\psi_{2})$, so $e^{\varphi_{0}} \cdot \psi_{1} = e^{\varphi_{0}} \cdot \psi_{2}$. Since $e^{\varphi_{0}} \neq 0$, then $\psi_{1} = \psi_{2}$, that is the operator Λ is one-one operator. Since constant operator and identity operator are continuous, then the operator Λ is continuous. Now since $\Lambda(\psi)^{-1} = e^{-\varphi_{0}} \cdot \psi$ is continuous operator, then the operator Λ is a homeomorphism and

$$\text{Span}\{e^{\varphi_{0} + \varphi} : \varphi \in U\} = H_{bc}(E) \Leftrightarrow \text{Span}\{e^{\varphi} : \varphi \in U\} = H_{bc}(E)$$

If $\lambda_{0} \in U$ then take $U_{0} = \{\varphi - \lambda_{0} : \varphi \in U\}$, then $0 = \lambda_{0} - \lambda_{0} \in U_{0}$. So without lost of generality we can suppose $0 \in U$. If U be a non-empty open subset of E^{*}, such that the norm of all element in U are not zero, then theorem is trivial. So assume that $\varphi_{0} \in U, \|\varphi_{0}\| \neq 0$ and define $U_{0} = \{\frac{1}{\|\varphi_{0}\|} \varphi : \varphi \in U\}$. Now we have

$$\frac{1}{\|\varphi_{0}\|} \varphi_{0} = \frac{1}{\|\varphi_{0}\|} \cdot \|\varphi_{0}\| = 1 \quad , \quad \frac{1}{\|\varphi_{0}\|} \varphi_{0} \in U_{0}.$$
So we have an open non-empty subset of E^* contain an element of norm 1. Now take $\delta > 0$ such that, $U = \{ \varphi \in E^* : \| \varphi \| < \delta \}$. Specially, for $0 \in U$ we have $1 \in U$. Now we just to proof that,

$$\varphi^n \in S, \quad \forall n \geq 0, \quad \forall \varphi \in U$$

For this, suppose that $\varphi^n \in U$ for $\varphi^n \in U$ and $n \leq k - 1$. In this way we have

$$\psi_t = \frac{e^{t\varphi} - 1 - t\varphi - \frac{(t\varphi)^2}{2!} - \ldots - \frac{(t\varphi)^k}{k!}}{t^k}$$

Since $t\varphi \in U$, assume that $x \in E$ be given, then

$$|(\psi_t - \frac{\varphi^k}{k!})(x)| = \left| \frac{1}{tk}(e^{t\varphi} - 1 - t\varphi - \frac{(t\varphi)^2}{2!} - \ldots - \frac{(t\varphi)^k}{k!})(x) \right|$$

$$\leq t \sum_{n \geq k+1} t^{n-k-1} \frac{|\varphi(x)|^n}{n!} \leq t e^{\delta\|x\|}$$

Then in the space $H_{bc}(E)$ we have

$$\psi_t \to \frac{\varphi^k}{k!}, \quad t \to \infty$$

So $\frac{\varphi^k}{k!} \in \overline{S}$, and by this the proof is complete.

Theorem 3.3 Let $T : X \to X$ be a hypercyclic operator and $U : X \to Y$ be a one by one operator with the dense range, then $UTU^{-1} : Y \to Y$ is hypercyclic.

Proof. Take hypercyclic vector $x \in X$, so we have to show that $U(x) \in Y$ is a hypercyclic vector for UTU^{-1}. Since $U(x) \in Y$ is a hypercyclic vector for UTU^{-1} then

$$Orb(UTU^{-1}, U(x)) = \{(UTU^{-1})^n(U(x)) : n = 1, 2, 3, \ldots\}$$

$$= \{UT^nU^{-1}(U(x)) : n = 1, 2, 3, \ldots\}$$

$$= \{UT^n(U^{-1}(U(x))) : n = 1, 2, 3, \ldots\}$$

$$= \{UT^n(x) : n = 1, 2, 3, \ldots\}$$

$$= U(\{T^n(x) : n = 1, 2, 3, \ldots\})$$

$$= U(Orb(T, x))$$

so

$$Orb(UTU^{-1}, U(x)) = \overline{U(Orb(T, x))} = Y.$$
Since \(T(A) \subseteq \overline{T(A)} \) then \(U(X) = U(\overline{Orb(T,x)}) \subseteq U(\overline{Orb(T,x)}) \subseteq Y \) so \(Y = U(X) \subseteq U(Orb(T,x)) \subseteq Y \), now we have \(\overline{U(Orb(T,x))} = Y \), in other hand \((UTU^{-1}, U(x)) = Y \). This concluded that the vector \(U(x) \in Y \) is a hypercyclic operator for \(UTU^{-1} \).

ACKNOWLEDGEMENTS. This research was partially supported by a grant from Research Council of Islamic Azad University (IAU), Mamasani Branch, so the authors gratefully acknowledge this support.

References

Received: November, 2012