Green’s Relations on the Menger Algebra of n-ary Ordered Preserving Operations

Siwanaph Samartkoon

Department of Mathematics, Faculty of Science
Khon kaen University, Khon kaen 40002, Thailand
samartkoon@hotmail.com

Prakit Jampachon

Department of Mathematics, Faculty of Science
Khon kaen University, Khon kaen 40002, Thailand
prajam@kku.ac.th

Copyright © 2013 Siwanaph Samartkoon and Prakit Jampachon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

For integer $n \geq 1$, let $O^n(A)$ be the set of all n-ary operations defined on a set A and let $O(A) := \bigcup_{n \geq 1} O^n(A)$ be the set of all operations defined on A.

For $f \in O^n(A)$ and $g_1, \ldots, g_n \in O^m(A)$, we define the superposition operation $S_{m^n} : O^n(A) \times (O^m(A))^n \rightarrow O^m(A)$ by

$$S_{m^n}(f, g_1, \ldots, g_n)(a_1, \ldots, a_m) := f(g_1(a_1, \ldots, a_m), \ldots, g_n(a_1, \ldots, a_m))$$

for all $a_1, \ldots, a_m \in A$. If $n = m$, we will write for short S^n instead of S_{m^n}. For each $n \geq 1$ and each $1 \leq j \leq n$, the n-ary function $e^n_j : A^n \rightarrow A$ defined on A by $e^n_j(a_1, \ldots, a_n) := a_j$ is called the j-th projection mapping of arity n.

In [2] and also [3], an algebra $\mathcal{M} := (M; S^n, e_1, \ldots, e_n)$ of type $\tau = (n + 1, 0, \ldots, 0)$ is called a unitary Menger algebra of rank n if it satisfies the following axioms:
\(\tilde{S}\) is an \((n+1)\)-ary operation symbol, \(\lambda_1, \ldots, \lambda_n\) are nullary operation symbols and \(X_0, X_1, \ldots, X_n, Y_1, \ldots, Y_n\) are variables.

In [3], for Menger algebras of rank \(n\), Green’s relations were defined as the followings:

Definition 1.1 Let \((M; S^n)\) be a Menger algebra of rank \(n\) and let \(a, b \in M\).

(i) \(aLb\) if either \(a = b\) or there are elements \(s_1, \ldots, s_n, t_1, \ldots, t_n \in M\) such that \(S^n(a, s_1, \ldots, s_n) = b\) and \(S^n(t_1, \ldots, t_n) = a\).

(ii) \(aRb\) if either \(a = b\) or there are elements \(s, t \in M\) such that \(S^n(s, a, \ldots, a) = b\) and \(S^n(t, b, b, \ldots, b) = a\).

(iii) \(D = R \circ L = L \circ R\).

(iv) \(H = R \cap L\).

(v) \(aJb\) if either \(a = b\) or there are elements \(s, s_1, \ldots, s_n \in M\) with \(a = S^n(s, s_1, \ldots, s_n)\) such that at least one of the factors is equal to \(b\) and there are elements \(t, t_1, \ldots, t_n \in M\) with \(b = S^n(t, t_1, \ldots, t_n)\) such that at least one of the factors is equal to \(a\).

2 The main results

In this section we will study on the Menger algebra \(\left(\text{Pol}_{\leq}^{(n)}(A); S^n\right)\) where \(A\) is a finite chain. For simplification we use \(a\) instead of \((a_1, a_2, \ldots, a_n)\). We also
use \widehat{a} for the n-tuple consisting of the same element $a \in A$ i.e. $\widehat{a} = (a, a, ..., a)$. For each $f \in \text{Pol}^{(n)}_\leq (A)$, let

$$\text{Ker}_f := \{(\overline{a}, \overline{b}) \in A^n \times A^n \mid f(\overline{a}) = f(\overline{b})\},$$

and

$$\text{Im}_f := \{x \in A \mid \exists \overline{a} \in A^n, f(\overline{a}) = x\}.$$

Let $x \in \text{Im}_f$ we set $f^{-1}(x) = \{\overline{a} \in A^n \mid f(\overline{a}) = x\}$.

For a subset $B \subseteq A^n$ we define the set $f(B) := \{f(\overline{a}) \in A \mid \overline{a} \in B\}$. For any two subsets B, B' of the chain A, we write $B \leq B'$ if $b \leq b'$ for all $b \in B, b' \in B'$.

Let $\triangle_{\text{Im}_f} = \{\widehat{x} \in A^n \mid x \in \text{Im}_f\}$.

In a Menger algebra $(\text{Pol}^{(n)}_\leq (A); S^n)$, we obtain the following theorems.

Theorem 2.1 Let $f, g \in \text{Pol}^{(n)}_\leq (A)$. Then $f \mathcal{R} g$ if and only if the following conditions are satisfy

(i) $\text{Ker}_f = \text{Ker}_g$,

(ii) for each $x, y \in \text{Im}_f$, $x \leq y$ iff $g(f^{-1}(x)) \leq g(f^{-1}(y))$.

Proof. Suppose that $f \mathcal{R} g$. There exist $\alpha, \beta \in \text{Pol}^{(n)}_\leq (A)$ such that $f = S^n(\alpha, g, ..., g)$ and $g = S^n(\beta, f, ..., f)$. Let $(\overline{a}, \overline{b}) \in \text{Ker}_f$. We have $f(\overline{a}) = f(\overline{b})$ and hence $\widehat{f}(\overline{a}) = \widehat{f}(\overline{b})$. Thus $g(\overline{a}) = S^n(\beta, f, ..., f)(\overline{a}) = \beta(\widehat{f}(\overline{a})) = \beta(\widehat{f}(\overline{b})) = S^n(\beta, f, ..., f)(\overline{b}) = g(\overline{b})$. That is $\text{Ker}_f \subseteq \text{Ker}_g$. Similarly, we get $\text{Ker}_g \subseteq \text{Ker}_f$. Thus $\text{Ker}_f = \text{Ker}_g$. Let $x, y \in \text{Im}_f$ such that $x \leq y$. Then there exist $\overline{a}, \overline{b} \in A^n$ such that $f(\overline{a}) = x$ and $f(\overline{b}) = y$ (i.e, $\overline{a} \in f^{-1}(x)$ and $\overline{b} \in f^{-1}(y)$). We have $g(\overline{a}) = S^n(\beta, f, ..., f)(\overline{a}) = \beta(\widehat{f}(\overline{a})) = \beta(\widehat{x}) \leq \beta(\widehat{y}) = \beta(\widehat{f}(\overline{b})) = S^n(\beta, f, ..., f)(\overline{b}) = g(\overline{b})$. Therefore, $g(f^{-1}(x)) \leq g(f^{-1}(y))$. In the same way, for all $x, y \in \text{Im}_f$, if $g(f^{-1}(x)) \leq g(f^{-1}(y))$ we have $x \leq y$.

Conversely, suppose that $\text{Ker}_f = \text{Ker}_g$ and for each $x, y \in \text{Im}_f$, we have $x \leq y$ iff $g(f^{-1}(x)) \leq g(f^{-1}(y))$. For each $x \in \text{Im}_f$, we choose one element $\overline{a}_x \in f^{-1}(x)$. Define an n-ary operation $\beta : A^n \rightarrow A$ by $\beta(\widehat{x}) = g(\overline{a}_x)$ for all $\overline{a}_x \in \text{Im}_f$ and $\beta(\overline{c}) = c_0$ for all $\overline{c} \in A^n \triangle_{\text{Im}_f}$ and c_0 is a fixed element in A. Since $\text{Ker}_f = \text{Ker}_g$, we have $f(\overline{a}) = f(\overline{b})$ iff $g(\overline{a}) = g(\overline{b})$. Thus β is well-defined. Let $\overline{a} \in A^n$ such that $f(\overline{a}) = x$. We have $S^n(\beta, f, ..., f)(\overline{a}) = \beta(f(\overline{a})) = \beta(\widehat{x}) = g(\overline{a}_x) = g(\overline{a})$. That is $g = S^n(\beta, f, ..., f)$. Let $x, y \in \text{Im}_f$ such that $x \leq y$. By assumption, we have $g(\overline{a}_x) \leq g(\overline{a}_y)$. Thus $\beta(\widehat{x}) \leq \beta(\widehat{y})$. For all $\overline{a}, \overline{b} \in A^n \triangle_{\text{Im}_f}$ such that $\overline{a} \leq \overline{b}$, we have $\beta(\overline{a}) = c_0 = \beta(\overline{b})$ and hence $\beta \in \text{Pol}^{(n)}_\leq (A)$. Similarly, we can get well-defined an n-ary ordered preserving operation α such that $f = S^n(\alpha, g, ..., g)$. Therefore, $f \mathcal{R} g$.

For Green’s relation \mathcal{L}, we obtain the following result.
Theorem 2.2 Let \(f, g \in Pol_{\leq}(A) \). Then \(f \mathcal{L} g \) if and only if the following conditions are satisfy;

(i) \(\text{Im} f = \text{Im} g \).

(ii) For each \(x, y \in \text{Im} f \) such that \(x \leq y \). Then there exist \(a \in f^{-1}(x), b \in f^{-1}(y) \) such that \(a \leq b \) iff there exist \(a' \in g^{-1}(x), b' \in g^{-1}(y) \) such that \(a' \leq b' \).

Proof. Suppose that \(f \mathcal{L} g \). Then there exist \(s_1, \ldots, s_n, t_1, \ldots, t_n \in Pol_{\leq}(A) \) such that \(f = S^n(g, s_1, \ldots, s_n) \) and \(g = S^n(f, t_1, \ldots, t_n) \). Let \(x \in \text{Im} f \). Then \(f(a) = x \) for some \(a \in A^n \). We have \(x = f(a) = S^n(g, s_1, \ldots, s_n)(a) = g(s_1(a), \ldots, s_n(a)) \in \text{Im} g \). Thus \(\text{Im} f \subseteq \text{Im} g \). Similarly, we have \(\text{Im} g \subseteq \text{Im} f \) and hence \(\text{Im} f = \text{Im} g \). Let \(x, y \in \text{Im} f, x \leq y \). If there exists \(a \in f^{-1}(x), b \in f^{-1}(y) \) such that \(a \leq b \), we have \(x = f(a) = S^n(g, s_1, \ldots, s_n)(a) = g(s_1(a), \ldots, s_n(a)) \).

and \(y = f(b) = S^n(g, s_1, \ldots, s_n)(b) = g(s_1(b), \ldots, s_n(b)) \) where \(a' = (s_1(a), \ldots, s_n(a)) \in g^{-1}(x) \) and \(b' = (s_1(b), \ldots, s_n(b)) \in g^{-1}(y) \). Since \(s_1, \ldots, s_n \in Pol_{\leq}(A) \) and \(a \leq b \), we have \(s_i(a) \leq s_i(b) \) for all \(i = 1, 2, \ldots, n \). Thus \(a' = (s_1(a), \ldots, s_n(a)) \leq (s_1(b), \ldots, s_n(b)) = b' \). Similarly, we get that if there exist \(a' \in g^{-1}(x), b' \in g^{-1}(y) \) such that \(a' \leq b' \) then we have there exist \(a \in f^{-1}(x), b \in f^{-1}(y) \) such that \(a \leq b \).

Conversely, suppose that the conditions (i) and (ii) are hold. For each \(x, y \in \text{Im} f \) such that \(x \leq y \), we choose one element \(a^* \in g^{-1}(x) \) satisfies the following conditions;

–if no elements \(a \in f^{-1}(x), b \in f^{-1}(y) \) such that \(a \leq b \), we choose \(a^* = (a_{x_1}, \ldots, a_{x_n}) \in g^{-1}(x) \), and \(a^*_y = (a_{y_1}, \ldots, a_{y_n}) \in g^{-1}(y) \)

–if there exist elements \(a \in f^{-1}(x), b \in f^{-1}(y) \) such that \(a \leq b \), there exist \(a' \in g^{-1}(x), b' \in g^{-1}(y) \) such that \(a' \leq b' \), we choose \(a^*_x = a' = (a_{x_1}, \ldots, a_{x_n}) \in g^{-1}(x) \) and \(a^*_y = b' = (a_{y_1}, \ldots, a_{y_n}) \in g^{-1}(y) \). Since \(A^n = \bigcup_{x \in \text{Im} f} f^{-1}(x) \) is a disjont union, then for all \(j = 1, \ldots, n \), we define \(n-ary \) operations \(s_j : A^n \rightarrow A \) by \(s_j(a) = a_{x}^j \) for all \(a \in f^{-1}(x) \) and for all \(x \in \text{Im} f \).

Let \(a, b \in A^n \) such that \(a \leq b \). We have

–if \(a, b \in f^{-1}(x) \) then \(s_j(a) = a_{x}^j = s_j(b) \),

–if \(a \in f^{-1}(x), b \in f^{-1}(y) \) such that \(a \leq b \) then \(s_j(a) = a_{x}^j \leq a_{y}^j = s_j(b) \) and hence \(s_j \in Pol_{\leq}(A) \). Let \(a \in A^n \) such that \(f(a) = x \). We have \(S^n(g, s_1, \ldots, s_n)(a) = g(s_1(a), \ldots, s_n(a)) = g(a_{x_1}^*, \ldots, a_{x_n}^*) = g(a^*_x) = x = f(a) \). Thus \(f = S^n(g, s_1, \ldots, s_n) \). Similarly, we can get well-defined \(n-ary \) operations \(t_k : A^n \rightarrow A \) for all \(k = 1, \ldots, n \) such that \(g = S^n(f, t_1, \ldots, t_n) \).

Therefore, \(f \mathcal{L} g \). \(\square \)

For Green’s relation \(\mathcal{H} \), we obtain the following:
Theorem 2.3 Let \(f, g \in \text{Poi}_{\leq}^{(n)}(A) \). Then \(fHg \) if and only if \(f = g \).

Proof. If \(f = g \), we have \(fRg \) and \(fLg \). Hence, \(fHg \).

Suppose that \(fHg \), then \(fRG \) and \(fLG \). Thus \(Kef = Ker \) and \(Img = Img \). If \(|Img| = 1 \), we have \(f = g \). We assume that \(|Img| \geq 2 \) and \(f \neq g \). Then there exist \(x \in Img \) such that \(f^{-1}(x) \neq g^{-1}(x) \). Say that \(x_0 \) is a smallest element of \(Img \) such that \(f^{-1}(x_0) \neq g^{-1}(x_0) \). Then there exist \(y, z \in Img \) such that \(x_0 \leq y, x_0 \leq z \) and \(g^{-1}(x_0) = f^{-1}(y), f^{-1}(x_0) = g^{-1}(z) \). Since \(fRG \), we have \(g(f^{-1}(x_0)) \leq g(f^{-1}(y)) \). But \(g(f^{-1}(x_0)) = \{z\} \geq \{x_0\} = g(f^{-1}(y)) \) gives a contradiction. Thus \(f^{-1}(x) = g^{-1}(x) \) for all \(x \in Img = Img \). Hence, \(f = g \). \(\square \)

For Green’s relation \(D \), we obtain the following:

Theorem 2.4 Let \(f, g \in \text{Poi}_{\leq}^{(n)}(A) \). Then \(fDg \) if and only if the following conditions are satisfy:

(i) \(|Img| = |Img| \).

(ii) For \(Img = \{x_1, x_2, \ldots, x_r\} \), \(Img = \{y_1, y_2, \ldots, y_r\} \) where \(x_1 < x_2 < \cdots < x_r \) and \(y_1 < y_2 < \cdots < y_r \). We have for each \(x_i, x_j \) there exist \(a \in f^{-1}(x_i), b \in f^{-1}(x_j) \) such that \(a < b \) iff there exist \(a' \in g^{-1}(y_i), b' \in g^{-1}(y_j) \) such that \(a' \leq b' \).

Proof. Suppose that \(fDg \), then there exist \(\lambda \in \text{Poi}_{\leq}^{(n)}(A) \) such that \(fRL \) and \(\lambda LG \). We have \(Kerf = Ker \) and \(Imf = Img \) and so \(|Img| = |Img| \).

Let \(Img = \{x_1, x_2, \ldots, x_r\} \), \(Img = \{y_1, y_2, \ldots, y_r\} \) where \(x_1 < x_2 < \cdots < x_r \) and \(y_1 < y_2 < \cdots < y_r \). Since \(\lambda LG \), we have for all \(y_i \leq y_j \) there exist \(a \in \lambda^{-1}(y_i), b \in \lambda^{-1}(y_j) \) such that \(a \leq b \) iff there exist \(a' \in g^{-1}(y_i), b' \in g^{-1}(y_j) \) such that \(a' \leq b' \). Since \(fRL \), we have \(f^{-1}(x_i) = \lambda^{-1}(y_i) \) for all \(i = 1, \ldots, r \). Therefore, for all \(x_i < x_j \) there exist \(a \in f^{-1}(x_i), b \in f^{-1}(x_j) \) such that \(a < b \) iff there exist \(a' \in g^{-1}(y_i), b' \in g^{-1}(y_j) \) such that \(a' \leq b' \).

Conversely, suppose that the conditions (i) and (ii) are hold. Let \(Img = \{x_1, x_2, \ldots, x_r\} \), \(Img = \{y_1, y_2, \ldots, y_r\} \) where \(x_1 < x_2 < \cdots < x_r \) and \(y_1 < y_2 < \cdots < y_r \). Since \(A^n = \bigcup_{x \in Img} f^{-1}(x) \) is a disjoint union, then for each \(x_i \in Img \), we defined an \(n \)-ary operation \(\lambda : A^n \rightarrow A \) by \(\lambda(a) = y_i \) for all \(a \in f^{-1}(x_i) \).

We have \(Kerf = Ker \) and \(\lambda(f^{-1}(x_i)) = \{y_i\} \leq \{y_j\} = \lambda(f^{-1}(x_j)) \) iff \(x_i \leq x_j \). That is \(fRL \). Since \(|Img| = |Img| \), we have \(Img = Img \). By assumption (ii) we have, for all \(x_i \leq x_j \) there exist \(a \in \lambda^{-1}(y_i) = f^{-1}(x_i), b \in \lambda^{-1}(y_j) = f^{-1}(x_j) \) such that \(a < b \) iff there exist \(a' \in g^{-1}(y_i), b' \in g^{-1}(y_j) \) such that \(a' \leq b' \). That is \(\lambda LG \). Therefore, \(fDg \). \(\square \)

For Green’s relation \(J \), we obtain the following:
Theorem 2.5 Let $f, g \in \text{Pol}_{\leq}^n(A)$ such that $\mathcal{J} = \text{Pol}_{\leq}^n(A) \times \text{Pol}_{\leq}^n(A)$.

Proof. Since the projections $e^n_j \in \text{Pol}_{\leq}^n(A)$ for all $j = 1, 2, ..., n$, then $f = S^n(e^n_1, f, g, ..., g)$ and $g = S^n(e^n_1, g, f, ..., f)$. This means that $f \mathcal{J} g$ for all $f, g \in \text{Pol}_{\leq}^n(A)$. Hence, $\mathcal{J} = \text{Pol}_{\leq}^n(A) \times \text{Pol}_{\leq}^n(A)$. \hfill \Box

Acknowledgment
This research is supported by the Centre of Excellence in Mathematics, the commission on Higher Education, Ministry of Education, Thailand.

References

Received: August 5, 2013