ϕ-Primary Subtractive Ideals in Semiring

A. Khaksari, S. Jahanpanah and A. Jafari

Department of Mathematics, Payame Noor University
P.O. Box: 19395-3697, Tehran, Iran
a_khaksari@pnu.ac.ir
mathjahan@yahoo.com
afroozehjafari@yahoo.com

Copyright © 2013 A. Khaksari, S. Jahanpanah and A. Jafari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let R be a commutative semiring with identity $1 \neq 0$. In this paper, we define ϕ-primary ideals in R and prove that for subtractive ideals I and $\varphi(I)$ of R, I is a ϕ-primary ideal if and only if for ideals A and B of R, $AB \subseteq I - \varphi(I)$ implies that $A \subseteq I$ or $B \subseteq \sqrt{I}$.

Mathematics Subject Classification: 16Y60

Keywords: Semiring; ϕ-primary idral; subtractive ideal

1 Introduction

Let R be a set with "+", "." as binary operations on R named addition and multiplication, respectively. Then $(R, +, .)$ is called asemiring if the following conditions are satisfied:
1) $(R, +)$ is a commutative semigroup.
2) $(R, .)$ is a semigroup.
3) Both operations are connected by the distributive laws $a.(b+c) = a.b + a.c$ and $(a+b).c = ac + bc$ for all $a, b, c \in R$.

A subset H of asemiring R is called asubsemiring provided that H is a semiring under both binary operations on R. A non-empty subset I of a semiring R will be called an ideal if $a, b \in I$ and $r \in R$ imply that $a + b \in I$,,
ra ∈ I and ar ∈ I. An ideal I of a semi ring R is called subtractive if a ∈ I, a + b ∈ I and b ∈ R then b ∈ I. An ideal I of a semiring R is called primary, if \(ab \in I\) where \(a, b \in R\) then \(a \in I\) or \(b^n \in I\), for some positive integer \(n\). Easily an ideal of a semiring R is primary if and only if for ideals A and B of \(R, AB \subseteq I\) implies that \(A \subseteq I\) or \(B \subseteq \sqrt{I}\).

Let \(\varphi : I(R) \to I(R) \cup \{\emptyset\}\) be a function where \(I(R)\) is the set of ideals of \(R\). We call a proper ideal \(I\) of \(R\) a \(\varphi\)-primary ideal if \(a, b \in R\) with \(ab \in I - \varphi(I)\) implies \(a \in I\) or \(b^n \in I\) for some positive integer \(n\). Clearly every primary ideal is a \(\varphi\)-primary ideal, but the inverse case is not true. For example, let \(R = \mathbb{Z}_6\). Then 0 is a \(\varphi\)-primary ideal where \(\varphi(I) = 0\). But is not a primary ideal.

Definition 1. Let \(I(R)\) be the set of ideals of \(R\) and \(I^*(R)\) the set of proper ideals of \(R\) and \(\varphi : I(R) \to I(R) \cup \{\emptyset\}\) a map. The proper ideal \(I\) of \(R\) is called a \(\varphi\)-primary ideal if for all \(a, b \in R\), with \(ab \in I - \varphi(I)\) implies \(a \in I\) or \(b^n \in I\) for some integer \(n\).

Note: Since \(I - \varphi(I) = I - (I \cap \varphi(I))\), there is no loss of generality in assuming that \(\varphi(I) \subseteq I\).

Lemma 2. Every primary ideal is \(\varphi\)-primary ideal.

Lemma 3. Every \(\varphi\)-prime is \(\varphi\)-primary ideal.

Lemma 4. If \(I\) is a \(\varphi\)-primary ideal of \(R\) and \(\varphi(I)\) is a primary ideal, then \(I\) is a primary ideal of \(R\).

Proof: Let \(a, b \in R\). If \(ab \notin \varphi(I)\), since \(I\) is a \(\varphi\)-primary ideal, then \(a \in I\) or \(b^n \in I\). And if \(ab \in \varphi(I)\) then \(a \in \varphi(I) \subseteq I\) or \(b^n \in \varphi(I) \subseteq I\).

Definition 5. Given two function \(\psi_1, \psi_2 : I(R) \to I(R) \cup \{\emptyset\}\). We define \(\psi_1 \leq \psi_2\) if \(\psi_1(J) \subseteq \psi_2(J)\), for each \(J \in I(R)\).

We maintain notation and terminology used in following Example for the remainder of the article.

Example: Let \(R\) be a commutative semiring. Define the following functions \(\varphi_\alpha : I(R) \to I(R) \cup \{\emptyset\}\) and the corresponding \(\varphi_\alpha\)-primary ideals:

- \(\varphi_0 : \varphi(J) = \emptyset\) primary ideal
- \(\varphi_0 : \varphi(J) = 0\) weakly primary ideal
- \(\varphi_2 : \varphi(J) = J^2\) almost primary ideal
- \(\varphi_n : \varphi(J) = J^n\) \(n\) - almost primary ideal
- \(\varphi_\omega : \varphi(J) = \bigcap J^n\) \(\omega\) - primary ideal
- \(\varphi_1 : \varphi(J) = J\) any ideal
Observe that $\varphi_0 \leq \varphi_0 \leq \varphi_\omega \leq \cdots \leq \varphi_{n+1} \leq \varphi_n \leq \cdots \leq \varphi_2 \leq \varphi_1$. Let A be an ideal of R.

Proposition 6. (1) Let R be a commutative semiring and J a proper ideal of R. Let $\psi_1, \psi_2 : I(R) \to I(R) \cup \{\emptyset\}$ be functions with $\psi_1 \leq \psi_2$. Then, if J is ψ_1-primary ideal, then J is ψ_2-primary ideal.

Proof: Suppose that $ab \in J - \psi_2(J)$ where; $a, b \in R$. Since $\psi_1(J) \subseteq \psi_2(J)$, hence we have $ab \in J - \psi_1(J)$ and therefore $a \in J$ or $b \in J^n$ for some positive integer n. Thus J is ψ_2-primary.

Let R be a semiring and let I be a proper ideal of R. our mean of $R_{n \times n}$ is the set of Matrixes with entiers of R, also $\varphi_{n \times n}(I_{n \times n})$ is the set of Matrixes in $\varphi(I)$.

Theorem 7. Let R be a commutative semiring and I a proper ideal of R. If $I_{n \times n}$ is a $\varphi_{n \times n}$-primary ideal of $R_{n \times n}$, then I is a φ-primary ideal of R.

Proof: Let $ab \in I - \varphi(I)$ where $a, b \in R$. Then $aE_{11}bE_{11} \in I_{n \times n} - \varphi_{n \times n}(I_{n \times n})$. Hence $aE_{11} \in I_{n \times n}$ or $bE_{11} = (bE_{11})^m \in I_{n \times n}$ for some integer n. Now $a \in I$ or $b^n \in I$.

Lemma 8. Let I be a φ-primary subtractive ideal of a semiring R. Then $I^2 \subseteq \varphi(I)$ or I is a primary ideal.

Proof: Suppose that $I^2 \not\subseteq \varphi(I)$. Let $ab \in I$ where $a, b \in R$. If $ab \not\in \varphi(I)$, then $a \in I$ or $b^n \in I$ for some positive integer n. So assume that $ab \in \varphi(I)$. If $aI \not\subseteq \varphi(I)$, then there exist $x \in I$ such that $ax \not\in \varphi(I)$. Now $a(x + b) \in I - \varphi(I)$. Hence $a \in I$ or $(b + x)^n \in I$. Since $(b + x)^n = \sum_{k=0}^{n} b^k x^{n-k} \in I$ and since $x \in I$, then $b^n \in I$. So $a \in I$ or $b^n \in I$. Now assume that $aI \subseteq \varphi(I)$. If $bI \not\subseteq \varphi(I)$, then there exist $y \in I$ such that $by \not\in \varphi(I)$. Now $b(a + y) \in I - \varphi(I)$, so $a \in I$ or $b^n \in I$. Hence we can assume that $bI \subseteq \varphi(I)$. Since $I^2 \not\subseteq \varphi(I)$, there exist $r, s \in I$ such that $rs \not\in \varphi(I)$. Then $(a + r)(b + s) \in I - \varphi(I)$. So $a \in I$ or $b^n \in I$.

Definition 9. A semiring R is called φ-semiprime if $I^n \subseteq \varphi(I)$ for each ideal I of R and $n \in N$, implies $I \subseteq \varphi(I)$.

Corollary 10. Let R be a φ-semiprime semiring. Then a subtractive ideal I of R is φ-primary if and only if $I = \varphi(I)$ or I is a primary ideal.

Proof: This follows by Lemma 8 and definition 9.

Corollary 11. Let I be a φ-primary ideal where $\varphi \leq \varphi_3$. Then I is a φ_ω-primary.

Proof: If I is a primary, then it is φ-primary ideal for each φ. Suppose that I is not primary. By Lemma 8, $I^2 \subseteq \varphi(I) \subseteq I^3$. Hence $\varphi(I) = I^n$ for each $n \geq 2$, so I is φ_n- primary for each $n \geq 3$ and thus φ_ω-primary.
Let I be an ideal of a semiring R and let $\sqrt{I} = \{x \in R : x^n \in I \text{ for some } n \geq 1\}$. Clearly \sqrt{I} is an ideal of R and $I \subseteq \sqrt{I}$.

Lemma 12. Let I be a primary ideal of a semiring R, Then \sqrt{I} is a prime ideal of R.

Proof: Let $ab \in \sqrt{I}$, where $a, b \in R$. Then there are some integer n such that $(ab)^n = a^n b^n \in I$. Since I is a primary ideal we have $a^n \in I$ or $(b^n)^m \in I$ for some integer m. Then $a \in \sqrt{I}$ or $b \in \sqrt{I}$.

Lemma 13. Let I be a φ-primary ideal of a semiring R with $\sqrt{\varphi(I)} = \varphi(\sqrt{I})$. Then \sqrt{I} is a φ-primary ideal of R.

Proof: Let $ab \in \sqrt{I} - \varphi(\sqrt{I})$ and $a \notin \sqrt{I}$, where there exist a positive integer n with $a^n b^n \in I$. If $(ab)^n \in \varphi(I)$, then $ab \in \sqrt{\varphi(I)} = \varphi(\sqrt{I})$ that is a contradiction. Since I is φ-primary, it follows from $a^n b^n \in I - \varphi(I)$ that $b \in \sqrt{I}$.

Lemma 14. Let I and J be subtractive ideals of a semiring R. Then $I \cup J = I$ or $I \cup J = J$.

Lemma 15. Let R be a semiring and I be an ideal of R and $x \notin I$.

(i) If I is subtractive, then $(I : x)$ is also subtractive.

(ii) If I is a prime ideal of R and $(I : x)$ is subtractive, then I is subtractive.

Lemma 16. Let I be a subtractive ideal of a semiring R. Then the following statement are equivalent:

(i) I is φ-primary ideal.

(ii) If $x \notin \sqrt{I}$, then $(I : x) = I \cup (\varphi(I) : x)$

(iii) If $x \notin \sqrt{I}$, then $(I : x) = I$ or $(\varphi(I) : x)$.

Proof: $(i \Rightarrow ii)$: Let $y \in (I : x)$. Then $xy \in I$. If $xy \in \varphi(I)$, then $y \in (\varphi(I) : x) \subseteq I \cup (\varphi(I) : x)$. If $xy \notin \varphi(I)$, then $x^n \in I$ or $y \in I \cup (\varphi(I) : x)$.

On the other way let $y \in I \cup (\varphi(I) : x)$. Then $yx \in \varphi(I) \subseteq I$. Now $y \in (I : x)$.

$(ii \Rightarrow iii)$: It is follows by Lemma 14 and 15.

$(iii \Rightarrow i)$: Let $xy \in I - \varphi(I)$ and $x \notin \sqrt{I}$, then $y \notin (\varphi(I) : x)$ and $y \in (I : x)$ So $y \in I$.

Lemma 17. Let I be a φ-primary subtractive ideal of a semiring R that is not a primary. Then $\sqrt{\varphi(I)} = \sqrt{I}$.

Proof: Let I is a φ-primary ideal that is not a primary ideal, then by Lemma 8, $I^2 \subseteq \varphi(I)$. So $I \subseteq \sqrt{\varphi(I)}$, hence $\sqrt{I} \subseteq \sqrt{\varphi\varphi(I)}$. It is clear that $\sqrt{\varphi(I)} \subseteq \sqrt{I}$. There for $\sqrt{\varphi(I)} = \sqrt{I}$.
Theorem 18. Let I and $\varphi(I)$ be subtractive ideals of a semiring R. Then I is a φ-primary ideal if and only if for ideals A, B of R, $AB \subseteq I - \varphi(I)$ implies that $A \subseteq I$ or $B \subseteq \sqrt{I}$.

Proof: Suppose that I is a φ-primary ideal of R. Let A, B be ideals of R such that $AB \subseteq I - \varphi(I)$, $A \not\subseteq I$ and $B \not\subseteq \sqrt{I}$. We will show that $AB \subseteq \varphi(I)$. Let $b \in B$. We have two cases $b \in \sqrt{I}$ or $b \notin \sqrt{I}$. If $b \notin \sqrt{I}$, then either $(I : b) = I$ or $(I : b) = (\varphi(I) : b)$. Now from $AB \subseteq AB \subseteq I$, we have $A \subseteq (I : b)$. Choose $a \in A - I$. Then from $a \in (I : b) - I$ we get $A \not\subseteq I$ and $(I : b) = (\varphi(I) : b)$. Therefore $A \subseteq (\varphi(I) : b)$ and $AB \subseteq \varphi(I)$. Now suppose that $b \in \sqrt{I}$, then $b \in I$ and $b \in \sqrt{I} \cap B$. Choose $b' \in B - \sqrt{I}$, then $(b + b') \in B - \sqrt{I}$ and hence we have $Ab' \subseteq (I)$ and $A(b + b') \subseteq \varphi(I)$, so $Ab \subseteq \varphi(I)$. Therefore $AB \subseteq \varphi(I)$ and this is a contradiction. Other way if $ab \in I - \varphi(I)$ where $a, b \in R$ then $a \not\subseteq I$ or $b \not\subseteq \sqrt{I}$. Hence $a \not\subseteq I$ or $b \not\subseteq \sqrt{I}$. So $a \in I$ or $b \in \sqrt{I}$.

References

Received: May 1, 2013