On Completely Semiprime Q-Fuzzy Ideals in Ordered Semigroups

S. Lekkoksung

Rajamangala University of Technology Isan
Khon Kaen Campus, Thailand
Lekkoksung_somsak@hotmail.com

Abstract

In this paper, we first introduce the new concept of completely semiprime Q-fuzzy ideals of an ordered semigroup S, which is an extension of completely semiprime ideals of ordered semigroup S, and investigate some its related properties. Especially, we characterize an ordered semigroup that is a semilattice of simple ordered semigroups in terms of completely semiprime Q-fuzzy ideals of an ordered semigroups.

Mathematics Subject Classification: 08A72, 06F35, 20M12

Keywords: Ordered Q-fuzzy point, Q-fuzzy left (right) ideal of an ordered semigroup, completely semiprime Q-fuzzy ideal

1 Introduction

Let S be a nonempty set. A fuzzy subset of S is, by definition, an arbitrary mapping $f : S \rightarrow [0, 1]$, where $[0, 1]$ is the usual interval of real numbers. The important concept of fuzzy set put forth by Zadeh in 1965 [9] has opened up a new domain that has kept insights and applications in a wide range of scientific fields. A theory of fuzzy sets on ordered semigroups has been recently developed [1-5]. Following the terminology given by Zadeh, if S is an ordered semigroup, fuzzy sets in ordered semigroup S have been first considered by Kehayopulu and Tsingelis in [1], then they defined ”fuzzy” analogous for several notations, which have proven useful in the theory of ordered semigroups. In this paper we attempt to introduce and give a detailed investigation of completely semiprime Q-fuzzy ideals of an ordered semigroup S. Moreover, we investigate some its related properties. Especially, we characterize an ordered semigroup that is a semilattice of simple ordered semigroups in terms of completely semiprime Q-fuzzy ideals of ordered semigroups.
2 Preliminary Notes

Throughout this paper, we denote by \mathbb{Z}^+ the set of all positive integers. In sequel we denote, by S, an ordered semigroup, that is, a semigroup S with an order relation \leq such that $a \leq b$ implies $xa \leq xb$ and $ax \leq bx$ for any $x \in S$. Let Q be nonempty set. A function f from $S \times Q$ to real closed interval $[0, 1]$ is called a Q-fuzzy subset of S. Let A be an nonempty subset of S. We denote by f_A the characteristic mapping of A, that is, the mapping of $S \times Q$ into $[0, 1]$ define by

$$f_A(x, q) := \begin{cases}
 1 & \text{if } x \in A, \\
 0 & \text{if } x \notin A.
\end{cases}$$

Then f_A is a Q-fuzzy subset of S.

A nonempty subset A of an ordered semigroup S is called a left (resp. right) ideal of S if

1. $SA \subseteq A$ (resp. $AS \subseteq A$), and
2. If $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

If A is both a left and a right ideal of S, then it is called an (two side) ideal of S [7]. We denote by $I(a)$ the two sided ideal of S generated by $a(a \in S)$. Then $I(a) = (a \cup Sa \cup aS \cup SaS]$. An ideal I of S is called prime (also called weakly prime) if for any two ideals A, B of S such that $AB \subseteq I$, $A \subseteq I$ or $B \subseteq I$; I is called completely semiprime (also called semiprime) if for any element a of S such that $a^2 \in I$, then $a \in I$.

Definition 2.1 An ordered semigroup S is simple if for every ideal I of S, we have $I = S$.

Let S be an ordered semigroup. A Q-fuzzy subset f of S is called a Q-fuzzy left ideal of S if

1. $x \leq y \Rightarrow f(x, q) \geq f(y, q)$.
2. $f(xy, q) \geq f(y, q)$,
for all $x, y \in S, q \in Q$.

Let S be an ordered semigroup. A Q-fuzzy subset f of S is called a Q-fuzzy right ideal of S if

1. $x \leq y \Rightarrow f(x, q) \geq f(y, q)$.
2. $f(xy, q) \geq f(x, q)$,
for all $x, y \in S, q \in Q$.

A Q-fuzzy subset f of S is called a fuzzy ideal of S if it is both a Q-fuzzy left and Q-fuzzy right ideal of S.

Definition 2.2 Let f be any function from a set S to a set T and μ any Q-fuzzy subset of T. Then $f^{-1}(\mu)$, the pre-image of μ under f, is a Q-fuzzy subset of S, defined by $(f^{-1}(\mu))(x, q) = \mu(f(x), q)$ for all $x \in S, q \in Q$.

Definition 2.3 Let S, T be two ordered semigroups, a mapping $f : S \to T$ is called isotone if $x, y \in S, x \leq y$ implies $f(x) \leq f(y)$ in T. f is called a homomorphism if it is isotone and satisfies that $f(xy) = f(x)f(y)$ in T, for all $x, y \in S$.

3 Main Results

Definition 3.1 A Q-fuzzy f of an ordered semigroup S is called completely semiprime if $f(a, q) \geq f(a^2, q)$ for all $a \in S, q \in Q$.

The following theorem shows that the concept of Q-fuzzy completely semiprimality in an ordered semigroup is an extension of completely semiprimality.

Theorem 3.2 Let A be a nonempty subset of an ordered semigroup S. Then the following statements are equivalent:

(1) A is completely semiprime.
(2) The characteristic function f_A of A is completely semiprime.

Proof. \Rightarrow. Let $a \in S, q \in Q$. If $a^2 \in A$, then, since A is completely semiprime, we have $a \in A$. Thus $f_A(a, q) = f_A(a^2, q)$. If $a^2 \notin A$, then we have $f_A(a, q) \geq 0 = f_A(a^2, q)$. Therefore we have $f_A(a, q) \geq f_A(a^2, q)$ for all $a \in S, q \in Q$, and f_A is a completely semiprime.

\Leftarrow. Let $a^2 \in A, a \in S, q \in Q$. Then, since f_A is completely semiprime, we have $f_A(a, q) \geq f_A(a^2, q) \geq 1$. Since f_A is a Q-fuzzy subset of S and $f_A(a, q) \leq 1$ for any $a \in S, q \in Q$, so we have $f_A(a, q) = 1$, which implies that $a \in A$. It thus follows that A is completely semiprime.

Theorem 3.3 Let f be any Q-fuzzy ideals of an ordered semigroup S. Then the following statements are equivalent:

(1) f is completely semiprime.
(2) $\forall a \in S, \forall q \in Q$ \(f(a, q) = f(a^2, q)\).
(3) $\forall a \in S) (\forall q \in Q) (\forall n \in \mathbb{Z}^+) f(a, q) = f(a^n, q)$.

Proof. It is clear that (2) \Rightarrow (1) and (3) \Rightarrow (2).

(1)\Rightarrow(2). Let a be any element of S and q any element of Q. Then, since f is a completely semiprime Q-fuzzy ideal of S, we have

$$f(a, q) \geq f(a^2, q) \geq f(a, q),$$

and so we have $f(a, q) = f(a^2, q)$.

(2)\Rightarrow(3). We prove this result by induction. Clearly, the result holds for $n = 2$. Let $k \geq 2$ be any positive integer. Let $f(a^n, q) = f(a, q)$ holds for
∀a ∈ S, ∀q ∈ Q and ∀n ∈ ℤ⁺, 1 ≤ n ≤ k. We claim that \(f(a^{k+1}, q) = f(a, q) \). Indeed:

Case 1. If \(k \) is odd, let \(k = 2m + 1 \). Then \(f(a^{k+1}, q) = f((a^{m+1})^2, q) = f(a^{m+1}, q) \). Since \(m+1 < k \), by the induction hypothesis, \(f(a^{m+1}, q) = f(a, q) \).

Case 2. If \(k \) is even, let \(k = 2m \). Then again by the induction hypothesis, we have
\[
0 \leq f(a, q) \leq f(a^{k+1}, q) = f((a^{m+1})^2, q) = f(a^{m+1}, q) = f(a, q),
\]
which implies that \(f(a^{k+1}, q) = f(a, q) \). This proves the result.

The following theorem gives a characterization of completely semiprime \(Q \)-fuzzy ideals of an ordered semigroup by ordered \(Q \)-fuzzy points.

Theorem 3.4 Let \(f \) be a \(Q \)-fuzzy ideal of an ordered semigroup \(S \). Then \(f \) is completely semiprime if and only if for any ordered \(Q \)-fuzzy points \(a_λ \in S(∀\lambda \in (0, 1]) \), \(a_λ^2 \in f \) implies \(a_λ \in f \).

Proof. Let \(f \) be a \(Q \)-fuzzy ideal of an ordered semigroup \(S \) and \(a ∈ S, q ∈ Q \). Then \(f(a, q) ≥ f(a^2, q) \). If \(a_λ^2 \in f, \lambda ∈ (0, 1] \), then \(f(a^2, q) ≥ \lambda \), and so \(f(a, q) ≥ \lambda \) which implies \(a_λ \in f \).

Conversely, let \(a \) be any element of \(S \). Put \(\lambda = f(a^2, q) \). If \(\lambda ∈ (0, 1] \), since \(a_λ^2 \in f \), then, by hypothesis, we have \(a_λ \in f \). Which implies \(f(a, q) ≥ \lambda = f(a^2, q) \). This completes the proof.

Proposition 3.5 If \(f \) is a completely semiprime \(Q \)-fuzzy ideal of an ordered semigroup \(S \), then \(f(ab, q) = f(ba, q) \) for all \(a, b ∈ S \) and for all \(q ∈ Q \).

Proof. Suppose that \(f \) is a completely semiprime \(Q \)-fuzzy ideal of an ordered semigroup \(S \) and \(∀a, b ∈ S, ∀q ∈ Q \). Then, by Theorem 3.3, we have
\[
f(ab, q) = f((ab)^2, q) = f(abab, q) ≥ f(ba, q).
\]
Similarly, \(f(ba, q) ≥ f(ab, q) \). It thus follows that \(f(ab, q) = f(ba, q) \).

Theorem 3.6 Let \(f : S → T \) be a homomorphism of ordered semigroups and \(μ \) a completely semiprime \(Q \)-fuzzy ideal of \(T \). Then \(f^{-1}(μ) \) is a completely semiprime \(Q \)-fuzzy ideal of \(S \).
Proof. First we show that $f^{-1}(\mu)$ is a Q-fuzzy ideal of ordered semigroup S. Indeed: Let $x, y \in S, q \in Q$ and $x \leq y$. Then, since f is a homomorphism of ordered semigroups from S to T, we have $f(x) \leq f(y)$. Since μ is a Q-fuzzy ideal of ordered semigroup T, and so $\mu(f(x), q) \geq \mu(f(y), q)$, i.e., $f^{-1}(\mu)(x, q) \geq f^{-1}(\mu)(x, q)$. Furthermore, for any $x, y \in S, q \in Q$, we have

$$f^{-1}(\mu)(xy, q) = \mu[f(xy), q] \geq \mu(f(x), q) \vee \mu(f(y), q) = f^{-1}(\mu)(x, q) \vee f^{-1}(\mu)(y, q).$$

Moreover, $f^{-1}(\mu)$ is completely semiprime. Indeed: For any $a \in S, q \in Q$, we have

$$f^{-1}(\mu)(a^2, q) = \mu[f(a^2), q] = [\mu[f(a)]^2, q] = \mu[f(a), q] = f^{-1}(\mu)(a, q).$$

Therefore, by Theorem 3.3, $f^{-1}(\mu)$ is a completely semiprime Q-fuzzy ideal of S.

Lemma 3.7 Let S be an ordered semigroup and $\emptyset \neq A \subseteq S$. Then A is a left ideal (resp. right) ideal of S if and only if the characteristic mapping f_A of A is a Q-fuzzy left (resp. right) ideal of S.

An ordered semigroup $(S; \cdot, \leq)$ is called intra-regular if, for each element $a \in S$, there exist $x, y \in S$ such that $a \leq xa^2y$.

Proposition 3.8 An ordered semigroup S is intra-regular if and only if $(\forall a \in S, \forall q \in Q)f(a, q) = f(a^2, q)$, for every Q-fuzzy ideal f of S.

Proof. \Rightarrow. Let f be a Q-fuzzy ideal of S and $a \in S, q \in Q$. Then, by hypothesis, there exist $x, y \in S$ such that $a \leq xa^2y$, and

$$f(a, q) \geq f(xa^2y, q) \geq f(a^2y, q) \geq f(a^2, q) \geq f(a, q),$$

which implies that $f(a, q) = f(a^2, q)$.

\Leftarrow. By Lemma 3.7, $f_{I(a^2)}$ is a Q-fuzzy ideal of S. By hypothesis, we have $f_{I(a^2)}(a, q) = f_{I(a^2)}(a^2, q) = 1$, so $a \in I(a^2) = (a^2 \cup Sa^2 \cup a^2S \cup Sa^2S)$. Thus $a \leq t$ for some $t \in a^2 \cup Sa^2 \cup a^2S \cup Sa^2S$. If $t = a^2$, then $a \leq a^2 \leq a^4 \in Sa^2S$, that is $a \in (Sa^2S)$. If $t = xa^2$ for some $x \in S$, then $a \leq xa^2 \leq x(xa^2)a = x^2a^2a \in Sa^2S$. If $t = a^2y$ for some $y \in S$, then $a \leq a^2y \leq a(a^2y)y = aa^2y^2 \in Sa^2S$. If $t \in Sa^2S$, then $a \in (Sa^2S)$. Thus S is intra-regular.

Theorem 3.9 Let S be an ordered semigroup. Then the following statements are equivalent:
(1) S is intra-regular.
(2) S is a semilattice of simple semigroups.
(3) Every ideal of S is completely semiprime.
(4) Every Q-fuzzy ideal of S is completely semiprime.

Proof. The equivalence of (1), (2) and (3) is due to Remark 2 in [8], and of (1) and (4) is due to Theorem 3.3 and Proposition 3.8.

References

Received: August, 2011