Experimenting with Identities $x(yz) = y(xz)$ and $(xy)z = y(zx)$ in Left Alternative Ring

K. Jayalakshmi
J.N.T.University Anantapur College of Engg.
J.N.T.University Anantapur
Anantapur.(A.P) India
jayalakshmkaramsi@gmail.com

G. Nageswari
Department of Mathematics
J.N.T.University Anantapur College of Engg.,
J.N.T.University Anantapur
Anantapur.(A.P) India
loveshik143@gmail.com

Abstract

A semiprime ring R of characteristic $\neq 2$ satisfying the identities $x(yz) = y(xz)$ and $(xy)z = y(zx)$ must be associative and commutative. If (y, x, z) is replaced by $-(y, x, z)$ even then R is associative.

Mathematics Subject Classification: 17D05

Keywords: Novikov ring, semiprime ring, left nucleus, characteristic $\neq n$.
INTRODUCTION

Results on Novikov rings have been obtained by several authors [1], [2], [3], and various well behaved nonassociative examples exist. Novikov algebra is a special case of an LSA a left symmetric algebra. It was introduced in the study of Hamiltonian operators concerning integrability of certain nonlinear partial differential equation [1]. In particular, Novikov algebras bijectively correspond to a special class of Lie conformal algebra.

Kleinfeld and Smith [3] have studied on the generalization of Novikov rings. They obtained a subverity in the join of associative and Novikov rings by generalizing the theorem on simple Novikov algebras. In [6] the authors states that semiprime rings satisfying \(xy(z) = y(xz)\) and \((x, y, x) = 0\) must be associative.

In any nonassociative ring \(R\), the associator is defined as \((x, y, z) = (xy)z - x(yz)\) and the commutator as \([x, y] = xy - yx\) for all \(x, y, z \in R\). A ring \(R\) is said to be semiprime if for any ideal \(A\) of \(R\) if \(A^2 = 0\) implies \(A = 0\). The Left nucleus \(N_l\) is stated as \(N_l = \{n \in R / (n, R, R) = 0\}\). In this paper using the results of [1, 2, 3] we show that if \(R\) is a ring of char. \(\neq 2\) which is semiprime and satisfies the identities \(xy(z) = y(xz)\) and \((x, y, z) = -(y, x, z)\), then \(R\) must be associative.

MAIN RESULTS

The Novikov identities in a ring \(R\) consist of \(xy(z) = y(xz)\) \(\ldots \) (1)
and \((x, y, z) = (y, x, z)\). \(\ldots \) (2)
Variation of these identities might involve substituting \((xy)z = y(xz)\) \(\ldots \) (3)
for (1) and replacing (2) by the left alternative identity \((x, y, z) = -(y, x, z)\). \(\ldots \) (4)

THEOREM 2.1: If \(R\) is a ring satisfying identities \((x, y, z) = (y, x, z)\) and \((xy)z = y(xz)\) which is semiprime, then \(R\) must be associative and commutative.

PROOF: From (4) and (1) we have \(xy(z) - (xy)z = y(xz) - (yx)z\) which implies that \((xy)z = (yx)z\).
That is \([x, y]z = 0\) by using (3) which is nothing but \([x, y]R = 0\). \(\ldots \) (5)
Defining \(J = \Sigma [x, y]\), all sums of a finite number of commutators. We know already that \(JR = 0\), using (5). Then \(w[x, y] = [w, [x, y]] \in J\) and so \(RJ \subset J\). Thus \(J\) is an ideal of \(R\) and \(JR = 0\) implies \(J^2 = 0\). Since we are assuming \(R\) to be the semiprime, it
follows that \(J = 0 \). Thus \(R \) must be commutative. Then it follows from (3) and commutativity that \(x(yz) = y(xz) = (xy)z \).

Hence we have proved that \((x, y, z) = 0 \) which shows that the ring is associative aswell. ♦

The Teichmuller identity is given by

\[
f(x, y, z) = (xy, y, z) + (w, x, yz) - w(y, x, z).
\]

The following identity is valid in any left alternative ring:

\[
g(x, y, z) = (xy, w, z) + (w, x, yz) - y(w, x, z).
\]

Now we perform \(f(w, x, y, z) = (wx, y, z) - (w, x, yz) + (w, x, yz) - w(y, x, z) - (w, x, y)z \).

But from (7) we have

\[
\mathcal{h}(w, x, y, z) = 2y(w, y, z)\]

which implies \((xy, y, z) = y(x, y, z)\).

Thus \((x, y, z) = 0\) which shows that the ring is associative aswell. ♦

And therefore for all \(x, y, z \) in \(R \), \(bc + cb \in N_l \). We observe that \(w(x \cdot yz) = w(y \cdot xz) = y(w \cdot xz) \), follows from (1), as does \((wx)(yz) = y(w \cdot xz) \).

Substituting \(w, x, yz = y(w, x, z) \) in \(h(w, x, y, z) \), we obtain \(([w, x], y, z) + (w, x, yz) = (w, x, yz) + y(w, x, z) \).

Thus \((a, b^2, c) = 0 \). This shows that for all \(b \in R \) we have \(b^2 \in N_l \).

Now let \(T = \{ t \in R / tR = 0 \} \).

Lemma 2.1: \(N_l = \{ n \in R / (n, R, R) = 0 \} \) is an ideal of \(R \).

Proof: By the definition of \(T \), we see that \(T \) is a right ideal since \(TR = 0 \), \(t \in T \), \(x, y \in R \). Replacing \(y \) by \(t \) in (4) we obtain \((x, t, z) = -(t, x, z) \). Implies \((xt)z - x(tz) = (tx)z - t(xz) \).

That is \((tx)z = (tx)z - x(tz) \). But \((tx)z = 0 \) and \(x(tz) = 0 \). Hence \(TR \subseteq T \). This shows \(T \) as makes \(T \) an ideal of \(R \). But \(T^2 \subseteq TR = 0 \). Assuming \(R \) is semiprime ring we obtain \(T = 0 \). Then in the light of this equation, (12) becomes \((R, R, N_l) = 0 \).

Now let \(T = \{ t \in R / tR = 0 \} \).

Now the left nucleus of \(R \) is actually the nucleus of \(R \). In (11) let \(y = n \in N_l \), then \(([w, n], y, z) = 0 \), so that \([w, n] \in N_l \) from (9) it follows that \(zn + nz \in N_l \). Therefore \(2zn \)
\[N_l \in \mathbb{N} \text{ and } 2nz \in N_l. \] Assuming \(\text{char.} \neq 2 \), it follows that \(zn \in N_l \) and \(nz \in N_l \). Hence \(N_l \) is an ideal of \(R \).

THEOREM 2.2: If \(R \) is a ring of char. \(\neq 2 \) which is semiprime and satisfies the identities \((xy)z = y(zx)\) and \((x, y, z) = -(y, x, z)\) then \(R \) must be associative.

PROOF: In (10), let \(y = n \in N_l \). Then \((w, x, nz) = n(w, x, z)\). Because of the Lemma and \((w, x, nz) = (w, x, n^*) = 0\).

Thus \(n(w, x, z) = 0 \) or \(N(R, R, R) = 0 \). … (14)

Let \(a \in (a, a, a) \) stand for an arbitrary associator \(R \).

Then (14) and (9) implies \(ub^2 = 0 = u(xy + yx)\). … (15)

Using the Lemma and equation we get (9), we get \(z(xy + yx) \in N_l \), so that (14) implies \(u\{z(xy + yx)\} = 0 \). … (16)

Thus using (16) and (1) we obtain \(u(z \cdot xy) = -u(z \cdot yx) = -u(y \cdot zx) \), or \(u(z \cdot xy) = -u(y \cdot zx) \). … (17)

Applying the cyclic permutation on \(x, y, \) and \(z \) in (17) twice more yields \(2u(z \cdot xy) = 0 \). … (18)

Then by char \(\neq 2 \) we obtain \(u(z \cdot xy) = 0 \). … (19)

Now using (19) and (15) we see that \(u(xy \cdot z) = 0 \). … (20)

In (19) & (20) combined result in \((R, R, R) (R, R, R) = 0 \). … (21)

If \(A \) is the associator ideal of \(R \), then (10) implies that \(A \) consists of all finite sums of associators and (21) then shows that \(A^2 = 0 \). Since we are assuming \(R \) is semi prime, this implies \(A = 0 \), so that \(R \) must be associative. ♦

At this stage we may observe that an associative ring which satisfies (3) automatically satisfies (2) and (3) and so Theorem 2.1 tells us that \(R \) must also be commutative under the hypotheses of Theorem 2.2.

REFERENCES

Identities \(x(yz) = y(xz) \) and \((xy)z = y(zx) \) in left alternative ring

Received: October 21, 2013