Fredholm Type Integral Equations with Aleph-Function

and General Polynomials

Rinku Jain
K.J. Somaiya Institute of Management Studies & Research
Mumbai, India
jainrinku5@gmail.com

Kirti Arekar
K.J. Somaiya Institute of Management Studies & Research
Mumbai, India
deshmukh_k123@yahoo.com

Copyright © 2013 Rinku Jain and Kirti Arekar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is devoted to the useful method of solving the one-dimensional integral equation of Fredholm type. The Mellin transform technique for solving a general fredholm type integral equation with the \(\aleph \)-function and a generalized polynomial in the kernel is considered. By specializing the coefficients and various parameters in the generalized polynomials and \(\aleph \)-function, our main theorem would readily yield several results involving simpler kernels.

Keywords: Fredholm type integral equation, Mellin transform technique & \(\aleph \)-function

1. Introduction

In the last several years a large number of Fredholm type integral equations involving various polynomials or special functions as their kernels have been studied by many authors notably
Buchman [10], Higgins [11], Love ([3] and [2]), Prabhakar and Kashyap [12], Srivastava and Raina [6] and others. In the present paper, we obtain the following one-dimensional Fredholm integral equation (1.1) involving the \(\aleph \) -function and a generalised polynomials in the kernel can be solved by resorting to the application of Mellin transforms.

\[
\int_0^\infty \alpha S_{n_1, \ldots, n_R}^{m_1 \ldots m_R} \left[E\left(\frac{x}{y} \right)^p, \ldots, E\left(\frac{x}{y} \right)^p \right] \aleph_{p_i, q_i, \tau_i}^{m, n} \left[z^q \right] \left[(a_j, A_j)^{1, n}, \ldots, (a_j, A_j)^{1, n+1, pi} \right] \left[(b_j, B_j)^{1, m}, \ldots, (b_j, B_j)^{1, m+1, qi} \right] f(y) dy = g(x)
\]

(1.1)

The \(\aleph \) -function occurring in (1.1) introduced by Sudland et al. [9] which is defined as a contour integral of Mellin-Barnes Type:

\[
\aleph[Z] = \aleph_{p_i, q_i, \tau_i}^{m, n} \left[\frac{x}{y} \right] \left[(a_j, A_j)^{1, n}, \ldots, (a_j, A_j)^{1, n+1, pi} \right] \left[(b_j, B_j)^{1, m}, \ldots, (b_j, B_j)^{1, m+1, qi} \right]
\]

\[
\Omega = \frac{1}{2\pi i} \int_\gamma \left[\frac{x}{y} \right] \left[(a_j, A_j)^{1, n}, \ldots, (a_j, A_j)^{1, n+1, pi} \right] \left[(b_j, B_j)^{1, m}, \ldots, (b_j, B_j)^{1, m+1, qi} \right] z^{-s} ds
\]

(1.2)

for all \(z \neq 0, \; \omega = \sqrt{-1} \) and

\[
\Omega_{p_i, q_i, \tau_i}^{m, n} = \prod_{j=1}^m \Gamma\left(b_j + B_j, s \right) \prod_{j=1}^n \Gamma\left(1 - a_j, A_j, s \right)
\]

\[
\prod_{j=n+1}^m \Gamma\left(a_j + A_j, s \right) \prod_{j=m+1}^q \Gamma\left(1 - b_j, B_j, s \right)
\]

(1.3)

The integration path \(\gamma = \gamma_{\psi, \omega} \) extends from \(\gamma - i\infty \) to \(\gamma + i\infty \), and is such that the poles, assumed to be simple, of \(\Gamma(1 - a_j - A_j, s) \), \(j = 1, n \) do not coincide with the pole \(\Gamma(1 - b_j - B_j, s), j = 1, m \). The parameters \(p_i, q_i \) are non-negative integers satisfying \(0 \leq n \leq p_i, 1 \leq m \leq q_i \), \(\tau_i > 0 \) for \(i = 1, r \). The parameters \(A_j, B_j, A_{ji}, B_{ji}, a_j, b_j, a_{ji}, b_{ji} \in \mathbb{C} \). The empty product in (1.3) is interpreted as unity. The existence conditions for the defining integral (1.1) are given below:

\[
\psi_l > 0, \quad \left| \text{arg}(z) \right| < \frac{\pi}{2} \psi_l, \quad l = 1, r;
\]

(1.4)

\[
\psi_l \geq 0, \quad \left| \text{arg}(z) \right| < \frac{\pi}{2} \psi_l \text{ and } \Re\{\zeta_l\} + 1 > 0,
\]

(1.5)

Where
The general polynomials of R variables given by Srivastava [4] defined and represented as:

$$s_{n_1, \ldots, n_R}^{m_1, \ldots, m_R} [x_1, \ldots, x_R] = \sum_{s_1 = 0}^{n_1} \cdots \sum_{s_R = 0}^{n_R} \left(\frac{(-1)^{m_1}s_1}{\Gamma(s_1)} \right) \cdots \left(\frac{(-1)^{m_R}s_R}{\Gamma(s_R)} \right)$$

(1.8)

Let \int denote the space of all functions f which are defined on $R^+ = [0, \infty)$ and satisfy

1. $f \in b^\infty (R^+)$,
2. $\lim_{x \to \infty} x^\gamma f^r (x) = 0$ for all non negative integers γ and r.
3. $f(x) = O(1)$ as $x \to 0$.

For correspondence to the space of good functions defined on the whole real line $(-\infty, \infty)$ see (Lighthill) [8].

The Riemann – Liouville fractional integral (of order μ) is defined by

$$D^{-\mu} \{f(x)\} = G_{\mu} \{f(x)\} = \frac{1}{\Gamma(\mu)} \int_0^x (x-w)^{\mu-1} f(w)dw, \quad (\text{Re}(\mu) > 0)$$

(1.9)

where $D^{-\mu} \{f(x)\} = \hat{\Phi}(x)$ is understood to mean that Φ is a locally integrable solution of $f(x) = D^{-\mu} \{\hat{\Phi}(x)\}$, implying that $D\mu$ is the inverse of the fractional integral operator $D^{-\mu}$ (whenever necessary, we shall simply write $D^{-\mu}$ for $D^{-\mu}$ for the Riemann-Liouville fractional integral operator defined by eq. (1.8) above).

$$W^{-h} \{f(x)\} = \Gamma(h) \int_x^\infty (\zeta - x)^{h-1} f(\zeta) d\zeta, (\text{Re}(h) > 0)$$

(1.10)

2. PRELIMINARY RESULTS

We first prove the following result which will be required in proving theorem 1 below.
Lemma 1. With the set of sufficient conditions (1.4), (1.5), (1.6) and (1.7) and let us suppose
\(\text{Re } (\alpha) > \text{Re } (\beta); \text{ Re } [\beta + q (b/B_j)] > 0, (j = 1, m), q > 0.\)

Let

\[\binom{m, n + 1}{p_i + 1, q_i + 1, \tau; r} \text{ Re } \sum_{s_1 = 0}^{n_1/m_1} \sum_{s_R = 0}^{n_R/m_R} \left(\frac{x}{y}\right)^{s_1} \cdots \left(\frac{x}{y}\right)^{s_R} \binom{(-n_1)m_{1}s_1}{\sum_{s_1 = 0}^{n_1/m_1} \sum_{s_R = 0}^{n_R/m_R} A[n_1, s_1; \cdots; n_R s_R]} E^{s_1 + \cdots + s_R} \left(\frac{x}{y}\right)^{p_1 + \cdots + p_R} \right] \]

(2.1)

Proof: To prove Lemma 1, we first use the definition of Weyl fractional integral given in (1.10) express the \(\mathcal{R}\)-function and a generalized polynomial, then we change the order of summations and integration (which is justified under the stated conditions), evaluate the t-integral and interpreting the resulting Mellin-Barnes contour integral in terms of the \(\mathcal{R}\)-function, we easily arrive at the desired result.

Theorem 1 - Under the sufficient conditions (i), (ii), (iii) and (iv) of Lemma

\[\int_0^\infty \binom{m, n + 1}{p_i + 1, q_i + 1, \tau; r} \text{ Re } \sum_{s_1 = 0}^{n_1/m_1} \sum_{s_R = 0}^{n_R/m_R} \left(\frac{x}{y}\right)^{s_1} \cdots \left(\frac{x}{y}\right)^{s_R} \binom{(-n_1)m_{1}s_1}{\sum_{s_1 = 0}^{n_1/m_1} \sum_{s_R = 0}^{n_R/m_R} A[n_1, s_1; \cdots; n_R s_R]} E^{s_1 + \cdots + s_R} \left(\frac{x}{y}\right)^{p_1 + \cdots + p_R} \right] f(y) dy \]

(2.2)

Provided further \(f \in \mathcal{F}, \text{ and } x > 0. \)
Proof: Let η denote the first member of the assertion (2.2). Then using Lemma 1 and applying (1.10), we have

$$
\eta (y) = \int_0^\infty \frac{f(y)}{\Gamma(\alpha - \beta)} \left(\int_y^\infty (\xi - y)^{a-\beta-1} \xi^{-a} S_{m_1 \ldots m_R}^{n_1 \ldots n_R} \left[E \left(\frac{x}{y} \right)^p, \ldots, E \left(\frac{x}{y} \right)^p \right] \xi^{-p_i, q_i, \tau_i; r} \left[\left(\frac{x}{y} \right)^q \right] \right) dy.
$$

(2.3)

$$
= \int_0^\infty \xi^{-a} S_{m_1 \ldots m_R}^{n_1 \ldots n_R} \left[E \left(\frac{x}{y} \right)^p, \ldots, E \left(\frac{x}{y} \right)^p \right] \xi^{-p_i, q_i, \tau_i; r} \left[\left(\frac{x}{y} \right)^q \right] \left(\int_y^\infty (\xi - y)^{a-\beta-1} f(y) \right) dy.
$$

(2.4)

Assuming the inversion of the order of integration to be permissible just as in the proof of Lemma 1.

Now, by definition (1.9), (2.4) gives

$$
\eta = \int_0^\infty \xi^{-a} S_{m_1 \ldots m_R}^{n_1 \ldots n_R} \left[E \left(\frac{x}{y} \right)^p, \ldots, E \left(\frac{x}{y} \right)^p \right] \xi^{-p_i, q_i, \tau_i; r} \left[\left(\frac{x}{y} \right)^q \right] D^{\beta-a} \{ f(\xi) \} d\xi.
$$

Which is the second member of (2.2).

3. SOLUTION OF A FREDHOLM TYPE INTEGRAL EQUATION

To obtain the solution of a fredholm type integral equation (1.1), we use the Mellin Transform technique.

Theorem 2. If

$$
\int f(\xi) D^{\alpha-\beta} \{ f(\xi) \} \text{ exists, } q > 0, x > 0, \psi_l > 0, \quad \text{s.t. } \arg(z) < \frac{\pi}{2} \psi_l, \quad l = 1, r;
$$

\(\psi_l \geq 0, \quad \arg(z) < \frac{\pi}{2} \psi_l \quad \text{and } \Re(\xi_1) + 1 < 0, \ (\psi_i \text{ given in (1.6) and } \xi_i \text{ is given in (1.7)})
$$

Re $(\alpha) > \Re (\beta) > 0$, and

m_i is an arbitrary positive integer and coefficients $A_{n_1, s_1; \ldots; n_R, s_R}$ are arbitrary constants, real or complex, then the solution of the integral equation

$$
\int_0^\infty \xi^{-a} S_{m_1 \ldots m_R}^{n_1 \ldots n_R} \left[E \left(\frac{x}{y} \right)^p, \ldots, E \left(\frac{x}{y} \right)^p \right] \xi^{-p_i, q_i, \tau_i; r} \left[\left(\frac{x}{y} \right)^q \right] \left(\frac{(a_j, A_j)_{n+1, p_i}}{(b_j, B_j)_{m+1, q_i}} \right) \left[\tau_j (a_j, A_j) \right] d\xi
$$

$$
f(y)dy = g(x)
$$

(3.1)

is given by
\[
f(y) = \frac{q}{2\pi w} \lim_{\rho \to \infty} \left(\sigma + \frac{\rho w}{\sigma} \right)^{\beta - 1} \left[\sum_{s_1 = 0}^{n_1} \frac{m_1}{s_1} \ldots \sum_{s_R = 0}^{n_R} \frac{m_R}{s_R} \left(-n_1 \right)^{m_1 s_1} \ldots \left(-n_R \right)^{m_R s_R} A[s_1, \ldots, s_R] \right]^{-1} \left(-p(s_1 + \ldots + s_R) \right)^{-k_1} \frac{1}{q} \Omega \left(\frac{-p(s_1 + \ldots + s_R) - k_1}{q} \right) \phi(k_1) dk_1. \tag{3.2}
\]

provided further that \(\max \{ \Re [(a_{l-1}/\Phi)] \} < \Re [(p(s_1 + \ldots + s_R) + k_1)/q] < \min \{ \Re (b_j/B_j) \}, \)

\((j = 1, \ldots m) \) and \((l = 1, \ldots n) \)

Proof: On replacing \(f \) by \(D^{\alpha-\beta}[f] \) in (3.1) and applying (2.1), we have

\[
g(x) = \int_0^\infty \left[\frac{x}{y} \right]^{\beta} \frac{1}{y} \sum_{s_1 = 0}^{n_1} \frac{m_1}{s_1} \ldots \sum_{s_R = 0}^{n_R} \frac{m_R}{s_R} \left(-n_1 \right)^{m_1 s_1} \ldots \left(-n_R \right)^{m_R s_R} A[s_1, \ldots, s_R] \left(x/y \right)^{p[s_1, \ldots, s_R]} \]

\[
\Re_{p_i + 1, q_i + 1, \tau_i : r} \left[\left(\frac{x}{y} \right)^q \left[1 - \beta - p(s_1 + \ldots + s_R); q, (a_j, A_j)_1, n, \ldots, [\tau_j (a_j, A_j)_n + 1, p_i] \right] \right] D^{\alpha-\beta}[f(y)] dy \tag{3.3}
\]

Multiplying both the sided of (3.3) by \(x^{n-1} \) and integrating with respect to \(x \) from 0 to \(\infty \), we have
Fredholm type integral equations

\[\phi(s_i) = \int_0^{x_i} g(x) \, dx = \int_0^{\infty} y^{-\beta} D^{a-\beta} \{ f(y) \} \left(\int_0^{x_i} \sum_{s_1 = 0}^{n_1/m_1} ... \sum_{s_R = 0}^{n_R/m_R} \left(\frac{-n_1}{m_1} \right)^{s_1} \ldots \left(\frac{-n_R}{m_R} \right)^{s_R} \right) \, dx \]

\[A[n_1, s_1; \ldots; n_R s_R] \sum_{p_1+1, q_1+1, \tau_1: r}^m \left(\frac{x}{y} \right)^q \left[(1 - \beta - p(s_1 + \ldots + s_R); q), (a_j, A_j), n_1, \ldots, [\tau_j (a_j, A_j)]_{n+1, p_1} \right] \left(b_j, B_j \right)_{m+1, q_1} \left[1 - \alpha - p(s_1 + \ldots + s_R); q \right] \, dx \, dy \quad (3.4) \]

where we have assumed the absolute (and uniform) convergence of the integrals involved, with a view to justifying the inversion of the order of integration.

Now evaluate the inner integral in (3.4) by a simple change of variables in the familiar results (c.f., for example, [5] and [7]), eq. (3.4) reduces to

\[\phi(s_1) = \int_0^{\infty} y^{-\beta} D^{a-\beta} \{ f(y) \} \left(\int_0^{x_i} \sum_{s_1 = 0}^{n_1/m_1} ... \sum_{s_R = 0}^{n_R/m_R} \left(\frac{-n_1}{m_1} \right)^{s_1} \ldots \left(\frac{-n_R}{m_R} \right)^{s_R} A[n_1, s_1; \ldots; n_R s_R] \right) \, dx \]

\[E^{s_1 + \ldots + s_R} \left(\frac{-p(s_1 + \ldots + s_R) - k}{q} \right) \left(\frac{-p(s_1 + \ldots + s_R) - k}{q} \right) \left(\frac{-p(s_1 + \ldots + s_R) - k}{q} \right) \]
\[\frac{\Gamma(\beta - k_i)}{\Gamma(\alpha - k_i)} p^{(s_1 + \ldots + s_R)} dy, \]

(3.5)

where \(\Phi(s_i) \) is given by (3.4).

\[
\phi(s_1) = \frac{1}{q} \sum_{s_1 = 0}^{n_1/m_1} \ldots \sum_{s_R = 0}^{n_R/m_R} (-1)^{m_1 s_1} \cdots (-1)^{m_R s_R} \frac{A[s_1; \ldots; s_R]}{\sum_{s_1} s_1} \frac{(-p(s_1 + \ldots + s_R) - k_1)}{q} \left(\frac{\Gamma(\beta - k_i)}{\Gamma(\alpha - k_i)} \right) \]

(3.6)

Inverting (3.6) by applying the Mellin Inversion theorem \[1\], we get

\[
D^{\alpha - \beta} \{ f(y) \} = \frac{q}{2\pi i} \lim_{\rho \to \sigma + i\rho} j \left[\sum_{s_1 = 0}^{n_1/m_1} \ldots \sum_{s_R = 0}^{n_R/m_R} (-1)^{m_1 s_1} \cdots (-1)^{m_R s_R} \frac{A[s_1; \ldots; s_R]}{\sum_{s_1} s_1} \frac{(-p(s_1 + \ldots + s_R) - k_1)}{q} \left(\frac{\Gamma(\beta - k_i)}{\Gamma(\alpha - k_i)} \right) \right]^{-1} \]

(3.7)

Operating upon both sides by \(D^{\beta - \alpha} \), (3.7) gives us
Fredholm type integral equations

\[f(y) = \frac{q}{2\pi i} \int_{\rho} \frac{d\beta - \alpha}{\sigma + \rho \gamma} \lim_{\rho \to \infty} \left[\sum_{s_1 = 0}^{n_1} \ldots \sum_{s_R = 0}^{m_R} \left(\begin{array}{c} n_1 \\ m_1 \\ \ldots \\ n_R \\ m_R \\ \ldots \\ (n_1 m_1) s_1 \\ \ldots \\ (n_R m_R) s_R \\ \ldots \\ A[n_1, s_1; \ldots; n_R s_R] \right) \right]^{-1} \]

\[= \frac{-p(s_1 + \ldots + s_R) - k_1}{q} \frac{1}{\Omega} \frac{1}{\Gamma(\beta - k_1)} \left(\frac{-p(s_1 + \ldots + s_R) - k_1}{q} \right)^{-1} \phi(k_1) dk_1. \quad (3.8) \]

Which finally yields

\[f(y) = \frac{q}{2\pi i} \lim_{\rho \to \infty} \int_{\rho} \frac{d\beta - \alpha}{\sigma - \rho \gamma} \left[\sum_{s_1 = 0}^{n_1} \ldots \sum_{s_R = 0}^{m_R} \left(\begin{array}{c} n_1 \\ m_1 \\ \ldots \\ n_R \\ m_R \\ \ldots \\ (n_1 m_1) s_1 \\ \ldots \\ (n_R m_R) s_R \\ \ldots \\ A[n_1, s_1; \ldots; n_R s_R] \right) \right]^{-1} \]

\[= \frac{-p(s_1 + \ldots + s_R) - k_1}{q} \frac{1}{\Omega} \left(\frac{-p(s_1 + \ldots + s_R) - k_1}{q} \right)^{-1} \phi(k_1) dk_1. \quad (3.8) \]

As the solution of the integral equation (3.1)

4. Special Case

1. In theorem 1, if we take \(R = 1 \), \(m_1 = 2 \) and \(A[n_1, s_1] = (-1)^{s_1} \), then we have the very interesting theorem, i.e.

Theorem 3- Suppose that the conditions corresponding to Theorem 2 are satisfied. Then

\[\int_{0}^{\infty} y - \alpha E_1^{n_1 / 2} \left(\frac{x}{y} \right)^{2} H_{n_1} \left[\frac{1}{2 \sqrt{E_1 \left(\frac{x}{y} \right)^s}} \right] \]
\[f(y) \, dy = g(x) \]

is given by

\[
\begin{align*}
 f(y) &= \frac{q}{2\pi\rho} \lim_{\rho \to \infty} \int_{-\infty}^{\infty} \beta - k_1 - 1 \left\{ \sum_{s_1 = 0}^{n_1/2} \frac{(-n_1/2)_1}{\Omega(s_1)} (-1)^{s_1} \right\}^{-1} \\
 &\quad \cdot \frac{\mu + \rho \omega}{\rho} \left(- p(s_1 + \ldots + s_R) - k_1 \right) \\
 &\quad \cdot \frac{\phi(k_1) \, dk_1}{q} \\
 &\quad \cdot E^{s_1} Z^{s_1} \\
\end{align*}
\]

Provided integral exists.

2. If we take \(n_1 = \ldots = n_R \to 0 \), \(\tau_1 = \ldots = \tau_{r-1} = 1 \) and \(r = 1 \), Theorem 2 is seem to correspond to a result given by Srivastava and Raina [6]

REFERENCES

Fredholm type integral equations

Received: April 17, 2013