On a Formula of Liouville Type
for the Quadratic Form \(x^2 + 2y^2 + 2z^2 + 4w^2 \)

Cherng-tiao Perng

Department of Mathematics
Norfolk State University
700 Park Avenue, Norfolk, VA 23504, USA
cptperng@nsu.edu

Copyright © 2013 Cherng-tiao Perng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We generalize the factorization of the classical Lipschitz quaternions to the Lipschitz type quaternions associated with the quaternary quadratic form \(x^2 + 2y^2 + 2z^2 + 4w^2 \). We are able to prove a unique factorization theorem under a suitable model for the Lipschitz type quaternions in question. As a consequence, we obtain a simple and conceptual proof for the number of representations of a positive integer in terms of the above quadratic form, which was first historically stated by Liouville.

Mathematics Subject Classification: 11D85, 11E25, 11R52

Keywords: Quaternary quadratic forms, Lipschitz type quaternions, formula of Liouville type

1 Introduction

1.1 A Brief History

Since the proof of Lagrange’s Theorem of Four Squares ([6]), there has been extensive study of other quadratic forms. A positive definite quadratic form is
said to be universal if it represents all positive integers. The study of universality of a given quadratic form and the number of representations for a positive integer in terms of the quadratic form are of particular interest. It was Jacobi who first proved the formula of the number of representations of a positive integer as a sum of four integer squares (see the references of [3]). Among the various different proofs of Jacobi’s result, there were the quaternionic proofs given by Lipschitz ([9]) and Hurwitz ([7]). Based on analogues of Hurwitz quaternions, J. Deutsch gave a quaternionic proof for the universality of some quadratic forms including \(x^2 + 2y^2 + 2z^2 + 4w^2 \) ([4]), and a quaternionic proof for the number of representations of the quadratic form \(x^2 + y^2 + 2z^2 + 2w^2 \) ([5]). In [12], the author presented a proof for Jacobi’s result using Lipschitz quaternions, which is simpler than Lipschitz’s original proof; then this was generalized to the Lipschitz type quaternions associated with the quadratic forms \(x^2 + y^2 + 2z^2 + 2w^2 \) and \(x^2 + y^2 + 3z^2 + 3w^2 \) ([13]). Following the same train of thoughts, we will present a quaternionic proof for the number of representations in terms of the quadratic form \(x^2 + 2y^2 + 2z^2 + 4w^2 \). We remark that this quadratic form has been studied since the days of Liouville ([8], [10], [11], [2], and [1]) and it is one of the 54 universal quaternary quadratic forms mentioned by Ramanujan ([14]).

1.2 Basic Definitions and Notations

The set of Hamilton quaternions \(\mathbb{H}(\mathbb{R}) \) is an associative algebra, which additively is a vector space over \(\mathbb{R} \) with basis 1, \(i, j \) and \(k \), subject to the multiplication rules \(i^2 = j^2 = k^2 = -1, ij = -ji = k \). We define the set \(\mathbb{L} \) of Lipschitz type quaternions associated with \(x^2 + 2y^2 + 2z^2 + 4w^2 \) as

\[
\mathbb{L} = \{ x + y\sqrt{2}i + z\sqrt{2}j + 2wk \mid x, y, z, w \in \mathbb{Z} \}.
\]

Since \(\mathbb{L} \) is a subset of \(\mathbb{H}(\mathbb{R}) \), it retains all the rules for addition and multiplication, and the definition of conjugate, norm, and trace. We adopt a short hand notation \(\left[x, y, z, w \right] \) for an element \(x + y\sqrt{2}i + z\sqrt{2}j + 2wk \). For \(Q = [x, y, z, w] \), we denote the conjugate of \(Q \) by \(\bar{Q} = [x, -y, -z, -w] \). Similarly, trace and norm of \(Q \) are denoted \(\text{Tr}(Q) = Q + \bar{Q} = 2x \) (always even), \(\text{Nm}(Q) = Q\bar{Q} = \bar{Q}Q = x^2 + 2y^2 + 2z^2 + 4w^2 \) and one has \(Q_1Q_2 = \bar{Q}_2 \bar{Q}_1 \), which implies \(\text{Nm}(Q_1Q_2) = \text{Nm}(Q_1)\text{Nm}(Q_2) \). An element \(\epsilon \) is a unit of \(\mathbb{L} \) if there exists \(\eta \in \mathbb{L} \) such that \(\epsilon\eta = 1 \). It is easy to check that \(\pm 1 \) are the only units of \(\mathbb{L} \), which are the only elements of norm 1. Since multiplication of elements will be required in the proof, we record the formula for the product of two elements \([a, b, c, d] \) and \([a', b', c', d'] \) in \(\mathbb{L} \):

\[
[a, b, c, d][a', b', c', d'] = [aa' - 2bb' - 2cc' - 4dd', ab' + a'b + 2cd' - 2c'd, ac' + a'c - 2bd' + 2b'd, ad' + a'd + bc' - b'c].
\]
Definition 1.1 Let \(Q = [x, y, z, w] \) be in \(\mathbb{L} \). We say \(Q \) is primitive if
\[
\gcd(x, y, z, w) = 1.
\]
We say \(Q \) is \(p \)-primitive if \(p \nmid \gcd(x, y, z, w) \).

Definition 1.2 \(Q \in \mathbb{L} \) is called a prime quaternion if \(\text{Nm}(Q) = p \) is a rational prime.

Definition 1.3 Let \(p \) be a rational prime. We say \(Q \in \mathbb{L} \) is \(p \)-pure if \(\text{Nm}(Q) = p^n \), for some integer \(n \geq 1 \).

Definition 1.4 Let \(Q_1, Q_2 \in \mathbb{L} \). We say that \(Q_1 \) and \(Q_2 \) are equivalent if \(Q_2 = \epsilon Q_1 \) for some unit \(\epsilon \in \mathbb{L} \).

1.3 Main Ideas of the Proof

The formula \(\text{Nm}([x, y, z, w]) = x^2 + 2y^2 + 2z^2 + 4w^2 \) indicates that the number of representations of \(n \) in terms of the quadratic form \(x^2 + 2y^2 + 2z^2 + 4w^2 \) equals the number of quaternions in \(\mathbb{L} \) of norm \(n \). This motivates the study of factorization in \(\mathbb{L} \). The factorization of \(2 \)-pure \(Q \in \mathbb{L} \) into factors of prime quaternions may not always work, hence we consider only \(2 \)-pure primitive quaternions as part of the building blocks in the factorization. The proof of the representation formula for the quadratic form \(x^2 + 2y^2 + 2z^2 + 4w^2 \) is based on the unique factorization stated in Theorem 2.16, where we build a factorization by a unit, a representative of \(2 \)-pure primitive quaternions, and the product of representatives of quaternions of odd prime norm. Since we know how to count the number of equivalence classes of \(2 \)-pure quaternions, and the number of equivalence classes of \(p \)-pure quaternions (for \(p > 2 \)) based on the Correspondence Theorem (Theorem 2.14), the representation formula (Theorem 3.3) follows easily.

2 Factorization of Lipschitz Type Quaternions

2.1 Primitive Factors of 2-power Norm

Definition 2.1 Let \(m \) be an integer and \(Q \in \mathbb{L} \). We denote \(m|Q \) if \(Q = mR \) for some \(R \in \mathbb{L} \).

Lemma 2.2 Let \(Q \in \mathbb{L} \). If \(2^5|\text{Nm}(Q) \), then \(2|Q \).

Proof. Write \(Q = [x, y, z, w] \). If \(2^5|x^2 + 2y^2 + 2z^2 + 4w^2 = \text{Nm}(Q) \), then \(x \) must be even. Writing \(x = 2x' \), we have
\[
2^4|2x'^2 + y^2 + z^2 + 2w^2.
\]
Now we make the following

Claim. If \(2^3 | 2s^2 + 2t^2 + u^2 + v^2 \), then \(u, v \) must be both even.

Proof of Claim. Clearly \(u, v \) have the same parity. If they were both odd, then \(u^2 \equiv v^2 \equiv 1 \pmod{8} \). This would imply \(2s^2 + 2t^2 + u^2 + v^2 \equiv 2, 4, \) or \(6 \pmod{8} \), a contradiction.

By the above claim, we see that \(y \) and \(z \) are both even. Writing \(y = 2y' \) and \(z = 2z' \), we then have

\[
2^3 | x'^2 + 2y'^2 + 2z'^2 + w^2.
\]

But applying the claim one more time, we have \(x' \) and \(w \) are both even, hence \(w = 2w' \), and therefore \([x, y, z, w] = 2[x', y', z', w'] \), i.e. \(2|Q \). \(\square \)

Lemma 2.3 In \(\mathbb{L} \), there are 2 equivalence classes of primitive quaternions of norm 2, 3 equivalence classes of primitive quaternions of norm 4, 10 equivalence classes of primitive quaternions of norm 8, and 8 equivalence classes of primitive quaternions of norm 16.

Proof. By direct computation, we list all the representatives of the equivalence classes of primitive quaternions of the required norms (since the only units in \(\mathbb{L} \) are \(\pm 1 \), every equivalence class consists of two elements):

(a) Norm 2: \([0, 1, 0, 0], [0, 0, 1, 0] \) (2 classes).

(b) Norm 4: \([0, 0, 0, 1], [0, 1, \pm 1, 0] \) (3 classes).

(c) Norm 8: \([2, 0, 0, \pm 1], [0, 1, \pm 1, \pm 1], [2, \pm 1, \pm 1, 0] \) (10 classes).

(d) Norm 16: \([2, 0, \pm 2, \pm 1], [2, \pm 2, 0, \pm 1] \) (8 classes). \(\square \)

Corollary 2.4 In \(\mathbb{L} \), there is one equivalence class of quaternions of norm 1. There are 2 equivalence classes of quaternions of norm 2, and 4 equivalence classes of quaternions of norm 4. Furthermore, there are 12 equivalence classes of quaternions of norm \(2^n \) for \(n \geq 3 \).

Proof. Clearly the quaternions in \(\mathbb{L} \) of norm 1 is represented by the unique class \(Q_0 = 1 = [1, 0, 0, 0] \). In general, let \(Q_1, Q_2, Q_3, \) and \(Q_4 \) be any representative of quaternions in \(\mathbb{L} \) of norm 2, 4, 8, and 16. We refer to (a), (b), (c) and (d) in the proof of Lemma 2.3. By (a), there are 2 equivalence classes of norm 2. Any quaternion in \(\mathbb{L} \) of norm 4 is equivalent to \(2Q_0 \) or \(Q_2 \), so by (b) there are
in total $1 + 3 = 4$ equivalence classes of quaternions of norm 4. Furthermore, since any quaternion in \mathbb{L} of norm 2^{2k+1} with $k \geq 1$ is equivalent to $2^k Q_1$, or $2^{k-1} Q_3$, it follows from (a) and (c) that there are $2 + 10 = 12$ equivalence classes of quaternions of norm 2^{2k+1} with $k \geq 1$. Finally, any quaternion in \mathbb{L} of norm 2^{2k} with $k \geq 2$ is equivalent to $2^k Q_0$, or $2^{k-1} Q_3$, or $2^{k-2} Q_4$, so by (b) and (d) there are in total $1 + 3 + 8 = 12$ equivalence classes of quaternions of norm 2^{2k} with $k \geq 2$.

\[\square \]

Definition 2.5 We say $Q \in \mathbb{L}$ is even if $2 \mid \text{Nm}(Q)$, otherwise it is odd.

Lemma 2.6 Let $Q \in \mathbb{L}$ be even. Then Q can be factored as $Q = Q_0 Q_1$, where Q_0 is 2-pure and Q_1 is odd.

Proof. Clearly we just need to handle the case when Q is primitive, which we assume. Let $\text{Nm}(Q) = 2^r m$, where m is odd. Then by Lemma 2.2, $1 \leq r \leq 4$. If suffices to check the result for the congruence classes Q' mod 2^r such that $2^r \mid \text{Nm}(Q')$. More precisely, if $Q = Q' + 2^r R$, then one has $2^r \mid \text{Nm}(Q')$, and if $Q' = Q_0 Q'$ with $\text{Nm}(Q_0) = 2^r$, then $Q = Q_0 Q' + 2^r R = Q_0 (Q' + Q_0) R$, so we may take $Q_1 = (Q' + Q_0) R$ to conclude. The computation by hand may be tedious, but it’s easily done by a computer algebra system. \[\square \]

2.2 Factorization of Factors of Odd Norm

Lemma 2.7 Let $p > 2$ be a rational prime. Let $Q \in \mathbb{L}$ be p-primitive such that $p \mid \text{Nm}(Q)$. Then there exists $Z \in \mathbb{L}$ with $p \nmid \text{Nm}(Z)$ such that $X := ZQ$ is of the form whose k component is zero mod p.

Proof. Let $Q = [s, u, v, w]$ be as given. By assumption, $s^2 + 2u^2 + 2v^2 + 4w^2 = 0 \mod p$. If $w = 0 \mod p$, we may take $Z = [1, 0, 0, 0]$ and the result is clear. So we may assume that $w \neq 0 \mod p$.

Claim. At least one of the following expressions is nonzero mod p: $u^2 + v^2$, $s^2 + 2u^2$, and $s^2 + 2v^2$.

Proof of Claim. If all of these are zero mod p, then we have $2(u^2 + v^2) + (s^2 + 2u^2) + (s^2 + 2v^2) = 0 \mod p$, which implies $2(s^2 + 2u^2 + 2v^2 + 4w^2) - 8w^2 = 0 \mod p$, i.e. $8w^2 = 0 \mod p$, which is impossible by our assumption. \[\square \]

Now we construct a Z depending on each of the above situations:
If \(u^2 + v^2 \neq 0 \mod p \), we let \(Z = [0, u, v, 0] \). Then
\[
X = [0, u, v, 0][s, u, v, w] = [-2u^2 - 2v^2, su + 2vw, sv - 2uw, 0]
\]
with \(\text{Nm}(Z) = 2(u^2 + v^2) \).

If \(s^2 + 2u^2 \neq 0 \mod p \), we let \(Z = [0, 0, s, u] \). Then
\[
X = [0, 0, s, u][s, u, v, w] = [-2sv - 4uw, 2sw - 2uv, s^2 + 2u^2, 0]
\]
with \(\text{Nm}(Z) = 2(s^2 + 2u^2) \).

If \(s^2 + 2v^2 \neq 0 \mod p \), we let \(Z = [0, s, 0, -v] \). Then
\[
X = [0, s, 0, -v][s, u, v, w] = [-2su + 4vw, s^2 + 2v^2, -2sw - 2uv, 0]
\]
with \(\text{Nm}(Z) = 2(s^2 + 2v^2) \).
\[\square \]

Corollary 2.8 With assumptions as in Lemma 2.7, there exists \(Z \in \mathbb{L} \) with \(p \nmid \text{Norm}(Z) \) such that \(ZQ \) is congruent to some \(X' \in \mathbb{L} \) mod \(p \) such that \(\text{Nm}(X') = mp \) with \(m < p \).

Proof. Case 1. If in Lemma 2.7, \(ZQ \equiv X' = [x, y, 0, 0] \mod p \), then we may choose \(x, y \) such that \(|x| \leq \frac{p-1}{2} \) and \(|y| \leq \frac{p-1}{2} \). Clearly \(p|\text{Nm}(X') \) and \(\text{Nm}(X') < \left(\frac{p-1}{2} \right)^2 + 2 \left(\frac{p-1}{2} \right)^2 < p^2 \). Therefore \(ZQ \) is congruent to \(X' \) such that \(\text{Nm}(X') = mp \) with \(m < p \).

Case 2. If \(ZQ = X = [x, y, z, 0] \mod p \), where \(z \neq 0 \mod p \). Letting \(d \) be a multiplicative inverse of \(z \mod p \), we have \((dZ)Q \equiv X' = [x', y', 1, 0] \mod p \). Choosing congruence classes of \(x', y' \) with \(|x'| \leq \frac{p-1}{2} \) and \(|y'| \leq \frac{p-1}{2} \), we then have \(p|\text{Nm}(X') \) and \(\text{Nm}(X') \leq \left(\frac{p-1}{2} \right)^2 + 2 \left(\frac{p-1}{2} \right)^2 < p^2 \). Rewriting \(dZ \) with \(Z \), we have again \(ZQ \equiv X' \mod p \), where \(\text{Nm}(X') = mp \) with \(m < p \).
\[\square \]

Corollary 2.9 Let \(P \in \mathbb{L} \) be a prime quaternion of norm \(p > 2 \). Then there exists \(Z \in \mathbb{L} \) with \(p \nmid \text{Nm}(Z) \) such that \(X := ZP \) has zero \(k \) component, where every prime factor of \(\text{Nm}(Z) \) is less than \(p \).

Proof. Clear from the proof of Lemma 2.7.
\[\square \]

Lemma 2.10 Let \(p > 2 \) be a prime. Let \(X \) be a \(p \)-primitive quaternion of norm divisible by \(p \). Then there exists a prime quaternion \(P \) (resp. \(P' \)) of norm \(p \) and a quaternion \(Y \) (resp. \(Y' \)) such that \(X = YP \) (resp. \(X = P'Y' \)).
Proof. This is done using Lemma 2.6, Corollary 2.8 and by induction. We refer to Lemma 2.15 (or Lemma 2.16) of [13] for analogous arguments.

Lemma 2.11 Let $p > 2$ be a rational prime. Let X be p-primitive and $X = YP = Y'P'$, where $\text{Nm}(P) = \text{Nm}(P') = p$. Then P and P' are equivalent, i.e. $P' = \epsilon P$, where $\epsilon = \pm 1$.

Proof. This is the same as Lemma 2.18 of [13].

Definition 2.12 Let $p > 2$. Let $X \in \mathbb{L}$ be p-primitive such that $p \mid \text{Nm}(X)$. We define $\text{GCD}_R(X,p)$ to be the equivalence class of P, denoted $[P]$, if X can be factored as $X = YP$. By Lemma 2.10 and Lemma 2.11, this is well-defined.

2.3 Correspondence Theorem

Lemma 2.13 Let $p \neq 2$ be a prime. There are precisely $p + 1$ projective solutions for

$$x^2 + 2y^2 + 2z^2 = 0 \text{ over } \mathbb{F}_p.$$

We will lift the solutions to \mathbb{Z} and represent them in the form of p-primitive quaternion $X = [x,y,z,0]$ (i.e. $x + y\sqrt{2}i + z\sqrt{2}j$, $x, y, z \in \mathbb{Z}$, not all zero mod p).

Proof. Similar to Lemma 2.20 of [13].

Let $p > 2$. Let S be the set of projective solutions of $x^2 + 2y^2 + 2z^2 = 0$ over \mathbb{F}_p and T be the set of equivalence classes of prime quaternions of norm p. We define a mapping $\Phi : S \to T$ by $\Phi(\xi) = \text{GCD}_R(X,p)$, where X is any lifting of $\xi \in S$. For any two liftings X_1 and X_2 of ξ, it is clear that there exists d with $p \nmid d$ such that $X_2 \equiv dX_1 \mod p$, i.e. $X_2 = dX_1 + pR$. Now if $X_1 = YP$, then $X_2 = dX_1 + pR = dYP + R\overline{P}P = (dY + R\overline{P})P$, thus $\text{GCD}_R(X_1,p) = \text{GCD}_R(X_2,p) = [P]$. Therefore Φ is well-defined.

Theorem 2.14 (Correspondence Theorem) Let $p > 2$ and $\Phi : S \to T$ be defined above. Then Φ is a bijection.

Proof. Let $[P] \in T$ and $X = ZP$ be given by Corollary 2.9. If ξ be a solution associated with X, then clearly $\Phi(\xi) = \text{GCD}_R(X,p) = [P]$. This shows that Φ is surjective.

We will show that the Φ is also injective. For this, let $\Phi(\xi_1) = \Phi(\xi_2) = [P]$. Let $X_1 = Z_1P = [a,b,c,0]$ and $X_2 = Z_2P = [a',b',c',0]$ be the liftings of two points ξ_1 and ξ_2. Then

$$X_1X_2 = Z_1P = Z_2 = 0 \mod p.$$
In terms of components, this says
\[[a, b, c, 0][a', -b', -c', 0] = 0 \] over \(\mathbb{F}_p \),
i.e. \([aa' + 2bb' + 2cc', a'b - ab', a'c - ac', b'c - bc'] = [0, 0, 0, 0]\), whence \(X_1 \) and \(X_2 \) are proportional. It follows that \(\xi_1 = \xi_2 \) and therefore \(\Phi \) is injective.

Corollary 2.15 Let \(p > 2 \). Then there are \(p + 1 \) equivalence classes of quaternions in \(\mathbb{L} \) of norm \(p \).

Proof. Immediate from Lemma 2.13 and Theorem 2.14.

2.4 Unique Factorization

Let \(N \) be a positive integer and \(N = 2^{s_0}p_1^{s_1} \cdots p_k^{s_k} \) be a standard factorization, where \(s_i \geq 0 \) (if \(s_i = 0 \), we agree that the factor is void) and \(p_1 < \cdots < p_k \).

We call this the standard model. Now let \(Q \) be a primitive quaternion of norm \(N \). By successively applying Lemma 2.10, we obtain a factorization \(Q = Q_0Q_1 \cdots Q_k \) under the standard model, where \(\text{Nm}(Q_0) = 2^{s_0} \), \(\text{Nm}(Q_1) = p_1^{s_1} \) and each \(Q_i \) is a product of \(s_i \)'s prime quaternions of norm \(p_i \). By choosing a representative for each equivalence class of 2-pure primitive quaternions, and for each equivalence class of prime quaternions of norm \(p \) for \(p > 2 \), we arrive at the following

Theorem 2.16 (a) Any primitive quaternion \(Q \) of norm \(2^{s_0}p_1^{s_1} \cdots p_k^{s_k} \) can be factored uniquely under the standard model, namely
\[Q = \epsilon Q_0Q_1 \cdots Q_k, \]
where \(\epsilon \) is a unit, \(Q_0 = 1 \) (if \(s_0 = 0 \)) or one of the representatives of the primitive quaternions of norm \(2^{s_0} \), and for \(1 \leq i \leq k \), \(Q_i \) is a product of \(s_i \)'s prime quaternions from the set of representatives of prime quaternions of norm \(p_i \).

(b) Any non-primitive quaternion \(Q' = mQ \) (with \(m > 1 \) and \(Q \) primitive of norm given as above) can be factored uniquely in the form
\[Q' = \epsilon(2^{t_0}Q_0)(p_1^{t_1}Q_1) \cdots (p_k^{t_k}Q_k) \]
under the model \(2^{t_0}p_1^{t_1} \cdots p_k^{t_k} \) (still called standard), where \(r_i = 2t_i + s_i, 0 \leq i \leq k \) and \(m = 2^{t_0}p_1^{t_1} \cdots p_k^{t_k} \), and \(Q_i 0 \leq i \leq k \) is as described in (a).

Proof. The result (b) follows easily from (a). The existence of factorization was explained above. The uniqueness follows from the well-definedness of \(\text{GCD}_R(X, p) \) (see Definition 2.12).

□
3 Number of Representations of \(n \) in terms of the quadratic form \(x^2 + 2y^2 + 2z^2 + 4w^2 \)

Lemma 3.1 Let \(p > 2 \) be a rational prime. There are precisely \(p^{n-1}(p + 1) \) equivalence classes of primitive quaternions in \(\mathbb{L} \) of norm \(p^n \), \(n \geq 1 \).

Proof. See Corollary 2.25 of [13].

Lemma 3.2 Let \(p > 2 \) be a rational prime. There are precisely \(\sigma(p^n) \) equivalence classes of quaternions in \(\mathbb{L} \) of norm \(p^n \), \(n \geq 0 \).

Proof. See Lemma 2.26 of [13].

Theorem 3.3 Let \(n = 2^\alpha N \). Then the number \(S \) of representations of \(n \) in terms of the quadratic form \(x^2 + 2y^2 + 2z^2 + 4w^2 \) is given by

\[
S = \begin{cases}
2\sigma(N) & \text{if } \alpha = 0, \\
4\sigma(N) & \text{if } \alpha = 1, \\
8\sigma(N) & \text{if } \alpha = 2, \\
24\sigma(N) & \text{if } \alpha \geq 3.
\end{cases}
\]

Proof. As mentioned in 1.3 of Introduction, we need to count the number of quaternions of norm \(n \); by Theorem 2.16, this equals the number of factorizations under the standard model which is the standard factorization of \(n \). We recall that there are 2 units in \(\mathbb{L} \). Then the result follows by the Fundamental Counting Principle from (b) of Theorem 2.16, Corollary 2.4 and Lemma 3.2.

\[\square \]

Acknowledgements

The author had presented the results of representation formulas for other quadratic forms on the Ramanujan 125 conference, November 5-7, 2012, at University of Florida, Gainesville. He thanks the organizers of the conference, in particular Dr. Garvan, for inclusion of the talk, and for the hospitality. The conference had been valuable and auspicious: the result presented here was computed in the airport while the author was waiting for a plane after the conference. The author also acknowledges the assistance provided by the computer algebra system SAGE.
References

Received: June 9, 2013