Geometric Odd Extension to ΠTM_0

Alireza Bahraini

Dept. of Mathematical Sciences
Sharif University of Technology
P.O. Box 11365-9415, Tehran, Iran

Copyright © 2013 Alireza Bahraini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce a natural process for (odd) extensions of ordinary fields from an ordinary manifold M_0 to the whole super manifold ΠTM_0 associated to the tangent bundle TM_0. Super-connection and super-curvature on the super manifold ΠTM_0 extending the ordinary connection and curvature of M_0 are described and the relation with the notion of super-geodesic is also discussed.

Mathematics Subject Classification: 58C50, 83E50

Keywords: Super-manifold, Super-connection, Super-curvature

1 Introduction

Differential geometry on super-manifolds has been developed in the framework of super-gravity and super-Yang-Mills theories. In super-gravity theories one starts by an appropriate set of non-zero torsion constraints and super-connection and super-curvature tensors are described accordingly [3]. Super-Yang-Mills theories are based on putting some constraints on the curvature of a connection in such a way that it becomes flat along some odd distributions [4]. Both of these theories are developed on the super-manifold associated to the spin bundle of a spin manifold in restricted appropriate dimensions.
Chiral fields as the main ingredient of these theories are constructed through extensions of ordinary fields on an ordinary spin manifold M_0 to the whole super-manifold M associated to the spin bundle S on M_0. The odd extension is described by some odd differential equations provided by integrable foliations obtained from representations of super-Poincaré group on the super manifold M. This special foliation associated to the super-Poincaré group seems to restrict all the above theories to the special super-manifold associated to the spin bundle. Although it seems that the geometry behind these constructions can be reproduced for general super-manifolds. In the present note we would like to generate a natural extension process for super-manifold associated to the tangent bundle of an ordinary manifold. The approach described here seems to be simpler than what is applied in super-gravity and super-Yang Mills theories. However it can be considered as a first extension process which is, as can be seen, not only very natural, but also leads to an extension of the geometry of M_0 to the supermanifold ΠTM_0. As an application we will discuss the relation between the induced super-geometry on ΠTM_0 and the notion of super-geodesics in [1] [2].

2 Some preliminary notations

We first recall that if M_0 is a smooth manifold of dimension m the super manifold $M := \Pi TM_0$ associated to the tangent bundle of M_0 is defined as a ringed space whose structure sheaf \mathcal{O}_M consists of the sheaf of differential forms on M_0. So by definition, for an open subset $U \subset M_0$, we have $\mathcal{O}_M(U) = \Gamma(\Lambda^*(T^*M_0))|_U$. Now if \mathcal{T} denotes the tangent super-bundle of M then we claim that there exists a natural decomposition like

$$\mathcal{T} = \mathcal{T}^{ev} \oplus \mathcal{T}^{odd} \simeq (TM_0 \oplus TM_0) \hat{\otimes} \mathcal{O}_M$$

as a module over \mathcal{O}_M. To see this identification take a vector $\xi \in T_xM$ at some point $x \in M$. The even derivation $\xi : \mathcal{O}_x \to \mathbb{R}$ associated to this vector acts on an $\alpha \in \Lambda^*(T^*M)(U)$, defined in some neighborhood U of x, as:

$$\xi.\alpha|_{M_0} := d(\alpha_0)(\xi)$$ \hfill (1)

where α is decomposed as $\alpha = \alpha^0 + \alpha^+$ into zero degree component α_0, which is a real function on U and the components of positive degree α^+. The action of $\xi \in TM_0$ as an odd vector on α is nothing but:

$$\xi(\alpha) := i_{\nu} \alpha$$ \hfill (2)
If $\xi \in T_x M_0$ we will use the notation $\tilde{\xi}$ when the vector ξ is considering to be an element of T^{odd}.

Assume that the set $\mathcal{B} = \{\xi_i | i = 1, \ldots, m\}$ constitute a basis for $T_x M_0$ and let T^+_s and T^-_s denote the subspaces of T generated by $\mathcal{B}^+_s = \{\xi_i + \tilde{\xi}_i | i = 1, \ldots, m\}$ and $\mathcal{B}^-_s = \{\xi_i - \tilde{\xi}_i | i = 1, \ldots, m\}$, respectively. Thus we get the following decomposition:

$$ T = T^+_s \oplus T^-_s $$

It is clear that this decomposition does not depend on the choice of the basis \mathcal{B}.

Set $\partial^\pm_{\xi_i} := \xi_i \pm \tilde{\xi}_i$, for $i = 1, \ldots, m$ and let $\{(\partial^\pm_{\xi_i})^* | i = 1, \ldots, m\}$ denote its dual basis. So one can write $$(\partial^\pm_{\xi_i})^* = \frac{1}{2}((\xi_i)^* \mp (\tilde{\xi}_i)^*)$$ where $\{(\xi_i)^* | i = 1, \ldots, m\}$ is the dual basis of \mathcal{B}. Define the operators d^\pm_s by:

$$ d^\pm_s = \sum_i \partial^\pm_{\xi_i} (\partial^\pm_{\xi_i})^* $$

these operators act on $\hat{\Omega}^*(\Pi T M_0)$ consisting of the space of \mathcal{H}^∞ differential forms on $\Pi T M_0$ and the de-Rham operator d can be decomposed as:

$$ d = d^+_s + d^-_s $$

3 Natural extension to $\Pi T M_0$

Let M_0 and N_0 be two closed smooth manifolds of dimensions m and n, respectively, and let $g : M_0 \to N_0$ be a smooth function. Then the following lemma holds:

Lemma 1 There exists a natural extension \tilde{g}:

$$ of g$ acting by pullback on the sheaf of sections of the supermanifold $\Pi T N_0$.
Now we can ask the main question whose answer suggests a natural method for the extension of functions and differential forms from M_0 to ΠTM_0. Let $f : N_0 \to \mathbb{R}$ be a smooth function and let $y \in \mathbb{R}$ be a regular value of f. We denote by $M_0 = f^{-1}\{y\}$ the level set of the function f associated to y. Let $j : M_0 \hookrightarrow N_0$ be the inclusion map of M_0 into N_0. According to the above lemma $\tilde{j} : \Pi TM_0 \hookrightarrow \Pi TN_0$ provides an embedding of ΠTM_0 into ΠTN_0. Here is the question: is there any \mathcal{H}^∞ function $F \in \Gamma(N, \Lambda^*(T^*N_0))$ extending f to the whole super-manifolds ΠTN_0 whose level set $F^{-1}(\{y\})$ coincides with the sub-manifold $\tilde{j}(\Pi TM_0)$?

In order to answer the above question we need the following definition:

Definition 1 For a smooth real function $f \in C^\infty(N_0)$ the super symmetric extensions $S^\pm(f) \in \mathcal{H}^\infty(\Pi TN_0)$ are defined to be equal to $S^\pm(f) = f \pm \tilde{df}$, where the notation \tilde{df} means that we are considering the differential form df as an \mathcal{H}^∞ function on ΠTN_0.

Lemma 2 With the above hypothesis an extension $F \in \Gamma(M, \Lambda^*(T^*N_0))$ of f has the property $F^{-1}(\{y\}) = \tilde{j}(\Pi TM_0)$ if $$d_s^{-}F|_{M_0} = 0$$

Moreover $S^+(f)$ is the unique extension of f upto first order to the odd part and satisfying the above constraint.

Proof. Straightforward.

Similarly we can also define natural odd extension of differential forms as follows. Define a canonical 1-1 map:

$$Odd : \Omega^{k+1}(N_0) \to \mathcal{H}^\infty(\Pi TN_0) \otimes \Omega^k(N_0) \subset \hat{\Omega}^k(\Pi TN_0)$$

by

$$Odd(\beta)(X_1, ..., X_k) = (-1)^k i_{X_k} \circ ... \circ i_{X_1}(\beta) \in \Omega^1(N_0) \subset \mathcal{H}^\infty(\Pi TN_0)$$

Where $\Omega^{k+1}(N_0)$ denotes the space of differential $k + 1$-forms on N_0 and by $\hat{\Omega}^k(\Pi TN_0)$ we mean the space of \mathcal{H}^∞ differential k forms on ΠTN_0. Also $\beta \in \Omega^{k+1}(N_0)$ for some $k \in \mathbb{N} \cup \{0\}$.
Definition 2 The (plus or minus) odd extension $S^\pm(\alpha)$ of a differential form $\alpha \in \Omega^*(N_0)$ are defined by:

$$S^\pm : \Gamma(\Lambda^k(T^*N_0)) \to \Gamma(\Lambda^k((T_s^\pm)^*))$$

$$S^\pm(\alpha) = \alpha \pm \text{Odd}(d\alpha)$$

The following fundamental property holds for $S^\pm(\alpha)$:

Proposition 1 $S^+(\alpha)$ is the unique element of $\Gamma(\Lambda^k((T^+_s)^*))$ extending α up to first order to the odd part and satisfying:

$$d^-_s(S^+(\alpha))|_{M_0} = 0$$

equivalently we have $dS^+(\alpha)|_{M_0} \in \Gamma(\Lambda^{k+1}((T^+_s)^*))$.

Proof: First note that for any point $y \in N_0$ and for any vector $v \in T_yN_0$ we have

$$i_v d(\alpha + \text{Odd}(d\alpha))|_{M_0} = 0$$

This means that $d(\alpha + \text{Odd}(d\alpha))|_{M_0} \in \Lambda^{k+1}((T^+_s)^*)$ or equivalently $d^-_s(\alpha + \text{Odd}(d\alpha))|_{M_0} = 0$. The converse is also straightforward.

Now we would like to repeat the above procedure for differential forms with values in vector bundles over N_0. So let $\pi : E \to N_0$ be a real smooth vector bundle over N_0 equipped with a connection ∇. Let also $p : \Pi TN_0 \to N_0$ be the projection map from ΠTN_0 onto N_0. We denote by \mathcal{E} the pullback of the (even) vector bundle E by p to the whole ΠTN_0 i.e. $\mathcal{E} := p^*E$.

As before the operator $d^\nabla : C^\infty(N) \to \Omega^1(E)$ has natural super-symmetric extensions $d^\nabla,^\pm : \mathcal{H}^\infty(\mathcal{E}) \to \hat{\Omega}^1(\mathcal{E})$ defined by:

$$d^\nabla,^\pm = \sum_i (\nabla_{\xi_i} \pm \tilde{\xi}_i)(\partial_{\xi_i}^\pm)^*$$

We recall that $\{\xi_i|i = 1, ..., n\}$ is a basis for T_yN_0 at a point $y \in N_0$ and $\tilde{\xi}_i$ is the odd derivation associated to ξ_i. We also have

$$d^\nabla = d^\nabla,^+ + d^\nabla,^-$$

And the following lemma holds,
Lemma 3 With the above hypothesis given a section $u \in \Gamma(N_0, E)$ there exists a unique $S^+(u) \in \Gamma(\PiTN_0, \mathcal{E})$ extending u up to first order to the odd part such that, $(d^\nabla_{s^-})(S^+(u))|_{M_0} = 0$.

Proof: It suffices to set

$$S^+(u) := u + d\nabla u$$

where again we use the notation $d\nabla u$ to emphasize that we are considering it as an odd $\mathcal{H}\infty$ section of \mathcal{E} on ΠTN_0.

In order to define natural odd extension of vector bundle-valued differential forms $\alpha \in \Omega^k(E)$ to the whole \mathcal{E}, we define Odd operator in the same manner as before:

$$Odd : \Omega^{k+1}(E) \rightarrow \mathcal{H}\infty(\PiTN_0) \otimes \Omega^k(E)$$

$$Odd(\beta)(X_1, ..., X_k) = (-1)^k i_{X_k} \circ ... \circ i_{X_1}(\beta) \in \Omega^1(E) \subset \mathcal{H}\infty(\PiTN_0, \mathcal{E})$$

Where $\beta \in \Omega^{k+1}(E)$ is a smooth E-valued differential $k + 1$-form on N_0, with $k \in \mathbb{N} \cup \{0\}$.

Definition 3 The (plus or minus) odd extension $S^\pm(\alpha)$ of a vector bundle valued differential form $\alpha \in \Omega^*(E)$ are defined through the following applications

$$S^\pm : \Gamma(\Lambda^k(T^*N_0) \otimes E) \rightarrow \Gamma(\Lambda^k((T^s_\pm)^*) \otimes \mathcal{E})$$

$$S^\pm(\alpha) = \alpha \pm Odd(d\nabla \alpha)$$

Similarly we can prove,

Proposition 2 With the above notations $S^+(\alpha)$ is the unique element of $\Gamma(\Lambda^k((T^s_+)^*) \otimes \mathcal{E})$ extending α up to first order to the odd part and satisfying:

$$d^\nabla_{s^-}(S^+(\alpha))|_{M_0} = 0$$

equivalently we have $d\nabla S^+(\alpha)|_{M_0} \in \Gamma(\Lambda^{k+1}((T^+_s)^*) \otimes \mathcal{E})$.
4 Super-connection and super curvature.

We now apply the above method to naturally extend the differential geometric objects from M_0 to ΠTM_0. So assume that the smooth manifold M_0 is equipped with a riemannian metric g_0 and let ∇ be the Levi-Civita connection associated to g_0. In a local coordinate system defined on an open set $U \subset M_0$ the connection ∇ can be written as $\nabla := d + A$ with $A \in \Omega^1(\text{End}(TM_0|_U))$.

We can thus define natural extensions of the connection matrix A to ΠTM_0 as follows:

$$S^\pm A = A \pm \text{Odd}(d^\nabla A) = A \pm \text{Odd}(R^\nabla) \in \hat{\Omega}^1(\text{End}(\text{Tev}|_U))$$

where $R^\nabla \in \Omega^2(\text{End}(TM_0))$ is the curvature tensor associated to the Levi-Civita connection ∇. Due to the transformation of R^∇ under the action of structure group of TM_0 it is obvious that $S^\pm A$ is indeed a connection form on ΠTM_0. We denote this super connection by $\hat{\nabla}$.

The super-curvature of $\hat{\nabla}$ is given in local coordinates by,

$$R^{\hat{\nabla}} = d(S^+ A) + S^+ A \wedge S^+ A = R^\nabla + 2A \wedge \text{Odd}(R^\nabla) + \text{Odd}(R^\nabla) \wedge \text{Odd}(R^\nabla)$$

Geodesic curvature of super-curves in ΠTM_0. As an application of the above odd differential geometry on ΠTM_0 we associate a geodesic super-curvature to super-curves living in ΠTM_0 which is an extension of the ordinary geodesic curvature to its odd part. We then describe the even part of the equation of super-geodesics (discussed in [2][1] and references therein) in terms of this notion of geodesic super-curvature.

Suppose that M_0 is a 2-dimensional manifold and let J_0 be a complex structure on M_0 compatible with the riemannian metric g_0 of M_0. Let $I \subset \mathbb{R}^{1|1}$ be a super-interval in $\mathbb{R}^{1|1}$ with $I_0 = [0,l]$ for some real positive $l \in \mathbb{R}$. A super-curve $\gamma : I \to M$ on M can be described by the data of an ordinary curve $\gamma_0 : I_0 \to M_0$ along with a vector field $\psi : \mathbb{R} \to TM_0$ which is a lift of the curve γ_0 to the vector bundle TM_0. Assume that γ_0 is parameterized by length and let (t, τ) be a coordinates system on I. Thus we can define the geodesic super-curvature of γ as the pullback of

$$<\hat{\nabla} \dot{\gamma}, J \dot{\gamma}> \in \mathcal{H}^\infty(\Pi TM_0)$$
by γ into I which leads to the following extension of geodesic curvature to the odd part

$$
\hat{\kappa}_g = \kappa^e_g + \tau \kappa^o_g := \kappa_g(t) + \tau < R(\dot{\gamma}, \psi)\dot{\gamma}, J\dot{\gamma} >
$$

where κ_g is the geodesic curvature of the curve γ_0 and R denotes the sectional curvature of the surface M_0. Two cases are interesting

i) If $\psi = \dot{\gamma}$ then the super-curve γ is a natural extension of γ_0 to ΠTM_0 in the sense of section 2 and in this case we have: $\hat{\kappa}_g = \kappa_g$.

ii) If $\psi = J\dot{\gamma}$ then we have $\hat{\kappa}_g = K(\gamma)$, where K is the gaussian curvature of M_0.

In this case if $\kappa^e_g(t) = c\kappa^o_g$ for some constant $c \in \mathbb{R}$ then the even part γ_0 describes a super-geodesics in the sense of [2] and [1].

Acknowledgement. The author thanks the research council of Sharif university of technology for support.

References

Received: February 14, 2013