Continuity of Darboux Functions

Nikita Shekutkovski

Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
nikita@pmf.ukim.mk

Beti Andonovic

Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
beti@tmf.ukim.edu.mk

Copyright © 2013 Nikita Shekutkovski and Beti Andonovic. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In 1965, Whyburn proved that if X is locally connected and first countable, Y is Hausdorff, and f: X → Y a function, then: f is continuous iff f preserves compactness and connectedness. Definition: A function f: X → Y is preserving path connectedness (a Darboux function) if the image of any path-connected subset of X is path connected.

As an example, the derivative f’ of a real differentiable function f defined on an interval is path preserving although f’ is not always continuous. In the paper we prove the following theorem

Theorem: Suppose X is Hausdorff, locally path-connected and 1-countable, Y is Hausdorff, and f: X → Y a function. Then f is continuous iff f preserves compactness and f preserves path connectedness.

By elementary theorems if f : X → Y is a continuous function then the image of compact subspace of X is compact set, and the image of connected set is connected. In 1970 McMillan proved that if X s Hausdorff, locally connected and Frechet, Y is Hausdorff, then the converse is also true. In fact McMillan generalized Whyburn’s theorem from 1965. The last advance in this direction is made in [2] by the following result of Whyburn [5]: Suppose X is locally connected and 1-countable, Y is Hausdorff, and f : X → Y a
function. The following conditions are equivalent: 1) \(f \) is continuous 2) any image of a compact set is compact and any image of a connected set is connected.

Definition: A function \(f : X \to Y \) preserves path connectedness (has a property of Darboux, is a Darboux function) if the image of any path-connected subset of \(X \) is path connected.

Remark: The derivative \(f' \) of a real function \(f \) defined on an interval need not to be continuous. However, the derivative \(f' \) has the property of Darboux i.e. if \(d \) is a real number such that \(f(a) < d < f(b) \), then there exists a real number \(c \) between \(a \) and \(b \) such that \(f(c) = d \).

A function having a Darboux property is not always continuous. An example of such function is the function of Cesaro \(\omega : [0, 1] \to [0, 1] \) defined by

\[
\omega(x) = \limsup_n \frac{a_1 + \ldots + a_n}{n},
\]

for \(0 \leq x \leq 1 \), and \(x = 0, a_1 \ldots a_n \) is a dyadic expression of \(x \) (if \(x \) has two expressions we take the finite expression i.e with infinite number of 0’s).

Some of the properties of Darboux functions are presented in [4].

Now, let \(X \) be locally path-connected and 1-countable. We want to show that the following conditions 1) and 2’) are also equivalent:

1) \(f \) is continuous.

2’) Image of a compact set is compact and \(f \) preserves path connectedness.

It is clear that from 2) it follows 2’). We need to show that from 2’) it follows 2). First we will show the following:

Theorem 1. Let \(f : X \to Y \) be a mapping and \(X \) be locally path-connected metric space. If \(f \) maps compact to compact and preserves path connectedness, then the image of any subset of \(X \) that is both compact and connected, is connected (and compact).

To prove Theorem 1, we will need the following

Proposition 1: Let \((C_n) \) be a sequence of compact, path-connected sets, such that each is a subset of the previous one. Then

\[
C = \bigcap_{n=1}^{\infty} C_n.
\]

is also compact and connected

(Note: Proposition 1 also holds for connected spaces instead of path-connected spaces.)

Example: As an example we consider the space consisting of two parallel lines in the plane, and of a spiral \(a(t) \) starting from a point \(a(0) \) between the two lines and \(a(t) \) approaching to both lines as \(t \to \infty \). Then
Continuity of Darboux functions

\(a([0, \infty)) \supset a([1, \infty)) \supset a([2, \infty)) \supset \ldots \) is a decreasing sequence of connected sets while their interection \(\bigcap_{n=0}^{\infty} a([n, \infty)) \) is a union of two parallel lines i.e. their intersection isn’t connected.

Proof of Proposition 1: \(C \) is compact as an intersection of compacta. Let us assume that \(C = A \cup B \), where \(A \) and \(B \) are separated. For two points \(a \in A \) and \(b \in B \) there exists a path \(k_n : I \to C_n \), such that \(k_n(0) = a, k_n(1) = b \). If we put

\[
Z = \bigcup_{n=1}^{\infty} k_n(I)
\]

then \(Z' \subseteq C = A \cup B \).

We define a mapping for each \(n \), \(h_n : k_n(I) \to \mathbb{R} \) in the following way:

\[
h_n(x) = d(x, A) - d(x, B)
\]

Since for each \(n \), \(h_n(a) < 0, h_n(b) > 0 \), there exists \(z_n \in k_n(I) \), so that \(h_n(z_n) = 0 \), i.e. \(d(z_n, A) = d(z_n, B) \), where \(z_n = k_n(t_n) \), \(0 < t_n < 1 \).

There exists a convergent subsequence \((z_{n_k}) \), such that \(z_{n_k} \to z \in Z' \subseteq A \cup B \). Because of \(d(z, A) = d(z, B) \), it follows \(z \notin A \) and \(z \notin B \), which is a contradiction.

Proof of Theorem 1: Let \(f : X \to Y \) be a mapping and let \(C \) be both connected and compact in \(X \). For each \(x \in C \), there exists a sequence of path-connected open neighbourhoods \(V^n_x \), each a subset of the previous one, so that

\[
\bigcap_{n=1}^{\infty} V^n_x = \{x\}
\]

Since

\[
C \subseteq \bigcup_{x \in C} V^n_x
\]

is compact, it follows that there exists a finite union

\[
\bigcup_{i=1, \ldots, p} V^n_{x_i}
\]

that covers \(C \). Let
There exists a subsequence \((U^n)\) of \((W^n)\), so that

\[U^n \supset U^{n+1} \supset \ldots \]

It follows that

\[\bigcap_{n=1}^{\infty} U^n = C \]

and

\[f(C) = f\left(\bigcap_{n=1}^{\infty} U^n \right) = \bigcap_{n=1}^{\infty} f(U^n) \]

Then, \(f(C)\) is compact and also connected as an intersection of compact path-connected sets, each a subset of the previous one.

Proposition 2. Let \(X\) be a Hausdorff space and \(f : [0,1] \to X \) preserves path connectedness and compactness. Then \(f \) is continuous.

Proof. Let \(C\) be connected in \([0,1]\). It follows that \(C\) is an interval, which means \(C\) is path-connected. \(f\) is preserves path connectedness, so it follows that \(f(C)\) is path-connected, so \(f(C)\) is connected. It follows \(f\) is continuous.

Proposition 3. Let \(h : [0,1] \to X \) be an embedding (i.e. \(h([0,1]) \) is an arc) and let \(f : X \to Y \) be a function that preserves path connectedness and compactness. Then, the restriction \(f \mid_{h(I)} \) is continuous.

Proof. Let \(C \subseteq h(I)\) be connected. Then \(C\) is homeomorphic image of an interval of \(I\), and because of Proposition 2, it follows the conclusion in Proposition 3.

Theorem 2. Let \(X\) be Hausdorff, locally path-connected and 1-countable, \(Y\) is Hausdorff, and let \(f : X \to Y \) be a function preserving path connectedness and compactness. Then \(f \) is continuous.

Proof. First, by \([1]\) since \(X\) is locally path connected, it is arcwise connected. Let \(z \in X\). We will show that \(f \) is continuous by showing that the sequence of images of the members of an arbitrary sequence that converges to \(z\), would converge to \(f(z) \in Y \).

Let \((a_n)\) be a sequence, such that \(a_n \to z\) and let \(\{V_k : k \in \mathbb{N}\}\) be a family of open arcwise connected neighbourhoods of \(z\), each a subset of the previous one. We may choose an increasing sequence \((n_k)\) of natural numbers (except in the trivial case), and a subsequence \((a_{n_k})\) of \((a_n)\), so that \(a_{n_k} \in V_{n_k}\) while...
Continuity of Darboux functions

\[a_{n_k-1} \notin V_{n_k}. \] The set \(\{a_{n_k} : k \in \mathbb{N}\} \cup \{z\} \) is compact, and since \(f : X \to Y \) maps compact to compact, it follows that

\[\{f(a_{n_k}) : k \in \mathbb{N}\} \cup \{f(z)\} \]

is compact.

By taking subsequences we may assume that \(f(a_{n_k}) \) converges. If \(f(a_{n_k}) \to f(z) \) then the proof is completed. Let us assume that \(f(a_{n_k}) \to w \) where \(w \neq f(z) \). Then because of the compactness of the set \(\{f(a_{n_k}) : k \in \mathbb{N}\} \cup \{f(z)\} \), it follows that \(w \in \{f(a_{n_k}) : k \in \mathbb{N}\} \) i.e. \(w = f(a_j) \).

Now, because of the properties of the neighbourhoods \(V_{n_k} \), there exists an arc \(A_k \) from \(a_{n_k} \) to \(z \). We can make the construction of the arcs \(A_k \) by induction, in the following way (Figure 1): If \(A_1, A_2, \ldots, A_{k-1} \) are constructed, we put \(A = A_1 \cup A_2 \cup \ldots \cup A_{k-1} \). If \(A^*_k \) is an arbitrary arc in \(V_{n_k} \) from \(a_{n_k} \) to \(z \), we define \(t^* = \inf\{t|h_k(t) \in A\} \) where \(h_k^* : I \to A^*_k \) is an isomorphism and we put \(b_{n_k} = h_k^*(t^*) \). Then we define the arc \(A_k \) from \(a_{n_k} \) to \(b_{n_k} \) to be the same as the arc \(A_k^* \), and from \(b_{n_k} \) to \(z \) to be identical with some of the previously constructed arcs. We define a set

\[Q = \bigcup_{k=1}^{\infty} A_k \]

which is compact because of the compactness of the arcs and the way how neighbourhoods \(V_k \) are chosen.

Now, let \(C \) be an arbitrary connected set in \(Q \).
1) If \(C \) intersects only one arc, then it follows that \(C = C \cap h_j(I) \) is homeomorphic to an interval, so \(f(C) \) is path connected also.
2) If \(x, y \in C \) then there is a path in \(Q \) contained in \(C \) connecting \(x \) and \(y \) i.e. \(C \) is path connected. It follows that \(f(C) \) is path connected.

It follows the restriction \(f|_Q: Q \to Y \) is continuous. So, if \(W \) is a neighbourhood of \(f(z) \), such that \(f(a) \notin W \), it follows that there exists a neighbourhood \(U \) of \(z \), such that \(f|_Q(U \cap Q) \subseteq W \).

There exists \(k' \), such that for each \(k > k' \), \(a_{nk} \in U \cap Q \), and so \(f(a_{nk}) \in W \), which is a contradiction to \(f(a_{nk}) \to f(a_j) \).

Definition: The map \(f: X \to Y \) has a property (RD) at \(x_0 \) if there exists an \(y_0 \in Y \) such that for any neighbourhood \(V \) of \(y_0 \) there exists an neighbourhood \(U \) of \(x_0 \) such that \(f(U \setminus \{x_0\}) \subseteq V \).

If \(f: X \to Y \) has the property (RD) at \(x_0 \) and is not continuous at \(x_0 \), we say that \(f: X \to Y \) has a removable discontinuity at \(x_0 \).

Theorem 3. Let \(X \) be locally path-connected and 1-countable and let \(f: X \to Y \) be a function preserving path connectedness and compactness. If \(f: X \to Y \) has the property (RD) at \(x_0 \), than it is continuous at \(x_0 \).

REFERENCES

Received: January 5, 2013