Sums of Greatest Prime Factors

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
jakimczu@mail.unlu.edu.ar

Abstract

Suppose that \(k \geq 2 \) and \(m \geq 1 \) are fixed positive integers. Let \(B(n, p) \) be the number of positive integers not exceeding \(n \) such that the prime \(p \) is their greatest prime factor. In this article we obtain asymptotic formulae for

\[
C_{k,m}(n) = \sum_{\frac{n}{k} \leq p \leq n} p^m B(n, p)
\]

and

\[
D_{k,m}(n) = \sum_{2 \leq p \leq \frac{n}{k}} p^m B(n, p)
\]

Let \(b_m(n) \) be the \(m \)-th power of the greatest prime factor in the prime factorization of \(n \). In this article we proved the following asymptotic formula

\[
\sum_{i=2}^{n} b_m(i) \sim \frac{\zeta(m+1) n^{m+1}}{m+1 \log n},
\]

where \(\zeta(s) \) is the Riemann’s Zeta Function.

Mathematics Subject Classification: 11A41

Keywords: Sums of greatest prime factors

1 Introduction and Preliminary Results

Let \(k \geq 2 \) a fixed positive integer. Let \(\beta_k(n) \) be the set of positive integers not exceeding \(n \) such that in their prime factorization appear some prime \(p \)
pertaining to the interval \(\left(\frac{n}{k}, n \right] \). That is, \(\beta_k(n) \) is the set of positive integers not exceeding \(n \) such that the greatest prime factor of these positive integers pertains to the interval \(\left(\frac{n}{k}, n \right] \). Let \(B_k(n) \) be the number of elements in the set \(\beta_k(n) \). In a previous article [3] we obtained the asymptotic formula

\[
B_k(n) \sim \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k} \right) \frac{n}{\log n} = o(n) \tag{1}
\]

Let \(m \) be a fixed positive integer and let \(C_{k,m}(n) \) be the sum of the \(m \)-th powers of the greatest prime factors of the positive integers pertaining to the set \(\beta_k(n) \). In this note we obtain asymptotic formulae for \(C_{k,m}(n) \).

Let \(k \geq 2 \) be a fixed positive integer. Let \(\alpha_k(n) \) be the set of positive integers not exceeding \(n \) such that in their prime factorization only appear primes \(p \) pertaining to the interval \(\left[0, \frac{n}{k} \right] \). That is, \(\alpha_k(n) \) is the set of positive integers not exceeding \(n \) such that the greatest prime factor of these positive integers pertains to the interval \(\left[0, \frac{n}{k} \right] \). We assume that 1 pertains to the set \(\alpha_k(n) \). These numbers are called smooth numbers.

Note that the sets \(\alpha_k(n) \) and \(\beta_k(n) \) are disjoints and \(\alpha_k(n) \cup \beta_k(n) = A \), where \(A \) is the set of positive integers \(k \) such that \(1 \leq k \leq n \).

Let \(A_k(n) \) be the number of elements in the set \(\alpha_k(n) \). Consequently (see (1))

\[
A_k(n) \sim n. \tag{2}
\]

Let \(m \) be a fixed positive integer and let \(D_{k,m}(n) \) be the sum of the \(m \)-th powers of the greatest prime factors of the positive integers pertaining to the set \(\alpha_k(n) \). In this note we obtain asymptotic formulae for \(D_{k,m}(n) \).

Let \(B(n, p) \) be the number of positive integers not exceeding \(n \) such that the prime \(p \) is their greatest prime factor. Then

\[
\sum_{2 \leq p \leq n} B(n, p) = n - 1
\]

\[
C_{k,m}(n) = \sum_{\frac{n}{k} < p \leq n} p^m B(n, p) \tag{3}
\]

\[
D_{k,m}(n) = \sum_{2 \leq p \leq \frac{n}{k}} p^m B(n, p) \tag{4}
\]

Let \(b_m(n) \) be the \(m \)-th power of the greatest prime factor in the prime factorization of \(n \). In a previous article [2], we proved the following asymptotic formula

\[
\sum_{i=2}^{n} b_m(i) \sim \frac{\zeta(m+1) n^{m+1}}{(m+1) \log n},
\]

where \(\zeta(s) \) is the Riemann’s Zeta Function. In this article we give other proof more short and more direct of this formula.

The following lemma is a consequence of the prime number theorem (see either [1] or [4]).
Lemma 1.1 Let \(m \) be a nonnegative integer and let \(S_m(x) \) be the sum of the \(m \)-th powers of the primes not exceeding \(x \). The following asymptotic formula holds

\[
S_m(x) = \sum_{p \leq x} p^m \sim \frac{x^{m+1}}{(m + 1) \log x},
\]

where \(p \) denotes a positive prime.

Note that a consequence of equation (5) is the following inequality

\[
S_m(x) = \sum_{p \leq x} p^m < h \frac{x^{m+1}}{(m + 1) \log x},
\]

where \(h > 1 \). This inequality holds for \(x \geq x_0 \), where \(x_0 \) depend of \(m \).

2 Main Results

Theorem 2.1 The following formula holds

\[
C_{k,m}(n) \sim C_{k,m} \frac{n^{m+1}}{(m + 1) \log n},
\]

where

\[
C_{k,m} = 1 + \frac{1}{2m+1} + \frac{1}{3m+1} + \cdots + \frac{1}{km+1} - \frac{1}{km}
\]

Proof. Let \(k \geq 2 \) be a fixed positive integer. Consider the inequality

\[
\frac{n}{k} < p \leq n,
\]

where \(p \) denotes a positive prime number.

If \(n \geq k^2 \) equation (8) gives \(p > k \).

Consider the inequality

\[
\frac{n}{2} < p \leq n.
\]

The number of multiples of \(p \) not exceeding \(n \) is 1, namely \(p \), since \(p \leq n \) and \(2p > n \). Therefore \(p \) is the greatest prime factor in these multiples of \(p \).

Consequently the sum of the \(m \)-th powers of the greatest prime factor in these multiples of \(p \) not exceeding \(n \) will be (see (5))

\[
S_m(n) - S_m(n/2).
\]

Consider the inequality

\[
\frac{n}{3} < p \leq \frac{n}{2}.
\]
The number of multiples of \(p \) not exceeding \(n \) is 2, namely \(p \) and \(2p \), since \(2p \leq n \) and \(3p > n \). Therefore \(p \) is the greatest prime factor in these multiples of \(p \).

Consequently the sum of the \(m \)-th powers of the greatest prime factor in these multiples of \(p \) not exceeding \(n \) will be

\[
2 \left(S_m(n/2) - S_m(n/3) \right).
\]

(10)

Consider the inequality

\[
\frac{n}{k} < p \leq \frac{n}{k-1}.
\]

The number of multiples of \(p \) not exceeding \(n \) is \(k-1 \), namely \(p, 2p, \ldots, (k-1)p \), since \((k-1)p \leq n \) and \(kp > n \). Therefore \(p \) is the greatest prime factor in these multiples of \(p \). Since \(p > k \) (see above).

Consequently the sum of the \(m \)-th powers of the greatest prime factor in these multiples of \(p \) not exceeding \(n \) will be

\[
(k-1) \left(S_m(n/(k-1)) - S_m(n/k) \right).
\]

(11)

Therefore, see (9), (10), \ldots, (11), we have

\[
C_{k,m}(n) = (S_m(n) - S_m(n/2)) + 2(S_m(n/2) - S_m(n/3)) + 3(S_m(n/3) - S_m(n/4)) + \cdots + (k-1)(S_m(n/(k-1)) - S_m(n/k))
\]

\[
= S_m(n) + S_m(n/2) + S_m(n/3) + \cdots + S_m(n/(k-1)) - (k-1)S_m(n/k).
\]

(12)

Equation (5) implies

\[
\lim_{n \to \infty} \frac{S_m(n/j)}{S_m(n)} = \frac{1}{j^{m+1}}.
\]

(13)

Equations (12) and (13) give

\[
\lim_{n \to \infty} \frac{C_{k,m}(n)}{S_m(n)} = 1 + \frac{1}{2m+1} + \frac{1}{3m+1} + \cdots + \frac{1}{(k-1)m+1} - (k-1)\frac{1}{k^{m+1}}
\]

\[
= 1 + \frac{1}{2m+1} + \frac{1}{3m+1} + \cdots + \frac{1}{k^{m+1}} - \frac{1}{k^m} = C_{k,m}
\]

(14)

Finally, equations (14) and (5) give equation (7). The theorem is proved.

Theorem 2.2 The following asymptotic formula holds

\[
\sum_{i=2}^{n} b_m(i) \sim \frac{\zeta(m+1) n^{m+1}}{m+1 \log n}
\]

(15)
Proof. We have (see (3) and (4))

$$\sum_{i=2}^{n} b_m(i) = D_{k,m}(n) + C_{k,m}(n) = \sum_{2 \leq p \leq \frac{n}{k}} p^m B(n, p) + C_{k,m}(n) \quad (16)$$

where (see (7))

$$C_{k,m}(n) = C_{k,m}(n) + 1 \left(\frac{m}{m+1} \log n \right) + h_k(n) \left(\frac{m}{m+1} \log n \right) \quad (h_k(n) \to 0) \quad (17)$$

Consider the first sum in (16). Namely

$$D_{k,m}(n) = \sum_{2 \leq p \leq \frac{n}{k}} p^m B(n, p).$$

We have the following trivial inequality

$$B(n, p) \leq \left\lfloor \frac{n}{p} \right\rfloor \leq \frac{n}{p}.$$

Since the multiples of p not exceeding n are $p.1, p.2, \ldots, \left\lfloor \frac{n}{p} \right\rfloor$.

Therefore (see (6))

$$\sum_{2 \leq p \leq \frac{n}{k}} p^m B(n, p) \leq \sum_{2 \leq p \leq \frac{n}{k}} \frac{p^n}{p} = n \sum_{2 \leq p \leq \frac{n}{k}} p^{m-1} \leq nh \frac{(\frac{n}{k})^m}{m \log \left(\frac{n}{k} \right)} \quad (\lambda > 0).$$

That is

$$\sum_{2 \leq p \leq \frac{n}{k}} p^m B(n, p) = g_k(n) \frac{n^{m+1}}{(m+1) \log n}, \quad (18)$$

where

$$0 < g_k(n) < \frac{h(m+1)}{mk^m} + \lambda \quad (\lambda > 0). \quad (19)$$

We have

$$\sum_{i=2}^{n} b_m(i) = \frac{\zeta(m+1)}{m+1} n^{m+1} \log n + f(n) \frac{n^{m+1}}{(m+1) \log n}. \quad (20)$$
Now (see (16), (17) and (18))

\[
\sum_{i=2}^{n} b_{m}(i) = g_{k}(n) \frac{n^{m+1}}{(m+1) \log n} + \left(1 + \frac{1}{2^{m+1}} + \cdots + \frac{1}{k^{m+1}} - \frac{1}{k^{m}}\right) \frac{n^{m+1}}{(m+1) \log n} + h_{k}(n) \frac{n^{m+1}}{(m+1) \log n} = \zeta(m+1) \frac{n^{m+1}}{m+1 \log n} + \left(g_{k}(n) + h_{k}(n) - \frac{1}{k^{m}} - \sum_{j=k+1}^{\infty} \frac{1}{j^{m+1}}\right) \frac{n^{m+1}}{(m+1) \log n}
\]

Hence (see (20) and (21))

\[
f(n) = g_{k}(n) + h_{k}(n) - \frac{1}{k^{m}} - \sum_{j=k+1}^{\infty} \frac{1}{j^{m+1}}
\]

Let \(\epsilon > 0\). If we choose \(k\) sufficiently large then (see (19))

\[
0 < g_{k}(n) < \frac{\epsilon}{4}, \quad 0 < \frac{1}{k^{m}} < \frac{\epsilon}{4}, \quad 0 < \sum_{j=k+1}^{\infty} \frac{1}{j^{m+1}} < \frac{\epsilon}{4}
\]

On the other hand, we have (see (17)) \(h_{k}(n) \to 0\). Therefore if \(n\) is sufficiently large then

\[
|h_{k}(n)| < \frac{\epsilon}{4}
\]

Consequently we have (see (22), (23) and (24)) \(|f(n)| < \epsilon\). Now, \(\epsilon\) is arbitrarily small. Hence

\[
\lim_{n \to \infty} f(n) = 0.
\]

Equations (20) and (25) give (15). The theorem is proved.

Corollary 2.3 The following asymptotic formula holds

\[
D_{k,m}(n) \sim D_{k,m} \frac{n^{m+1}}{(m+1) \log n}
\]

where

\[
D_{k,m} = \frac{1}{k^{m}} + \sum_{j=k+1}^{\infty} \frac{1}{j^{m+1}}
\]
Proof. We have (see (16), (17) and (15))

\[
D_{k,m}(n) = \sum_{i=2}^{n} b_m(i) - C_{k,m}(n) = \frac{\zeta(m+1) n^{m+1}}{m+1 \log n}
\]

\[
- \left(1 + \frac{1}{2^{m+1}} + \cdots + \frac{1}{k^{m+1}} - \frac{1}{k^m}\right) \frac{n^{m+1}}{(m+1) \log n}
\]

\[
+ f_k(n) \frac{n^{m+1}}{\log n} = \left(\frac{1}{k^m} + \sum_{j=k+1}^{\infty} \frac{1}{j^{m+1}}\right) \frac{n^{m+1}}{(m+1) \log n}
\]

\[
+ f_k(n) \frac{n^{m+1}}{\log n} \quad (f_k(n) \to 0)
\]

The corollary is proved.

Remark 2.4 We have, (see equations (16), (7), (15) and (26))

\[
\sum_{i=2}^{n} b_m(i) = D_{k,m}(n) + C_{k,m}(n)
\]

Now, if \(k\) is large then \(D_{k,m}\) is very small (see (27)) in comparation with \(C_{k,m}\). Therefore the contribution to \(\sum_{i=2}^{n} b_m(i)\) of the smooth numbers whose density is 1 (see (2)) is insignificant in comparation with the contribution to \(\sum_{i=2}^{n} b_m(i)\) of the rest of numbers whose density is zero (see (1)).

ACKNOWLEDGEMENTS. The author is very grateful to Universidad Nacional de Luján.

References

Received: March 29, 2013