Buffon-Laplace Type Problems for Three Regular Lattices and ”Body Test” a Parallelogram

G. Caristi

Department SEA, University of Messina
Via dei Verdi n.75, 98122 Messina, Italy
gcaristi@unime.it

Marius Stoka

Accademia delle Scienze di Torino, Italy

Abstract

In this paper we consider three regular lattices with cells, respectively, rectangle, parallelogram and trapezium and we compute the probability that the parallelogram intersects a side of the lattice.

Keywords: Geometric Probability, stochastic geometry, random sets, random convex sets and integral geometry

1 Rectangle cell

Let $\mathcal{R}_1 (l, m)$ be the lattice with fundamental cell $C_0^{(1)}$ an rectangle of side l, m.

The ”body test” is a parallelogram p of side a, b and angle β with $\frac{\pi}{3} \leq \beta \leq \frac{\pi}{2}$, $\sqrt{a^2 + b^2 + 2ab \cos \beta} < \frac{1}{2} \min(l, m)$, $\text{areap} = ab \sin \beta$.

![fig.1](image-url)
We want to compute the probability that parallelogram p intersects a side of the lattice R_1, therefore the probability $P_{int}^{(1)}$ that p intersects a side of the fundamental cell $C_0^{(1)}$.

The position of the parallelogram p is determined by his barycentre and the angle φ represented in the figure 2.

To compute the probability $P_{int}^{(1)}$ we consider the limit positions of "body test" for a fixed value of φ. We denote with $\hat{C}_0^{(1)}$ the figure determined from these positions, we have the figure

\[
\text{area} \hat{C}_0^{(1)}(\varphi) = \text{area}C_0^{(1)} - 4 \text{area}p - 2 [\text{area}a_1 + \text{area}a_2 + \ldots + \text{area}a_6].
\]

The figure 2 give us

\[
\overline{A_1A_2A_3} = \pi - \beta, \quad \overline{AA_2A_1} = \beta - \varphi, \quad \overline{AA_1A_2} = \frac{\pi}{2} - \beta + \varphi.
\]

Therefore

\[
|AA_1| = a \sin (\beta - \varphi), \quad |AA_2| = a \cos (\beta - \varphi),
\]

hence

\[
\text{area}a_1(\varphi) = \frac{a^2}{4} \sin 2(\beta - \varphi).
\]

From the formulas (2) follow

\[
\varphi \leq \beta, \quad \varphi \geq \beta - \frac{\pi}{2},
\]
Buffon-Laplace type problems therefore, as $\beta \leq \frac{\pi}{2}$, we have $\varphi \geq 0$.

Hence
\[
\varphi \in [0, \beta].
\] (5)

In the same way from the figure 2 we obtain
\[
|BB_1| = b \sin \varphi, \quad |BB_2| = b \cos \varphi,
\] (6)

therefore
\[
areaa_3(\varphi) = \frac{b^2}{4} \sin 2\varphi.
\] (7)

Now we consider the figure

![Figure 3](image)

fig.3

We have
\[
\overrightarrow{B_1B_4B_6} = \overrightarrow{B_4B_1B_2} = \beta,
\]
\[
\overrightarrow{B_1B_6B_4} = \overrightarrow{BB_1B_2} = \frac{\pi}{2} - \varphi,
\]
\[
\overrightarrow{B_6B_1B_4} = \frac{\pi}{2} - \beta + \varphi.
\] (8)

With these values, the triangle $B_1B_4B_6$ give us
\[
\frac{|B_1B_6|}{\sin \beta} = \frac{a}{\cos \varphi} = \frac{|B_4B_6|}{\cos (\beta - \varphi)},
\]

therefore
\[
|B_1B_6| = \frac{a \sin \beta}{\cos \varphi}, \quad |B_4B_6| = \frac{a \cos (\beta - \varphi)}{\cos \varphi}
\] (9)

and, consequently,
\[
areaa_4(\varphi) = \frac{a^2 \sin \beta \cos (\beta - \varphi)}{2 \cos \varphi}.
\] (10)

From the figure 2 we have
\[
\Delta O_1A_4A_7 = \Delta O_2B_4B_7,
\]
therefore
\[|A_4A_7| = |B_4B_7|. \]

Hence
\[|A_1A_7| = b - |A_4A_7|, \]
\[|B_6B_7| = |B_4B_7| + |B_4B_6| = |A_4A_7| \cdot \frac{a \cos (\beta - \varphi)}{\cos \varphi}. \]

From here and considering that \(|A_1A_7| = |B_6B_7|\), we obtain
\[|A_4A_7| = \frac{1}{2} \left[b - \frac{a \cos (\beta - \varphi)}{\cos \varphi} \right], \]
therefore
\[|A_1A_7| = \frac{1}{2} \left[b + \frac{a \cos (\beta - \varphi)}{\cos \varphi} \right]. \quad (11) \]

From the figure

and with the (11) we have
\[h_2 = |A_1A_7| \sin B_6A_1A_7 = \]
\[\frac{1}{2} \left[b \cos \varphi + a \cos (\beta - \varphi) \right]. \]

Then, considering of the relations (3), (9) and (6) we can write
\[|A_1B_6| = m - a \sin (\beta - \varphi) - \]
Buffon-Laplace type problems

\[b \sin \varphi - \frac{a \sin \beta}{\cos \varphi}. \]

Therefore

\[\text{area}_{a_2}(\varphi) = |A_1B_6| \cdot h_2, \]

hence

\[\text{area}_{a_2}(\varphi) = \frac{1}{2} [b \cos \varphi + a \cos (\beta - \varphi)] [m - b \sin \varphi - a \sin (\beta - \varphi)] - \frac{ab \sin \beta}{2} - \frac{a^2 \sin \beta \cos (\beta - \varphi)}{2 \cos \varphi}. \] (12)

The formulas (4), (7), (10), and (12) give us

\[\text{area}_{a_1}(\varphi) + \text{area}_{a_2}(\varphi) + \text{area}_{a_3}(\varphi) + \]

\[\text{area}_{a_4}(\varphi) = \frac{m}{2} [b \cos \varphi + a \cos (\beta - \varphi)] - ab \sin \beta. \] (13)

Now we consider the figure

We have

\[\overline{A_2A_3A_6} = \pi - \beta, \]
\[\overline{A_2A_6A_3} = \overline{AA_2A_1} = \beta - \varphi \]

and the triangle \(A_2A_3A_6 \) give us

\[\frac{|A_2A_6|}{\sin \beta} = \frac{b}{\sin (\beta - \varphi)} = \frac{|A_3A_6|}{\sin \varphi} \]

therefore

\[|A_2A_6| = \frac{b \sin \beta}{\sin (\beta - \varphi)}, \]
\[|A_3A_6| = \frac{b \sin \varphi}{\sin (\beta - \varphi)}. \] (14)
Hence

\[\text{area}_{a_6} = \frac{b^2 \sin \beta \sin \varphi}{2 \sin (\beta - \varphi)}. \]

(15)

From the figure 2 we have

\[\Delta O_1 B_3 B_5 = \Delta O_2 C_3 C_5, \]

therefore

\[|B_3 B_5| = |C_3 C_5|. \]

Then, because of \(|B_2 B_5| = |C_5 C_6|\) and considering of the relation (14) we have

\[|B_3 B_5| = \frac{1}{2} \left[a - \frac{b \sin \varphi}{\sin (\beta - \varphi)} \right] \]

and

\[|B_2 B_5| = \frac{1}{2} \left[a + \frac{b \sin \varphi}{\sin (\beta - \varphi)} \right]. \]

Considering the figure

we have

\[h_5 = |B_2 B_5| \sin (\beta - \varphi) = \]

\[\frac{1}{2} \left[a \sin (\beta - \varphi) + b \sin \varphi \right]. \]

Moreover, with the relation (6), (14) and (3), we have

\[|B_2 B_6| = l - b \cos \varphi - \]

\[a \cos (\beta - \varphi) - \frac{b \sin \beta}{\sin (\beta - \varphi)}. \]

Therefore

\[\text{area}_{a_5} (\varphi) = \frac{l}{2} \left[a \sin (\beta - \varphi) + b \sin \varphi \right] - \]

\[\frac{a^2}{4} \sin 2(\beta - \varphi) - \frac{b^2}{4} \sin 2\varphi - \]
Buffon-Laplace type problems

\[
\frac{b^2 \sin \beta \sin \varphi}{2 \sin (\beta - \varphi)} - ab \sin \beta. \tag{16}
\]

The formulas (15) and (16) give us

\[
\text{area}a_5 (\varphi) + \text{area}a_6 (\varphi) = \\
\frac{l}{2} [a \sin (\beta - \varphi) + b \sin \varphi] - \\
\frac{a^2}{4} \sin 2 (\beta - \varphi) - \frac{b^2}{4} \sin 2 \varphi - ab \sin \beta. \tag{17}
\]

Replacing in (1) the expressions (13) and (17) we obtain

\[
\text{area} \hat{C}_0 (1) = \\
lm - m [b \cos \varphi + a \cos (\varphi - \alpha)] - \\
l [b \sin \varphi - a \sin (\varphi - \beta)] + \\
\frac{a^2}{2} \sin 2 (\varphi - \beta) + \frac{b^2}{2} \sin 2 \varphi. \tag{18}
\]

Denoting with \(M^{(1)}\), the set of the "body test" that have the barycentre in the cell \(C_0^{(1)}\) and with \(N_1\) the set of the "body test" completely contained in \(C_0^{(1)}\), we have [4]:

\[
P^{(1)}_{\text{int}} = 1 - \frac{\mu(N_1)}{\mu(M_1)}, \tag{19}
\]

where \(\mu\) is the Lebesgue measure in Euclidean plane.

To compute the measures \(\mu(M_1)\) and \(\mu(N_1)\) we use the Poincaré kinematic measure [3]:

\[
dK = d\varphi \wedge dx \wedge dy,
\]

where \(x, y\) are the coordinate of the barycentre of the parallelogram \(p\) and \(\varphi\) is the angle already defined.

The formula (5) give us

\[
\mu(M_1) = \int_0^{\beta} d\varphi \iint_{\{(x,y) \in C_0^{(1)}\}} dx dy = \\
\int_0^{\beta} \left[\text{area} C_0^{(1)} \right] d\varphi = \beta \text{area} C_0^{(1)} = \beta lm \tag{20}
\]

and, considering of the (18) ,
\[\mu (N_1) = \int_0^\beta d\varphi \int \int \{ (x,y) \in \tilde{C}_0^{(1)}(\varphi) \} \, dx \, dy = \]
\[\int_0^\beta \left[\text{area} \tilde{C}_0^{(1)} \right] d\varphi = \beta lm - \left\{ \left\lfloor m \sin \beta + l(1 - \cos \beta) \right\rfloor (a + b) - \frac{1 - \cos 2\beta}{4} (a^2 + b^2) \right\}. \quad (21) \]

The formulas (19), (20) and (21) give us

\[P^{(1)}_{\text{int}} = \frac{(1 - \cos \beta) l + m \sin \beta}{\beta lm} (a + b) - \frac{\sin^2 \beta}{\beta lm} (a^2 + b^2). \quad (22) \]

For \(\beta = \frac{\pi}{2} \), the parallelogram \(p \) becomes a rectangle of side \(a \) and \(b \) and the probability \(P^{(1)}_{\text{int}} \) becomes

\[P = 2 \frac{(l + m) (a + b) - (a^2 + b^2)}{(a + b)}, \]

formula already found in a previous paper [1].

If \(l \to \infty \), the cell \(C_0^{(1)} \) becomes a line of wide \(m \) and the probability \(P^{(1)}_{\text{int}} \) becomes

\[P' = \frac{1 - \cos \beta}{\beta} (a + b), \]

that represents an extension of probability of Buffon.

2 Parallelogram cell

Let \(\mathcal{R}_2 (l, m, d) \) be the regular lattice with fundamental cell \(C_0^{(2)} \) a parallelogram of side \(l, m \) and angle \(\alpha \) with \(\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2} \).

The ”body test” is the same parallelogram \(p \) of the section 1 with \(\beta < \alpha \).

With the notations of the section 1 we have the figure
and the formula
\[
\text{area} \widehat{C}^{(2)}_0(\varphi) = \text{area} C^{(2)}_0 - 4 \text{area} p - 2 [\text{area} b_1 + \text{area} b_2 + \ldots + \text{area} b_{64}] .
\] (23)

From the figure

we have

\[
A_1 A A_2 = \pi - \alpha, \quad \widehat{A A_2 A}_1 = \beta - \varphi,
\]
\[
\widehat{A A_1 A}_2 = \varphi + \alpha - \beta .
\] (24)

With these values from the triangle $AA_1 A_2$ we have

\[
|BB_1| = \frac{a \sin \varphi}{\sin \alpha},
\]
\[
|BB_2| = \frac{a \sin (\varphi + \alpha)}{\sin \alpha}
\]

Therefore

\[
\text{area} b_1(\varphi) = \frac{a^2 \sin (\beta - \varphi) \sin (\varphi + \alpha - \beta)}{2 \sin \alpha} .
\] (25)
Moreover from the relations (24) follow that
\[\beta - \varphi \geq 0, \quad \varphi + \alpha - \beta \geq 0, \]
therefore, because of \(\beta < \alpha \),
\[\varphi \in [0, \beta]. \quad \text{(26)} \]

Now we consider the figure

\[|BB_1| = \frac{b \sin \varphi}{\sin \alpha}, \quad |BB_2| = \frac{b \sin (\varphi + \alpha)}{\sin \alpha}, \quad \text{(27)} \]
and consequently
\[area_{aB_3}(\varphi) = \frac{b^2 \sin \varphi \sin (\varphi + \alpha)}{2 \sin \alpha}. \quad \text{(28)} \]

From the figure
we have
\[\overrightarrow{B_5B_4B_1} = \beta, \]
\[\overrightarrow{B_5B_1B_4} = \overrightarrow{AA_1A_2} = \varphi + \alpha - \beta, \]
\[\overrightarrow{B_1B_5B_4} = \pi - \alpha - \varphi. \] (29)

With these values the triangle \(B_1B_4B_5 \) give us
\[|B_1B_5| = \frac{a \sin \beta}{\sin (\varphi + \alpha)}, \]
\[|B_4B_5| = \frac{a \sin (\varphi + \alpha - \beta)}{\sin (\varphi + \alpha)}. \] (30)

Hence
\[\text{arc} a_4(\varphi) = \frac{a^2 \sin \beta \sin (\varphi + \alpha - \beta)}{2 \sin (\varphi + \alpha)}. \] (31)

From the figure 7 we obtain
\[|A_4A_6| = |B_4B_6|, \quad |A_1A_6| = |B_5B_6|, \]
therefore, considering of the second relation (31),
\[|A_4A_6| = \frac{1}{2} \left[b - \frac{a \sin (\varphi + \alpha - \beta)}{\sin (\varphi + \alpha)} \right] \]
and, consequently,
\[|A_1A_6| = \frac{1}{2} \left[b + \frac{a \sin (\varphi + \alpha - \beta)}{\sin (\varphi + \alpha)} \right]. \] (32)

Considering the figure
and the formulas (30) and (33) we obtain
\[\overline{A_6A_1B_5} = \overline{B_4B_5B_1} = \pi - (\varphi + \alpha), \]
\[h_2 = |A_1A_6| \sin \overline{A_6A_1B_5} = \]
\[\frac{1}{2} [b \sin (\varphi + \alpha) + a \sin (\varphi + \alpha - \beta)]. \]

Then, with the formulas (25), (28) and (31), we have
\[|A_1A_5| = m - |AA_1| - |B_1B_5| - |BB_1| = \]
\[m - \frac{a \sin (\beta - \varphi) + b \sin \varphi}{\sin \alpha} - \frac{a \sin \beta}{\sin (\varphi + \alpha)}. \]

Therefore
\[\text{areab}_2(\varphi) = \frac{1}{2} \left[m - \frac{a \sin (\beta - \varphi) + b \sin \varphi}{\sin \alpha} \right]. \]
\[[b \sin (\varphi + \alpha) + a \sin (\varphi + \alpha - \beta)] - \]
\[\frac{ab \sin \beta}{2} - \frac{a^2 \sin \beta \sin (\varphi + \alpha - \beta)}{2 \sin (\varphi + \alpha)}. \] (33)

The relations (26), (29), (32) and (34) give us
\[\text{areab}_1(\varphi) + \text{areab}_2(\varphi) + \text{areab}_3(\varphi) + \]
\[\text{areab}_4(\varphi) = \frac{m}{2} [b \sin (\varphi + \alpha) + \]
\[a \sin (\varphi + \alpha - \beta)] - ab \sin \beta. \] (34)

The figure
\[\text{fig.12} \]
give us
\[\overline{B_2B_3B_8} = \pi - \beta, \quad \overline{B_3B_2B_8} = \beta - \varphi \]
and
\[|B_3B_8| = \frac{a \sin (\beta - \varphi)}{\sin \varphi}, \]
|B_2B_8| = \frac{a \sin \beta}{\sin \varphi}. \quad (35)

Therefore

\text{area}_{ab_6}(\varphi) = \frac{a^2 \sin \beta \sin (\beta - \varphi)}{2 \sin \varphi}. \quad (36)

From the figure 7 follow that

|B_3B_7| = |C_3C_5|, \quad |B_7B_8| = |C_2C_5|

and considering of the first relation (36) we obtain

|C_2C_5| = \frac{1}{2} \left[\frac{a \sin (\beta - \varphi)}{\sin \varphi} \right].

Considering of the figure

we have

h_5 = |C_2C_5| \sin \varphi = \frac{1}{2} \left[b \sin \varphi + a \sin (\beta - \varphi) \right]

and, with the formulas (25), (28) and (33) we can write

|B_8C_2| = l - |BB_2| - |B_2B_8| - |CC_2| =

l - a \frac{\sin (\varphi + \alpha - \beta) + b \sin (\varphi + \alpha)}{\sin \varphi} - a \frac{\sin \beta}{\sin \varphi}.

Hence

\text{area}_{ab_5} = \frac{1}{2} \left[l - a \frac{\sin (\varphi + \alpha - \beta) + b \sin (\varphi + \alpha)}{\sin \varphi} \right].

[b \sin \varphi + a \sin (\beta - \varphi)] - \frac{ab \sin \beta}{2} - \frac{a^2 \sin \beta \sin (\beta - \varphi)}{2 \sin \varphi}. \quad (37)

The relations (37) and (38) give us

\text{area}_{ab_5} + \text{area}_{ab_6} = \frac{l}{2} [b \sin \varphi + a \sin (\beta - \varphi)] -
\[
\frac{1}{2 \sin \alpha} \left[\frac{a^2 \sin (\varphi + \alpha - \beta) + b \sin (\varphi + \alpha)}{\sin \varphi} \right] - ab \sin \beta. \quad (38)
\]

Replacing in the (23) the expressions (35) and (39) we obtain
\[
\text{area} \hat{C}_0^{(2)} (\varphi) = lm \sin \alpha - \left\{ l \left[b \sin \varphi + a \sin (\beta - \varphi) \right] + m \left[b \sin (\varphi + \alpha) + a \sin (\varphi + \alpha - \beta) \right] - \frac{a^2 [\cos (2\varphi + \alpha - 2\beta) - \cos \alpha] + b^2 [\cos \alpha - \cos (2\varphi + \alpha)]}{2 \sin \varphi} \right\}. \quad (39)
\]

With the notations of the previous point we have
\[
P_{\text{int}}^{(2)} = 1 - \frac{\mu (N_2)}{\mu (M_2)}, \quad (40)
\]

where for the formula (27),
\[
\mu (M_2) = \int_0^\beta d\varphi \int \int_{\{(x,y) \in C_0^{(2)}\}} dxdy =
\]
\[
\int_0^\beta \left[\text{area} C_0^{(2)} \right] d\varphi = \beta \text{area} C_0^{(2)} = \beta \sin \alpha \cdot lm \quad (41)
\]

and, considering of the (40),
\[
\mu (N_2) = \int_0^\beta d\varphi \int \int_{\{(x,y) \in \hat{C}_0^{(2)}(\varphi)\}} dxdy =
\]
\[
\int_0^\beta \left[\text{area} \hat{C}_0^{(2)} (\varphi) \right] d\varphi = \beta \sin \alpha \cdot lm - (1 - \cos \beta) (a + b) l + m \left\{ a \left[\cos \alpha - \cos (\alpha - \beta) \right] + b \left[\cos (\alpha + \beta) - \cos \alpha \right] \right\} + \frac{1}{4 \sin \alpha} \left\{ a^2 \left[\sin \alpha - \sin (\alpha - 2\beta) - 2\beta \cos \alpha \right] + b^2 \left[2\beta \cos \alpha - \sin (\alpha + 2\beta) + \sin \alpha \right] \right\}. \quad (42)
\]

The formulas (41), (42) and (43) give us
\[
P_{\text{int}}^{(2)} = \frac{1}{\beta \sin \alpha \cdot lm} ((1 - \cos \beta) (a + b) l -
Buffon-Laplace type problems

\[m \{ b \cos (\alpha + \beta) - \cos \alpha \} + a \{ \cos \alpha - \cos (\alpha - \beta) \} \] -
\[\frac{1}{4 \sin \alpha} \left\{ a^2 \left[\sin \alpha - \sin (\alpha - 2\beta) - 2\beta \cos \alpha \right] + b^2 \left[\sin \alpha - \sin (\alpha + 2\beta) + 2\beta \cos \alpha \right] \right\}. \] (43)

For \(\alpha = \frac{\pi}{2} \), the cell \(C_{0}^{(2)} \) becomes a rectangle of side \(l, m \), therefore it is the same of the cell \(C_{0}^{(1)} \) and we have
\[P_{\text{int}}^{(2)} = P_{\text{int}}^{(1)}. \]

In the same way for \(\beta = \frac{\pi}{2} \), the "boby test" \(p \) becomes a rectangle of side \(a, b \) and the probability \(P_{\text{int}}^{(2)} \) is written
\[P = \frac{2}{\pi \sin \alpha \cdot lm} \left\{ (a + b) l - [a \cos \alpha - \sin \alpha - b \cos \alpha + \sin \alpha] m - \frac{1}{4 \sin \alpha} [a^2 (2 \sin \alpha - \pi \cos \alpha) + b^2 (2 \sin \alpha + \pi \cos \alpha)] \right\}. \]

3 Trapezium cell

Let \(R_3 (l, m, \alpha) \) a lattice with the fundamental cell \(C_{0}^{(3)} \) the trapezium represented in the figure

![fig.14](image-url)
with $l \leq m$, $\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2}$.

The "body test" is the same parallelogram p of the previous point with $b \leq l$, $b \leq \alpha$.

We have

$$areaC_0^{(3)} = (l + m \cos \alpha) m \sin \alpha.$$ \hfill (44)

As in the previous points we want to compute the probability $P_{int}^{(3)}$ that the "body test" p intersects a side of the lattice R_3.

Using the notations of the previous points we have the figure

![Figure 15](image15.png)

and the formula

$$areaC_0^{(3)}(\varphi) = areaC_0^{(3)} - 4b \sin \beta - [area_{d_1} + area_{d_2} + \ldots + area_{d_{12}}].$$ \hfill (45)

From the figure

![Figure 16](image16.png)
follow
\[\overline{A_1A_4} = \pi - \alpha, \quad \overline{AA_1A_4} = \alpha - \varphi \]
and the triangle \(AA_1A_4 \) give us
\[|AA_1| = \frac{a \sin \varphi}{\sin \alpha}, \quad |AA_4| = \frac{a \sin (\alpha - \varphi)}{\sin \alpha}, \]
therefore
\[area_{a1}(\varphi) = \frac{a^2 \sin \varphi \sin (\alpha - \varphi)}{2 \sin \alpha}. \] (47)

The figure

\[BB_2B_1 = \beta - \varphi, \quad BB_1B_2 = \pi - \alpha - \beta + \varphi \] (48)
and
\[|BB_1| = \frac{b \sin (\beta - \varphi)}{\sin \alpha}, \quad |BB_1| = \frac{b \sin (\alpha + \beta - \varphi)}{\sin \alpha}, \]
therefore
\[area_{a2}(\varphi) = \frac{b^2 \sin (\beta - \varphi) \sin (\alpha + \beta - \varphi)}{2 \sin \alpha}. \] (50)
Moreover from the first formula (48) we have
\[\varphi \leq \beta. \] (51)

Considering the figure

\[BB_2B_1 = \beta - \varphi, \quad BB_1B_2 = \pi - \alpha - \beta + \varphi \] (48)
and the second formula (48) we can write

\[\begin{align*}
\overline{B_1B_4B_7} &= \beta, \\
\overline{B_4B_1B_7} &= \alpha - \varphi, \\
\overline{B_1B_7B_4} &= \pi - \alpha - \beta + \varphi.
\end{align*} \]

(52)

Because of this from the triangle \(B_1B_4B_7 \) we obtain

\[\begin{align*}
|B_1B_7| &= \frac{a \sin \beta}{\sin (\alpha + \beta - \varphi)}, \\
|B_4B_7| &= \frac{a \sin (\alpha - \varphi)}{\sin (\alpha + \beta - \varphi)}.
\end{align*} \]

(53)

and consequently

\[\text{area}_d (\varphi) = \frac{a^2 \sin \beta \sin (\alpha - \varphi)}{2 \sin (\alpha + \beta - \varphi)}. \]

(54)

The figure 15 give us

\[|A_1A_6| = |B_4B_6|, \quad |A_1A_6| = |B_6B_7|. \]

From here and with the relation (53) we obtain

\[\begin{align*}
|A_2A_6| &= \frac{1}{2} \left[b - \frac{a \sin (\alpha - \varphi)}{\sin (\alpha + \beta - \varphi)} \right], \\
|A_1A_6| &= \frac{1}{2} \left[b + \frac{a \sin (\alpha - \varphi)}{\sin (\alpha + \beta - \varphi)} \right].
\end{align*} \]

(55)

Now we consider the figure
and the last relation (52) we have

\[h_2 = \frac{1}{2} [b \sin (\alpha + \beta - \varphi) + a \sin (\alpha - \varphi)] . \]

Then, considering of the formulas (46), (49) and (53), we can write

\[|A_1B_7| = m - |AA_1| - |B_1B_7| - |BB_1| = \]

\[m - \frac{a \sin \varphi + b \sin (\beta - \varphi)}{\sin \alpha} - \frac{a \sin \beta}{\sin (\alpha + \beta - \varphi)}. \]

Therefore

\[\text{aread}_2 (\varphi) = \frac{1}{2} \left[m - \frac{a \sin \varphi + b \sin (\beta - \varphi)}{\sin \alpha} \right]. \]

\[b \sin (\alpha + \beta - \varphi) + a \sin (\alpha - \varphi) - \frac{ab \sin \beta}{2} - \]

\[\frac{a^2 \sin \beta \sin (\alpha - \varphi)}{2 \sin (\alpha + \beta - \varphi)}. \]

(56)

The figure

\[\]

\[\text{aread}_5 (\varphi) = \frac{a \sin \beta \sin \varphi}{2 \sin (\beta - \varphi)}. \]

(59)

From the figure

\[\]
follow
\[\overline{C C_1 C_2} = \pi - (\varphi + \alpha) \]
and the triangle \(C C_1 C_2 \) give us
\[|C C_1| = \frac{a \sin \varphi}{\sin \alpha}, \quad |C C_2| = \frac{a \sin (\varphi + \alpha)}{\sin \alpha}, \]
therefore
\[\text{area}_7(\varphi) = \frac{a^2 \sin \varphi \sin (\varphi + \alpha)}{2 \sin \alpha}. \]
(61)

From the figure 15 follow
\[|B_3 B_5| = |C_3 C_6|, \quad |B_5 B_8| = |C_2 C_6|. \]

From here we obtain
\[|C_2 C_6| = \frac{1}{2} \left[b + \frac{a \sin \varphi}{\sin (\beta - \varphi)} \right]. \]

Then the figure
\[\overline{C_6 C_2 B_8} = \beta - \varphi, \quad h_6 = \frac{1}{2} [b \sin (\beta - \varphi) + a \sin \varphi]. \]
At the end from the formulas (49), (57) and (59) we obtain
\[|B_8C_2| = l + 2m \cos \alpha - |BB_2| - \]
\[|B_2B_8| - |CC_2| = l + 2m \cos \alpha - \]
\[\frac{a \sin (\alpha + \varphi) + b \sin (\alpha + \beta - \varphi)}{\sin \alpha} - \frac{a \sin \beta}{\sin (\beta - \varphi)}. \]

Hence
\[
\text{aread}_6 (\varphi) = \frac{1}{2} (l + m \cos \alpha) [b \sin (\beta - \varphi) + a \sin \varphi] - \]
\[\frac{ab \sin \beta}{2} - \frac{a^2 \sin \beta \sin \varphi}{2 \sin (\beta - \varphi)} \]
\[\frac{[a \sin \varphi + b \sin (\beta - \varphi)] [a \sin (\varphi + \alpha) + b \sin (\alpha + \beta - \varphi)]}{2 \sin \alpha}. \quad (62) \]

Now we consider the figure

From here follow
\[C_1C_4C_7 = \beta, \quad C_4C_1C_7 = \alpha - \beta + \varphi, \]
\[C_1C_7C_4 = \pi - \alpha - \varphi. \quad (63) \]

With these values the triangle \(C_1C_4C_7\) give us
\[|C_1C_7| = \frac{b \sin \beta}{\sin (\alpha + \varphi)}, \]
\[|C_4C_7| = \frac{\sin (\alpha - \beta + \varphi)}{\sin (\alpha + \varphi)}, \quad (64) \]

therefore
\[
\text{aread}_8 (\varphi) = \frac{b^2 \sin \beta \sin (\alpha - \beta + \varphi)}{2 \sin (\varphi + \alpha)}. \quad (65) \]

From the figure
and from the formula (48) follow

\[DD_1 D_4 = \pi - \alpha, \quad DD_1 D_4 = BB_2 B_1 = \beta - \varphi, \]

and then, from the triangle \(DD_1 D_4 \) we have

\[|DD_4| = \frac{b \sin (\beta - \varphi)}{\sin \alpha}, \]
\[|DD_1| = \frac{b \sin (\alpha - \beta + \varphi)}{\sin \alpha}. \] (67)

Hence

\[\text{aread}_{10} (\varphi) = \frac{b^2 \sin (\beta - \varphi) \sin (\alpha - \beta + \varphi)}{2 \sin \alpha}. \] (68)

Moreover from the third relation (65) we have \(\varphi \geq \beta - \alpha \) and, because of \(\beta \leq \alpha \), follow

\[\varphi \geq 0. \]

This relation with the (51) give us

\[\varphi \in [0, \beta]. \] (69)

From the figure 15 we obtain

\[|C_4C_7| = |D_3D_6|, \quad |C_5C_7| = |D_4D_6|. \]

From these relations and from the (63) we have

\[|C_5C_7| = \frac{1}{2} \left[a + \frac{b \sin (\alpha - \beta + \varphi)}{\sin (\varphi + \alpha)} \right]. \]

Now we consider the figure
From the third relation (62) follow $C_5C_7C_4 = \varphi + \alpha$, therefore

$$h_9 = |C_5C_7| \sin C_5C_7C_4 =$$

$$\frac{1}{2} [a \sin (\varphi + \alpha) + b \sin (\alpha - \beta + \varphi)].$$

On the other hand (59), (63) and (66) give us

$$|C_7D_4| = m - |CC_1| - |C_1C_7| - |DD_4| =$$

$$m - \frac{a \sin \varphi + b \sin (\beta - \varphi)}{\sin \alpha} - \frac{b \sin \beta}{\sin (\varphi + \alpha)}.$$

So

$$\text{area}_9 (\varphi) = \frac{m}{2} [a \sin (\varphi + \alpha) + b \sin (\alpha - \beta + \varphi)] -$$

$$\frac{1}{2 \sin \alpha} [a \sin (\varphi + \alpha) + b \sin (\alpha - \beta + \varphi)].$$

$$[a \sin \varphi + b \sin (\beta - \varphi)] - \frac{ab \sin \beta}{2} -$$

$$\frac{b^2 \sin \beta \sin (\alpha - \beta + \varphi)}{2 \sin (\varphi + \alpha)}.$$

(70)

From the figure

$$\text{fig.26}$$
and from the second formula (65) we have
\[
\overrightarrow{D_7D_2D_1} = \pi - \beta, \quad \overrightarrow{D_1D_7D_2} = \overrightarrow{DD_1D_4} = \beta - \varphi, \quad (71)
\]
and the triangle \(D_1D_2D_7 \) give us
\[
|D_1D_7| = \frac{a \sin \beta}{\sin (\beta - \varphi)}, \quad |D_2D_7| = \frac{a \sin \varphi}{\sin (\beta - \varphi)}. \quad (72)
\]
Therefore
\[
\text{aread}_{11} (\varphi) = \frac{a^2 \sin \beta \sin \varphi}{2 \sin (\beta - \varphi)}. \quad (73)
\]
From the figure 15, as in previous cases we have
\[
|A_4A_5| = \frac{1}{2} \left[b + \frac{a \sin \varphi}{\sin (\beta - \varphi)} \right].
\]
The figure
\[
\text{fig.27}
\]
give us
\[
h_2 = |A_4A_5| \sin \overrightarrow{A_5A_4D_7} = \\
\frac{1}{2} \left[b \sin (\beta - \varphi) + a \sin \varphi \right].
\]
In the same way from the formulas (46), (66) and (71) follow that
\[
|A_4D_7| = l - |AA_4| - |D_1D_7| - |DD_1| = \\
l - \frac{a \sin (\alpha - \varphi) + b \sin (\alpha - \beta + \varphi)}{\sin \alpha} - \frac{a \sin \beta}{\sin (\beta - \varphi)}.
\]
Hence
\[
\text{aread}_{12} (\varphi) = \frac{l}{2} \left[a \sin \varphi + b \sin (\beta - \varphi) \right] -
\]
Buffon-Laplace type problems

\[
\frac{[a \sin (\alpha - \varphi) + b \sin (\alpha - \beta + \varphi)] [a \sin \varphi + b \sin (\beta - \varphi)]}{2 \sin \alpha} - \frac{ab \sin \beta}{2} + \frac{a^2 \sin \beta \sin \varphi}{2 \sin (\beta - \varphi)}. \tag{74}
\]

Replacing in the formula (45) the relations (47), (50), (54), (55), (58), (60), (61), (64), (67), (69), (72) and (73) we obtain

\[
\text{area} \hat{C}_0^{(3)} = \text{area} C_0^{(3)} - l \left[a \sin \varphi + b \sin (\varphi - \alpha) \right] - \\
\left[a \sin (\varphi + \alpha) + b \sin (\alpha + \beta - \varphi) \right] + \\
\frac{a^2}{2} \sin 2\varphi + \frac{b^2}{2} \sin 2(\beta - \varphi) + \\
\frac{ab}{\sin \alpha} \left[\left(\sin \alpha \cos \beta - \frac{\sin \beta \cos \alpha}{2} \right) \sin 2\varphi + \\
\frac{\cos \alpha \cos \beta}{2} \cos 2\varphi - \frac{\cos \alpha \cos \beta}{2} \right]. \tag{75}
\]

With the notations of the previous points we have

\[
P_{\text{int}}^{(3)} = 1 - \frac{\mu(N_3)}{\mu(M_3)}. \tag{76}
\]

Considering the relations (68) and (74) we can write

\[
\mu(M_3) = \int_0^\beta d\varphi \int \int \{ (x,y) \in C_0^{(3)} \} \ dx \ dy = \\
\int_0^\beta \left[\text{area} C_0^{(3)} \right] d\varphi = \beta \text{area} C_0^{(3)} \tag{77}
\]

\[
\mu(N_3) = \int_0^\beta d\varphi \int \int \{ (x,y) \in \hat{C}_0^{(3)}(\varphi) \} \ dx \ dy = \\
\int_0^\beta \left[\text{area} \hat{C}_0^{(3)}(\varphi) \right] d\varphi = \beta \text{area} C_0^{(3)} - \\
\left\{ \sin \frac{\beta}{2} \cdot l \left[a \sin \frac{\beta}{2} + b \sin \left(\alpha - \frac{\beta}{2} \right) \right] \right\} -
\]
\[2 \sin \frac{\beta}{2} \sin \left(\alpha + \frac{\beta}{2} \right) m (a + b) + \frac{\sin^2 \beta}{2} \left(a^2 + b^2 \right) + \]
\[
\frac{ab}{\sin \alpha} \left[\sin \beta \cos \left(\alpha + 2\beta \right) - \beta \cos \alpha \cos \beta \right]. \quad (78)
\]

The formulas (44), (75), (76) and (77) give us

\[
P^{(3)}_{\text{int}} = \frac{1}{\beta (l + m \cos \varphi) m \sin \alpha}.
\]

\[
\left(2 \sin \frac{\beta}{2} \left\{ a \sin \frac{\beta}{2} \left[a \sin \frac{\beta}{2} + b \sin \left(\alpha - \frac{\beta}{2} \right) \right] \right\} \right) l -
\]
\[
2 \sin \frac{\beta}{2} \sin \frac{\beta}{2} \sin \left(\alpha + \frac{\beta}{2} \right) (a + b) m +
\]
\[
\frac{\sin^2 \beta}{2} \left(a^2 + b^2 \right) + \frac{ab}{\sin \alpha} \left[\sin \beta \cos \left(\alpha + 2\beta \right) - \beta \cos \alpha \cos \beta \right]. \quad (79)
\]

If \(\alpha = \frac{\pi}{2} \), the cell \(C_{0}^{(3)} \) becomes a rectangle of side \(l, m \) and the probability \(P^{(3)}_{\text{int}} \) becomes

\[
P^{(3)}_{\text{int}} = \frac{1}{\beta lm} \left[2 \sin \frac{\beta}{2} \left(a \sin \frac{\beta}{2} + b \cos \frac{\beta}{2} \right) \right] l -
\]
\[
\sin \beta (a + b) m - \frac{\sin^2 \beta}{2} \left(a^2 + b^2 \right) \right] - ab \sin \beta \sin 2\beta \right].
\]

In this way we have

\[
P^{(3)}_{\text{int}} = P^{(1)}_{\text{int}}.
\]

At the end, if \(\beta = \frac{\pi}{2} \), the "body test" becomes a rectangle, the probability (78) is written

\[
P^{(3)}_{\text{int}} = \frac{2}{\pi (l + m \cos \alpha) m \sin \alpha} \left\{ [a +
\]
\[
b (\sin \alpha - \cos \alpha)] l - (\sin \alpha + \cos \alpha) (a + b) m +
\]
\[
\frac{a^2 + b^2}{2} - ab \cot \alpha \right\},
\]

probability already found in a previous paper [2].
References

[2] M. Pettineo, Un problema di tipo Laplace per un reticolo trapezoidale con il ”corpo test” rettangolo,...

Received: March, 2012