Cubic Residue Characters

Dilek Namli

Balikesir Universitesi, Fen-Edebiyat Fakultesi
Matematik Bolumu, 10145 Balikesir, Turkey
dilekd@balikesir.edu.tr

Abstract

In this study, we investigate for cubic residues of the known results on quadratic residues. We find solutions conditions the equations of cubic residues of the form \(x^3 \equiv a(p)\) and \(x^3 \equiv a(\pi)\).

Mathematics Subject Classification: 11A41; 11A15

Keywords: Rational prime; complex prime; non-cubic residue

1 Introduction

The solutions conditions of linear and quadratic congruence are very well known. In this study we obtain the related to the results.solutions conditions of the cubic congruence in D modes prime and rational prime.

2 Results

Definition 2.1 If \(\pi\), is the prime number in \(D\), and if it is \(\pi \sim 1 - \omega\) (i.e. \(N \pi \neq 3\)), the cubic character of \(\alpha\) in mode \(\pi\) will be as follows:

\[
\left(\frac{\alpha}{\pi} \right)_3 = \begin{cases}
0, & \text{if } \alpha \text{ divided by } \pi \\
\alpha^{(n \pi - 1)/3} (\pi), & \text{if } \alpha \text{ not divided by } \pi
\end{cases}
\]

Here, \(\alpha^{(n \pi - 1)/3} (\pi)\) is found to be 1 in \(\pi\) mode ,or it is equal to \(\omega\) or \(\omega^2\). This character functions the role of quadratic residue theory of Legendre symbol in according to the cubic residue theory.

Definition 2.2 If it is \(\left(\frac{\alpha}{\pi} \right)_3 = 1\), \(\alpha\) is a cubic residue in the \(\pi\) modes. Otherwise, it will be called as non-cubic residue. In the literature, \(\chi_\pi(\alpha)\) can be replaced with \(\left(\frac{\alpha}{\pi} \right)_3\).
Conclusion 2.3 The multiplication of two cubic residues two elements which are non-cubic residues (ω and ω²) from different types will be a cubic residue. Besides, the multiplication of a cubic residue and a non-cubic residue (ω or ω²) and two non-cubic residues from the same types (ω and ω or ω² and ω²) will be a non-cubic residue. It is very significant here to know that this case is different from quadratic residues.

Proof. This can be seen in the definition of cubic residue character. ■

Theorem 2.4 Suppose that π is the prime in D and that it is Nπ = p. If the congruence of \(x^3 \equiv a \ (p) \) can be solved, then the congruence of \(x^3 \equiv a \ (\pi) \) can also be solved.

Proof. That can be seen in the \(p = \pi \). ■

Example 2.5 Let’s suppose that \(\alpha = 5 + 8\omega \) and \(\pi = 1 + 3\omega \). In that case, it is \(N(\alpha) = 49 \) and \(N(\pi) = 7 \). As it is \(7 | 49 \), as part of description, it will be \((\frac{\alpha}{\pi})_3 = 0 \). In the reality; it is \((\frac{5+8\omega}{1+3\omega})_3 = (5 + 8\omega)^{7-1} = (5 + 8\omega)^2 (7) \) and as it is \(\omega \equiv 2 \ (7) \), the following congruence will be obtained;

\[
(5 + 8\omega)^2 \equiv (5 + 8.2)^2 \equiv (21)^2 \equiv 0 \ (7).
\]

Theorem 2.6 i) It is \((\frac{\alpha\beta}{\pi})_3 = (\frac{\alpha}{\pi})_3 (\frac{\beta}{\pi})_3 \)

ii) If \(\alpha \equiv \beta \ (\pi) \) then is \((\frac{\alpha}{\pi})_3 = (\frac{\beta}{\pi})_3 \).

Proof. i) It will be \((\frac{\alpha\beta}{\pi})_3 \equiv (\alpha\beta)^{(N\pi-1)/3} \equiv \alpha^{(N\pi-1)/3} \beta^{(N\pi-1)/3} \equiv (\frac{\alpha}{\pi})_3 (\frac{\beta}{\pi})_3 \).

ii) If \(\alpha \equiv \beta \ (\pi) \), it will be \((\frac{\alpha}{\pi})_3 = \alpha^{(N\pi-1)/3} = \beta^{(N\pi-1)/3} \equiv (\frac{\alpha}{\pi})_3 \). ■

Theorem 2.7 i) \((\frac{\alpha}{\pi})_3 = (\frac{\alpha^2}{\pi})_3 = (\frac{\alpha^2}{\pi})_3 \) and

ii) \((\frac{\alpha}{\pi})_3 = (\frac{\pi}{\pi})_3 \).

Proof. In the description of cubic residue character, \((\frac{\alpha}{\pi})_3 \) is equal to 1, \(\omega \) or \(\omega^2 \) and the square of each of these numbers is equal to their conjugate. When we consider that it is \(N\pi = N\pi \), what we have is i) and ii). ■

Theorem 2.8 If \(\pi \), is the prime number in \(D \) and let’s suppose that it is \(N\pi \neq 3 \). Then, it is \((\frac{1}{\pi})_3 = 1 \).

Proof. If \(\pi \) is prime number, then if it is \(N\pi = p \) providing that \(p \equiv 1 \ (3) \) is a rational prime number. If it is \(p \equiv 1 \ (3) \), and then it is \(p = 3k+1 \), \(k \in Z \) and as \(p \) is the prime number, \(k \) will be an even number. Then, as it is

\[
(\frac{-1}{\pi})_3 = (-1)^{(N\pi-1)/3},
\]
it is \(N\pi - 1 = p - 1 = 3k + 1 - 1 = 3k \) and therefore, it is
\[
\left(\frac{-1}{3}\right)_3 = (-1)^{\frac{3k}{3}} = (-1)^k.
\]
As the \(k \) is an even, then it is
\[
\left(\frac{-1}{3}\right)_3 = 1.
\]
If it is \(q \equiv 2(3) \) and \(q \) is a rational prime number, then \(q \) is a prime number in \(D \). As it is \(Nq = q \cdot 7 = q^2 \), it is \(Nq - 1 = q^2 - 1 \). As it is \(q \equiv 2(3) \) and also it is a prime number, then \(q \) is an odd number. In that case, \(Nq - 1 \) is an even number and therefore, \(\frac{Nq-1}{3} \) is also an even number. If this is the case, it is
\[
\left(\frac{-1}{q}\right)_3 \equiv (-1)^{(Nq-1)/3} = 1. \quad \blacksquare
\]

Remark 2.9 The cubic character of -1 in each \(\pi \) mode, will be 1 can be seen from that is \((-1)^3 = -1 \). We know that \(p \equiv 1(3) \) as a prime number and \(N\pi = p \) and \(a^\frac{p-1}{3} \equiv 1, \omega, \omega^2 \) (\(p \)). In other words, the \(\frac{p-1}{3} \) powers of the elements of \(\mathbb{Z}_p - \{0\} \) are \(1, \omega, \omega^2 \) which are equivalent to the elements in \(\mathbb{Z}_p \). Therefore, the element of \(p - 1 \) are some how gathered under 3 groups. In each of these groups, the number of elements is \(\frac{p-1}{3} \).

\[K_p = \{ k \mid k, \text{is a residue } \frac{p-1}{3} \text{th. a different from zero in } p \text{ mode} \} \]
which can be considered to be as a main description. In other words, the \(K_p \), the powers of \(\frac{p-1}{3} \)th. of the elements of \(\mathbb{Z}_p - \{0\} \) consist of values in \(p \) mode.

Theorem 2.10 \(K_p \), is a group depending on the multiplication in \(\mathbb{Z}_p \) and in fact it is a subgroup of \(\mathbb{Z}_p^* \).

Proof. We have the following as \(K_p=\{1,\omega,\omega^2\} \),

i) We see that it is \(a(bc) = (ab)c \) for \(\forall a, b, c \in K_p \).

ii) 1 is the unit element of \(K_p \).

iii) As it is \(1.1 = 1, x.\omega^2 = 1 \), the opposite of \(1 \) is \(1 \), the opposite of \(\omega \) is \(\omega^2 \) and the opposite of \(\omega^2 \) is \(\omega \).

\(K_p \) from i, ii and iii is a group under the multiplication.

Now let’s see that the \(\forall a, b \in K_p \) is \(ab^{-1} \in \mathbb{Z}_p^* \).

\[
1.\omega^{-1} = 1.\omega^2 = \omega^2 \in \mathbb{Z}_p^*, 1.(\omega) = 1.\omega = \omega \in \mathbb{Z}_p^*, \omega.\omega^{-1} = \omega.\omega = 1 \in \mathbb{Z}_p^*,
\]

\[
\omega.(\omega^2)^{-1} = \omega.\omega = \omega^2 \in \mathbb{Z}_p^*, 1.1^{-1} = 1.1 = 1 \in \mathbb{Z}_p^* \text{ and } \omega^2.(\omega^2) = \omega^3 \in \mathbb{Z}_p^*. \quad \blacksquare
\]

Example 2.11 Let’s the \(K_7 \) and \(K_{13} \). It is \(p = 7 \) and \(\frac{p-1}{3} = 2 \). In mode 7, it is \(1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 2, 4^2 \equiv 2, 5^2 \equiv 4, 6^2 \equiv 1 \) and it is \(\omega \equiv 4 (7), \omega^2 \equiv 2(7), \)
it is also $K_7 = \{1, 2, 4\} \equiv \{1, \omega, \omega^2\}$. Now, let’s suppose that $p = 13$. Then it is $\frac{p-1}{3} = 4$. In mode 13, as it is $1^4 \equiv 1$, $2^4 \equiv 3, 3^4 \equiv 9, 5^4 \equiv 1, 6^4 \equiv 9, 7^4 \equiv 9, 8^4 \equiv 1, 9^4 \equiv 10^4 \equiv 3, 11^4 \equiv 1, 12^4 \equiv 1$ and $\omega \equiv 9(13), \omega^2 \equiv 3(13)$, what we have is $K_{13} = \{1, 3, 9\} \equiv \{1, \omega, \omega^2\}$.

Theorem 2.12 (Cubic reciprocity law) Let π_1 and π_2 is 1.type prime, that $N\pi_1, N\pi_2 \neq 3$ and $N\pi_1 \neq N\pi_2$. Then is \(\left(\frac{\pi_1}{\pi_2} \right)_3 = \left(\frac{\pi_2}{\pi_1} \right)_3 \) [5].

Theorem 2.13 If it is $\pi = a+b\omega$ and $\pi \equiv 2(3)$ then we have \(\left(\frac{\omega}{\pi} \right)_3 = \omega^{(a+b+1)/3} \) [4].

Theorem 2.14 If it is $\pi = a + b\omega$ and $\pi \equiv 2(3)$ then it is \(\left(\frac{1-\omega}{\pi} \right)_3 = \omega^{2(a+1)/3} \) [4].

Theorem 2.15 If π, is a 1.type rational prime number, then it is \(\left(\frac{\pi}{3} \right)_3 = 1 \). In other words, 2 is a cubic residue in every q mode providing that $\pi = q > 2$ is 1.type rational prime number.

Proof. Suppose that $\pi = q$ is a rational prime number. It cannot be $q = 2$, because then it is $2|2$ and $\left(\frac{2}{q} \right)_3 = 0$. While $q \equiv 2(3)$ is a rational prime number, we know that in mode q, there are q pieces of cubic residue, in other words, in q mode, each a number is a cubic residue. Therefore, 2 in mode q is a cubic residue.

Theorem 2.16 If it is $\pi = a + b\omega$, 1.type complex prime number, to solve the $x^3 \equiv 2 (\pi)$ the necessary and sufficient condition is $\pi \equiv 1 (2)$, in other words it needs to be $a \equiv 1 (2)$ and $b \equiv 0 (2)$.

Proof. Suppose that $x^3 \equiv 2 (\pi)$ is something which can be solved. Then, it is $\left(\frac{2}{\pi} \right)_3 = 1$. As both of 2 and π are 1.type prime numbers, as required by the cubic reciprocity law, we can write as follows: $\left(\frac{2}{\pi} \right)_3 = \left(\frac{\pi}{2} \right)_3$. As it is $\left(\frac{\pi}{2} \right)_3 \equiv \pi^{(N2-1)/3} (2)$ and $N(2) = 2^2 = 4$, it is $\left(\frac{\pi}{2} \right)_3 \equiv \pi (2)$. Therefore, it needs to be $\left(\frac{\pi}{2} \right)_3 \equiv \pi \equiv 1 (2)$ so that we can have the following: $\left(\frac{\pi}{2} \right)_3 = 1$. The reverse case can also be possible.

Example 2.17 Can the following congruence is a soluble one?

\[x^3 \equiv 2 (5 + 6\omega) \]

As $\pi = 5 + 6\omega$ is 1.type, in other words, $\pi \equiv 2 (3)$ and it is $\pi \equiv 1 (2)$, as required by the theorem 16, it is $\left(\frac{2}{5+6\omega} \right)_3 = 1$. In other words, the congruence of $x^3 \equiv 2 (5 + 6\omega)$ can be solved. By using the Theorem 2.15, it is

\[
\left(\frac{2}{5+6\omega} \right)_3 = \left(\frac{5+6\omega}{2} \right)_3 = (5+6\omega)^{N(2)-1} = 5 + 6\omega (2) = 1 + 0\omega(2) = 1(2).
\]
Remark 2.18 Gauss, if it is $p \equiv 1(3)$, that demonstrates that A and B whole numbers exist as in $4p = A^2 + 27B^2$ and that these A and B whole numbers can be determined with only one single way except for signs.

Theorem 2.19 Suppose that it is $\pi = a + b\omega$, 1. type prime number and $N\pi = p = a^2 - ab + b^2$. If it is $p \equiv 1(3)$, to be able to solve the congruence of $x^3 \equiv 2 \pmod{p}$ the necessary and sufficient condition is to find the C and D whole integers to make it $p = C^2 + 27D^2$.

Proof. If the congruence of $x^3 \equiv 2 \pmod{p}$ can be solved, then the congruence of $x^3 \equiv 2 \pmod{\pi}$ can also be solved and as required by the Theorem 2.15, it is $\pi \equiv 1 \pmod{2}$. If it is $p = a^2 - ab + b^2$ then it is $4p = 4a^2 - 4ab + 4b^2 = (2a - b)^2 + 3b^2$. Here if it is $2a - b = A$, $\frac{b}{3} = B$, as A is an odd number and b is an even number, A and B are even numbers. Then, can be written as $D = \frac{B}{2}$ and $C = \frac{A}{2}$ and thus obtained $p = C^2 + 27D^2$.

Now let's suppose that there exist C and D whole integers to make the $p = C^2 + 27D^2$, then it is $4p = (2C)^2 + 27(2D)^2$. With this equality, is obtained $B = \mp 2D$. In other words, B, and b are even numbers. So the following equality is obtained $\pi = a + b\omega \equiv 1 \pmod{2}$ (but the following cannot be obtained $a \equiv 0 \pmod{2}$, because, if so, it is $\pi \equiv 0 \pmod{2}$) and the results is seen from the Theorem 2.15.

Example 2.20 Let’s take $p = 19$. The number p cannot be written as $C^2 + 27D^2$, the congruence of $x^3 \equiv 2 \pmod{19}$ cannot be solved. In fact, as it is, $(\frac{2}{19})_3 = 2^{N(19)-1/3} = 2^{120} \equiv 11(19)$ and $\omega \equiv 11 \pmod{19}$, the following is obtained; is obtained $(\frac{2}{19})_3 \equiv \omega \pmod{19}$. Now, let’s take $\pi = 5 + 3\omega$, 1. type prime number in which it is $N\pi = 19$.

$$\left(\frac{2}{5 + 3\omega}\right)_3 = \left(\frac{5 + 3\omega}{2}\right)_3 = (5 + 3\omega)^{N(2)-1/3} = 5 + 3\omega \equiv 1 + \omega \pmod{2}$$

and

$$1 + \omega = -\omega^2 \equiv (-1)\omega^2 \pmod{2}$$

$$\equiv 1\cdot\omega^2 \pmod{2}$$

As it is, the following congruence is obtained

$$\left(\frac{2}{5 + 3\omega}\right)_3 = \omega^2 \pmod{2}$$

and therefore, the congruence of $x^3 \equiv 2 \pmod{5 + 3\omega}$ cannot be solved.
On the other hand, as the number of \(p = 31 \) can be written as \(2^2 + 27.1 = 31 \), in reality, as it is \(\left(\frac{2}{31} \right)_3 = 2^{N(31)}^{-1/3} = 2^{320} \equiv 1(31) \), the congruence of \(x^3 \equiv 2 \) (31) can be solved and it is easy to see that \(x = 4 \). With the help of the other roots can be found as \(x \omega \equiv 20 \) and \(x \omega^2 \equiv 7(31) \).

Let’s take now the \(\pi = 5 + 6 \omega \) 1-type prime number which is \(N\pi = 31 \).

\[
\left(\frac{2}{5 + 6\omega} \right)_3 = \left(\frac{5 + 6\omega}{2} \right)_3 = (5 + 6\omega)^{N(2)}^{-1/3} = 5 + 6\omega \equiv 1 \quad (2)
\]
is obtained and thus 2 is found to be a cubic residue in \(5 + 6\omega \) mode.

When \(p \equiv 1(3) \), as \(\omega \in \mathbb{Z}_p \), we are more interested in the cubic residues in \(p \) mode rather than the residues in \(\pi = a + b\omega \) prime mode in \(D \). Considering that \(k > 1 \) is a whole integer, as it is \(p = 3k \) and \(p \equiv 2(3) \), there is no \(\pi = a + b\omega \) prime number whose in \(D \) norm is \(p \) norm, and as definition of cubic residue concept is described when it is \(N\pi \neq 3 \), there will be no limitations.

References

Received: September, 2012