Weyl’s Theorem for Algebraically Class $A(k)$ Operators

S. Panayappan*, D. Senthilkumar and D. Kiruthika*

Department of Mathematics
Government Arts College, Coimbatore, Tamil Nadu, India
panayappan@gmail.com
senthilsenkumhari@gmail.com
dkiruthi@gmail.com

Abstract. In this paper, we show that Weyl’s theorem holds for algebraically class $A(k)$, $k \in (0,1]$ operators and discuss some of its applications.

Mathematics Subject Classification: 47A13, 47A63

* The authors acknowledge the support by University Grants Commission grants F. No: 34 - 148 / 2008 (SR).

1. Preliminaries

Let $B(H)$ denote the algebra of bounded linear operators on an infinite dimensional separable Hilbert space H. If $T \in B(H)$, we write $N(T)$ for the null space of T. Let $\alpha(T) = \text{dim} N(T)$ and $\beta(T) = \text{dim} N(T^*)$ where T^* is the adjoint of T. Also, let $\sigma(T), \sigma_p(T), \sigma_a(T)$ and $\pi_{00}(T)$ denote respectively the spectrum, point spectrum, approximate point spectrum and the set of eigen values of T of finite multiplicity. $T \in B(H)$ is called a Fredholm operator if TH is closed and both $\alpha(T)$ and $\beta(T)$ are finite. Its index is given by
\(i(T) = \alpha(T) - \beta(T) \). The ascent of \(T \) is the least non-negative integer \(n \) such that \(N(T^n) = N(T^{n+1}) \) and its descent is the least non-negative integer \(n \) such that \(T^n(H) = T^{n+1}(H) \).

\(T \) is called Weyl if it is Fredholm of index zero and is called Browder if it is Fredholm of finite ascent and descent.

Weyl Spectrum of \(T \) is given by \(\sigma_w(T) = \{ \lambda \in C/T - \lambda \) is not weyl \} \) and its Browder spectrum is given by \(\sigma_b(T) = \{ \lambda \in C/T - \lambda \) is not Browder \}. \(p_{00}(T) = \sigma(T) - \sigma_b(T) \) is called the set of Riesz points of \(T \).

We say that Weyl’s theorem holds for \(T \in B(H) \) if \(\sigma(T) - \sigma_w(T) = \pi_{00}(T) \) and Browder’s theorem holds if \(\sigma(T) - \sigma_w(T) = p_{00}(T) \).

2. Weyl’s theorem for algebraically class \(A(k), k \in (0, 1] \) operators

An operator \(T \in B(H) \) is said to be hyponormal if \(T^*T \geq TT^* \) and \(p \)-hyponormal if \((T^*T)^p \geq (TT^*)^p \) for a positive number \(p \). \(T \) is called log hyponormal if \(T \) is invertible and \(log(T^*T) \geq log(TT^*) \). Further, \(T \) is said to belong to class \(A(k) \) where \(k > 0 \) if \((T^*T)^{2kT} \geq |T|^2 \). Class \(A(1) \) operator is called Class\((A) \) operator and is defined by \(|T|^2 > |T|^2 \). \(T \) is said to be of algebraically class \(A(k) \), if there exists a non-constant complex polynomial \(p \) such that \(p(T) \) is of class \(A(k) \). The following implicatios hold

\[
\begin{align*}
\text{hyponormal} & \rightarrow \text{log - hyponormal} \rightarrow \text{class} A(k), k \in (0, 1] \\
\text{algebraically class } A(k), k \in (0, 1] & \rightarrow \text{class } A(k), k \in (0, 1] \\
\text{class } A(k), k \in (0, 1] & \rightarrow \text{class } A(k), k > 1
\end{align*}
\]

Hyponormal, log hyponormal and class \(A \) operators satisfy Weyl’s theorem [14, 11, 13]. In [12], it is shown that operators of class \(A(k), k > 1 \) with a limit condition satisfy Weyl’s theorem. In this work, we prove that algebraically class \(A(k), k \in (0, 1] \) operators satisfy Weyl’s theorem, without the limit condition.

Lemma 2.1:

If \(T \) is of class \(A(k) \) operator where \(k \in (0, 1] \) and \(M \) is an invariant subspace of \(T \), then \(T|_M \) is also a class \(A(k) \) operator where \(k \in (0, 1] \).
Proof: Let \(T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \) act on \(H = M \oplus M^\perp \) and \(P \) be the projection onto \(M \) so that \(A = TP \) on \(M \).

We have \(P(T^*|T|^{2k}T)^{1/k} \geq PT^*TP \). So, \(A^*A = PT^*TP \leq P(T^*|T|^{2k}T)^{1/k} \).

Using Hansen’s inequality we have
\[
A^*A \leq (PT^*|T|^{2k}TP)^{1/k} = (PT^*P|T|^{2k}PTP)^{1/k} \tag{1}
\]

Using Hansen’s inequality again, we get
\[
|A|^{2k} = (P|T|^2P)^k \geq P|T|^{2k}P
\]
and so \(A^*|A|^{2k}A \geq A^*(P|T|^{2k}P)A \) showing
\[
(A^*P|T|^{2k}PA)^{1/k} \leq (A^*|A|^{2k}A)^{1/k} \tag{2}
\]

By (1) and (2) \(A \) is of class \(A(k) \) operator where \(k \in (0, 1] \).

Lemma 2.2:
Let \(T \) be of class \(A(k), k > 0 \) and assume that \(\sigma(T) = \{\lambda\} \). Then \(T = \lambda I \).

Proof:
Case(i) Let \(\lambda = 0 \).

Every class \(A(k) \) operator is a normaloid and so \(T = 0 \).

Case(ii) Let \(\lambda \neq 0 \).

Since \(T \) is invertible of class \(A(k) \), \(T^{-1} \) is of class \(A(l) \) for \(l \geq k > 0 \) [15] and so \(T \) and \(T^{-1} \) are normaloids. But \(\sigma(T^{-1}) = \{\frac{1}{\lambda}\} \) giving \(\|T\||T^{-1}||=1 \). It follows from [9] that \(T \) is a convexiod. So \(w(T) = \{\lambda\} \) and hence \(T = \lambda \).

Lemma 2.3:
Every quasinilpotent algebraically class \(A(k), k > 0 \) operator is nilpotent.

Proof:
Suppose \(p(T) \) is class \(A(k), k > 0 \) for some non constant polynomial \(p \). We can write
\[
p(\lambda) - p(0) = a_0\lambda^m(\lambda - \lambda_1)......(\lambda - \lambda_n) \text{ where } m \neq 0 \text{ and } \lambda_i \neq 0 \text{ for every } 1 \leq i \leq n.
\]
Since \(\sigma(p(T)) = \sigma(T) \), the operator \(p(T) - p(0) \) is quasinilpotent and so \(\sigma(p(T) - p(0)) = \{0\} \). Then by lemma 2.2, \(p(T) - p(0) = 0 \) and so
\[
a_0T^m(T - \lambda_1)......(T - \lambda_n) = 0.
\]
But \(T - \lambda_i \) is invertible for every \(\lambda_i \neq 0 \) and so \(T^m = 0 \).
Lemma 2.4:

Let T be an algebraically class $A(k)$, $k \in (0, 1]$ operator. Then T is an isoloid.

Proof:

Suppose $p(T)$ is class $A(k)$. Let $\lambda \in \text{iso } \sigma(T)$. Then, using the spectral decomposition, we can write $T = T_1 \oplus T_2$ where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T_1) - \{\lambda\}$. Then we must have $\sigma(p(T_1)) = p(\sigma(T_1)) = \{p(\lambda)\}$ and so $p(T_1) - p(\lambda)$ is quasinilpotent.

By lemma 2.1, $p(T_1)$ is of class $A(k)$, $k \in (0, 1]$ and by lemma 2.2, we have $p(T_1) - p(\lambda) = 0$. Let $q(z) = p(z) - p(\lambda)$. Then $q(T_1) = 0$ and so T_1 is algebraically class $A(k)$, $k \in (0, 1]$. But $T_1 - \lambda$ is quasinilpotent and algebraically class $A(k)$. So, by lemma 2.3, $T_1 - \lambda$ is nilpotent. Then $\lambda \in \sigma_p(T_1)$ and so $\lambda \in \sigma_p(T)$. Thus T is an isoloid.

Lemma 2.5:

If T is of class $A(k)$, $k \in (0, 1]$ then $T - \lambda$ has finite ascent for $\lambda \in \sigma_p(T)$.

Proof:

T satisfies the inequality $\|Tx\|^2 \leq \|T^2x\|\|x\|$ for all $x \in H$ and so $N(T^2) = N(T)$. Further, we have $N(T - \lambda) = N(T - \lambda)^*$. If $0 \neq \lambda \in \sigma_p(T)$ then $(T - \lambda)^2x = 0$ implies $(T - \lambda)^*(T - \lambda)x = 0$ and so $\|(T - \lambda)x\| = 0$ showing that $T - \lambda$ has ascent 1.

Lemma 2.6:

Let T be an algebraically class $A(k)$ operator, $k \in (0, 1]$ and $\lambda \in \text{iso } \sigma(T)$. Then the ascent and descent of $T - \lambda$ are both equal to 1.

Proof:

Write $T = T_1 \oplus T_2$ on $H = H_1 \oplus H_2$ such that $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T_1) - \{\lambda\}$.

Let $p(T)$ be of class $A(k)$, $k \in (0, 1]$. Then H_1 is an invariant subspace for $p(T)$ and hence by lemma 2.1, $p(T_1)$ is of class $A(k)$ with $\sigma(p(T_1)) = p(\sigma(T_1)) = \{p(\lambda)\}$. Then $p(\lambda) \in p_{00}(p(T_1))[3]$. and so $\lambda \in p_{00}(T_1)[4]$. Since λ does not belong to
Weyl’s theorem for algebraically class A(k) operators

σ(T_2), we have λ ∈ p_{00}(T) and so T − λ is Browder.

We say that T ∈ B(H) has the single valued extension property (SVEP) if for every open set U ⊆ C the only analytic function f : U → H which satisfies the equation (T − λ)f(λ) = 0 is the constant function f ≡ 0. Trivially every operator T has SVEP at points of the resolvent set C − σ(T); also T has SVEP at λ ∈ iso σ(T).

Theorem 2.7:
If T ∈ B(H) is an algebraically class A(k), k ∈ (0, 1] operator, then T and T* satisfy Weyl’s theorem.

Proof:
Let p(T) be of class A(k), k ∈ (0, 1]. Then p(T) has SVEP and so T has SVEP [7]. Then T satisfies Browder’s theorem if and only if T* satisfies Browder’s theorem if and only if
\[p_{00}(T) = σ(T) − σ_w(T) \subseteq π_{00}(T) \]
and \[p_{00}(T^*) = σ(T^*) − σ_w(T^*) \subseteq π_{00}(T^*). \]

If λ ∈ π_{00}(T^*), then both T and T* have SVEP at λ and
\[0 < asc(T − λ)^* = dsc (T − λ) < ∞. \]

So, the ascent and descent of T − λ are finite and hence equal [2]. Then each of T − λ and (T − λ)^* is Fredholm of index zero and so
\[π_{00}(T) \subseteq σ(T) − σ_w(T) \] and
\[π_{00}(T^*) \subseteq σ(T^*) − σ_w(T^*). \]

So both T and T* satisfy Weyl’s theorem.

3. Application of Weyl’s theorem on class A(k), k ∈ (0, 1] operators

Theorem 3.1:
If T ∈ B(H) is an algebraically class A(k), k ∈ (0, 1] operator, then
\[w(f(T)) = f(w(T)) \]
for every f ∈ H(σ(T)) where H(σ(T)) denotes the set of analytic functions on an open neighbourhood of σ(T).

Proof:
Since \(w(f(T)) \subseteq f(w(T)) \) is true with no restriction on \(T \), it suffices to show that \(f(w(T)) \subseteq w(f(T)) \).

Suppose \(\lambda \) does not belong to \(w(f(T)) \). Then \(f(T) - \lambda \) is Weyl and

\[
f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2) \ldots (T - \alpha_n)g(T)
\]

where \(c, \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C} \) and \(g(T) \) is invertible. Since the operators on the righthand side of this equation commute, every \(T - \alpha_i \) is Fredholm. Now \(T \) has SVEP. It follows from \([1] \) that \(i(T - \alpha_i) \leq 0 \) for each \(i = 1, 2, \ldots, n \). So, \(\lambda \) does not belongs to \(f(w(T)) \) and hence \(f(w(T)) = w(f(T)) \).

Corollary 3.2

If \(T \in B(H) \) is algebraically class \(A(k) \), \(k \in (0, 1] \), then for every \(f \in H(\sigma(T)) \), Weyl’s theorem holds for \(f(T) \).

Proof:

By \([6] \), if \(T \) is an isoloid, then \(f(\sigma(T)) - \pi_{00}(T) = \sigma(f(T)) - \pi_{00}(f(T)) \) for every \(f \in H(\sigma(T)) \).

Then, by lemma 2.4 and theorem 3.1, we have

\[
\sigma(f(T)) - \pi_{00}(f(T)) = f(\sigma(T)) - \pi_{00}(f(T)) = f(w(T)) = w(f(T)).
\]

showing that Weyl’s theorem holds for \(f(T) \).

We now show that for algebraically class \(A(k) \), \(k \in (0, 1] \) operators, the spectral mapping theorem holds for the essential approximate point spectrum.

Theorem 3.3:

Let \(T \) or \(T^* \) be algebraically class \(A(k) \), \(k \in (0, 1] \). Then \(\sigma_{ea}(f(T)) = f(\sigma_{ea}(T)) \) for every \(f \in H(\sigma(T)) \).

Proof:

For \(T \in B(H) \), by \([10] \), we have \(\sigma_{ea}(f(T)) \subseteq f(\sigma_{ea}(T)) \) for every \(f \in H(\sigma(T)) \) with no restrictions on \(T \). So, it suffices to show that \(f(\sigma_{ea}(T)) \subseteq \sigma_{ea}(f(T)) \). Suppose \(\lambda \) does not belong to \(\sigma_{ea}(f(T)) \) then

\[
f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2) \ldots (T - \alpha_n)g(T)
\]

where \(c, \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C} \) and \(g(T) \) is invertible. Since \(i(T - \alpha_i) \leq 0 \) for each \(i = 1, 2, \ldots, n \), we have \(\lambda \) does not belong to \(f(\sigma_{ea}(T)) \) and so \(\sigma_{ea}(f(T)) = f(\sigma_{ea}(T)) \).
Theorem 3.4:
Let T be class $A(k)$ operator with $k \in (0, 1]$. If $\pi_{00}(T) = \phi$, then T is extremely non compact.

Proof:
Since T is normaloid and $\pi_{00}(T) = \phi$ by [5], T is extremely non compact.

REFERENCES:

Received: August, 2011