Bohr’s Inequality and its Extensions
in Banach ∗-Algebras

Patrawut Chansangiam

Department of Mathematics, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand
kcpattra@kmitl.ac.th

Abstract
A classical Bohr inequality states that for complex numbers \(a, b\) and real numbers \(p, q > 1\) such that \(1/p + 1/q = 1\),
\[
|a + b|^2 \leq p|a|^2 + q|b|^2
\]
with equality if and only if \(b = (p - 1)a\). Over the years, various generalizations of Bohr’s inequality are established in the context of complex numbers, matrices and operators on a Hilbert space. In this paper, we propose a technique of reducing problems in operator algebra to problems in matrix theory for obtaining absolute value inequalities related to Bohr’s inequality in the framework of Banach ∗-algebras. The analogues of Bohr’s inequality and its extensions in the previous results are discovered. Moreover, we get some related absolute value inequalities for multiple elements.

Mathematics Subject Classification: 46K05, 47A63

Keywords: Bohr’s inequality, hermitian Banach ∗-algebra

1 Introduction
In 1924, H. Bohr established the classical Bohr’s inequality [3] which asserts that
\[
|a + b|^2 \leq p|a|^2 + q|b|^2
\]
for complex numbers \(a, b\) and real numbers \(p, q > 1\) such that \(1/p + 1/q = 1\). Such \(p\) and \(q\) are termed conjugate exponents. The equality in (1) occurs if and only if \(pa = qb\) (i.e. \(b = (p - 1)a\) or \(a = (q - 1)b\)).
Over the years, various numbers of extensions and variations of Bohr’s inequality have been established. The results for complex numbers are obtained in [8, 9, 14]. The case of matrices is discussed in [2]. Hirzallah [7] first established this inequality in the context of operators acting on a Hilbert space by using direct computations. Later, Cheung and Pečarić [6] used the same technique to extend Hirzallah’s results. Then many authors [1, 5, 10, 15] further discuss various generalizations of operator Bohr’s inequality.

In this paper an extension of Bohr inequality in an abstract setting of Banach ∗-algebra (which includes the Hilbert space operators) and the best possibility of constant in the inequality are obtained. We obtain the analogue results of [5, 6, 7] with a very hand-free technique–reducing inequalities in Banach ∗-algebra to the positivity of associated matrices. For each inequality we also determine a necessary and sufficient condition for equality case. The technique presented here can be applied widely in order to obtain absolute value inequalities related to Bohr’s inequality.

An element \(a \) in a Banach ∗-algebra is called self-adjoint if \(a^* = a \). An element which has real spectrum is said to be hermitian. A Banach ∗-algebra is called hermitian if each self-adjoint element is hermitian. A class of hermitian Banach ∗-algebra includes any \(C^* \)-algebra, in particular, the \(C^* \)-algebra of continuous linear operators on a Hilbert space and the \(C^* \)-algebra of continuous complex-valued functions on a compact Hausdorff space. Moreover, any measure algebra of discrete group, any group algebra of an abelian group and any group algebra of a compact group are hermitian Banach ∗-algebras. Throughout this paper, \(\mathcal{A} \) denotes a hermitian Banach ∗-algebra.

Every hermitian Banach ∗-algebra is equipped with a natural order structure as follows. Given self-adjoint elements \(a, b \in \mathcal{A} \), the relation \(a \leq b \) means that \(b - a \) is self-adjoint and the spectrum of \(b - a \) is contained in the nonnegative real numbers. Then the relation “\(\leq \)” forms a partial order on the real vector space of self-adjoint elements in \(\mathcal{A} \). The set of \(a \in \mathcal{A} \) such that \(a \geq 0 \) forms a positive cone in \(\mathcal{A} \) (see [4, Lemma 41.4]).

The Shirali-Ford Theorem [12, Theorem 1] asserts that \(a^* a \geq 0 \) for any \(a \in \mathcal{A} \). Then we can define the absolute value of each \(a \in \mathcal{A} \) to be \((a^* a)^{1/2} \). Then by the spectral mapping theorem, \(\sigma(|a|) \subseteq [0, \infty) \) and hence \(|a| \geq 0 \) for every \(a \in \mathcal{A} \). Note that \(|a| = 0 \) if and only if \(a = 0 \). Indeed, if \(|a| = 0 \), then \(a^* a = 0 \) which implies \(\|a^* a\| = 0 \) and by [13, Lemma 3], we obtain

\[
\|a^*\| |a| \leq 4\|a^* a\| = 0,
\]

i.e. \(a = 0 \).
2 Inequalities of Bohr’s type

Lemma 2.1. (i) Let \(a, b \in A \) and \(\alpha, \beta, \gamma \in \mathbb{C} \) such that \(\alpha \gamma \geq |\beta|^2 \). If \(\alpha, \gamma \geq 0 \), then \(\alpha |a|^2 + \beta a^* b + \bar{\beta} b^* a + \gamma |b|^2 \geq 0 \).

(ii) If \(\alpha |a|^2 + \beta a^* b + \bar{\beta} b^* a + \gamma |b|^2 \geq 0 \) for all \(a, b \in A \) and \(\alpha, \beta, \gamma \in \mathbb{C} \), then \(\alpha, \gamma \geq 0 \) and \(\alpha \gamma \geq |\beta|^2 \), i.e. the matrix

\[
\begin{pmatrix}
\alpha & \beta \\
\bar{\beta} & \gamma
\end{pmatrix}
\]

is positive semidefinite.

Proof. (i) Suppose that \(\alpha, \gamma \geq 0 \). If \(\beta = 0 \), we are done. If \(\beta \neq 0 \), then \(\alpha > 0 \) and \(\gamma > 0 \). Set \(\lambda = \alpha \gamma - |\beta|^2 \). Since \(\alpha = (\lambda + |\beta|^2)/\gamma \), it follows that

\[
\alpha |a|^2 + \beta a^* b + \bar{\beta} b^* a + \gamma |b|^2 = \frac{\lambda + |\beta|^2}{\gamma} |a|^2 + \beta a^* b + \bar{\beta} b^* a + \gamma |b|^2
\]

\[
= \frac{\lambda}{\gamma} |a|^2 + \left| \frac{\beta}{\sqrt{\gamma}} a + \sqrt{\gamma} b \right|^2
\]

\[\geq 0.\]

(ii) Suppose that matrix is positive semidefinite for all \(a, b \in A \). The special case \(a = 0 \) implies \(\gamma \geq 0 \). Similarly, \(b = 0 \) yields \(\alpha \geq 0 \). Consider four cases: (i) \(\alpha = \gamma = 0 \), (ii) \(\alpha = 0, \gamma > 0 \), (iii) \(\alpha > 0, \gamma = 0 \) and (iv) \(\alpha, \gamma > 0 \). Write \(\beta = x + iy \) for some \(x, y \in \mathbb{R} \). The case \(\alpha = \gamma = 0 \) implies that \(\beta a^* b + \bar{\beta} b^* a \geq 0 \) for all \(a, b \in A \). Putting \(a = b \neq 0 \) yields \(x \geq 0 \). Similarly, setting \(a = -b \neq 0 \) implies \(x \leq 0 \). Then putting \(b = ia \neq 0 \) and \(b = -ia \neq 0 \) yield \(y \leq 0 \) and \(y \geq 0 \), respectively. Hence, \(\beta = 0 \) and \(\alpha \gamma \geq |\beta|^2 \). Consider the case \(\alpha = 0, \gamma > 0 \). We have that for all \(a, b \in A \),

\[
\beta a^* b + \bar{\beta} b^* a + \gamma |b|^2 \geq 0.
\]

For each \(\mu > 0 \), by replacing \(a \) with \((1/\sqrt{\mu}) a \) and \(b \) with \(\sqrt{\mu} b \) in (2), we get

\[
\beta a^* b + \bar{\beta} b^* a + \mu \gamma |b|^2 \geq 0.
\]

Since \(\mu \) is arbitrary, (2) holds for all \(\gamma > 0 \). Setting \(a = b \neq 0 \) in (2) now yields \(-2x \leq \gamma \) for all \(\gamma > 0 \) and so \(x > 0 \). Putting \(a = -b \neq 0 \) in (2) yields \(2x \leq \gamma \) for all \(\gamma > 0 \) and so \(x \leq 0 \). Similarly, putting \(a = ib \neq 0 \) and \(a = -ib \neq 0 \) yield \(y \geq 0 \) and \(y \leq 0 \). So \(\beta = 0 \) and hence \(\alpha \gamma \geq |\beta|^2 \). The case (iii) is similar to (ii). For \(\alpha, \gamma > 0 \), putting \(b = -4(\sqrt{\alpha/\gamma})a \) and \(b = 4i(\sqrt{\alpha/\gamma})a \) yield \(x \leq \frac{5}{8} \sqrt{\alpha \gamma} \) and \(y \leq \frac{5}{8} \sqrt{\alpha \gamma} \), respectively and hence \(|\beta|^2 = x^2 + y^2 \leq \alpha \gamma \). \qed

This suggests us to transform the problem of determining the positive definiteness of quadratic form of elements in \(A \) to the problem of determining the positive definiteness of the associated matrices.
Lemma 2.2. Let \(a, b \in A \). For \(\alpha, \beta, \gamma \in \mathbb{C} \) such that \(\alpha, \gamma \geq 0 \) and \(\alpha \gamma \geq |\beta|^2 \), the equality
\[
\alpha |a|^2 + \beta a^* b + \overline{\beta}^* a + \gamma |b|^2 = 0 \tag{3}
\]
occurs if and only if one of the following conditions holds:

(i) \(\alpha = \gamma = 0 \),

(ii) \(a = b = 0 \),

(iii) \(a = 0 \) and \(\gamma = 0 \),

(iv) \(b = 0 \) and \(\alpha = 0 \),

(v) \(\alpha a + \beta b = 0 \) and \(\alpha \gamma = |\beta|^2 \neq 0 \) (i.e. \(\beta a + \gamma b = 0 \) and \(\alpha \gamma = |\beta|^2 \neq 0 \)).

Proof. The sufficiency is routine. For the necessity, there are 4 choices of \(\alpha, \gamma \).
If \(\alpha = 0 \) or \(\gamma = 0 \), we are done. If \(\alpha > 0, \gamma = 0 \), we get \(\beta = 0 \) and then \(a = 0 \).
If \(\alpha = 0, \gamma > 0 \), we get \(\beta = 0 \) and then \(b = 0 \). Now for the case \(\alpha > 0, \gamma > 0 \), let \(\lambda = \alpha \gamma - |\beta|^2 \).
We have \(\lambda \geq 0 \) and \(\gamma = (\lambda + |\beta|^2)/\alpha \). Hence
\[
\alpha |a|^2 + \beta a^* b + \overline{\beta}^* a + \gamma |b|^2 = \alpha |a|^2 + \beta a^* b + \overline{\beta}^* a + \frac{\lambda + |\beta|^2}{\alpha} |b|^2
\]
\[
= \left| \sqrt{\alpha} a + \frac{\beta}{\sqrt{\alpha}} b \right|^2 + \frac{\lambda}{\alpha} |b|^2.
\]
If \(\alpha \gamma = |\beta|^2 \), then \(\left| \sqrt{\alpha} a + (\beta/\sqrt{\alpha}) b \right| = 0 \), i.e., \(\alpha a + \beta b = 0 \). So we have \(\alpha a + \beta b = 0, \alpha \gamma = |\beta|^2 \) and \(\alpha \neq 0 \). But if \(\gamma = 0 \), we have \(\beta = 0 \) and \(a = 0 \) which is included in (iii). Therefore, we can simplify the condition \(\alpha a + \beta b = 0, \alpha \gamma = |\beta|^2 \) and \(\alpha \neq 0 \) to the condition \(\alpha a + \beta b = 0 \) and \(\alpha \gamma = |\beta|^2 \neq 0 \) which is equivalent to the condition \(\beta a + \gamma b = 0 \) and \(\alpha \gamma = |\beta|^2 \neq 0 \). If \(\alpha \gamma > |\beta|^2 \), then \(\left| \sqrt{\alpha} a + (\beta/\sqrt{\alpha}) b \right| = |b| = 0 \) and hence \(a = b = 0 \).

The Bohr’s inequality is generalized to the context of hermitian Banach *-algebras, where the condition on conjugate exponents \(p, q > 1 \) is replaced by \(pq > 0 \), in the next theorem.

Theorem 2.3. Let \(a, b \in A \) and \(p, q \in \mathbb{R} \) such that \(1/p + 1/q = 1 \).

(i) If \(pq > 0 \), then
\[
|a + b|^2 \leq p |a|^2 + q |b|^2 \tag{4}
\]
with equality if and only if \(pa = qb \) (i.e. \(b = (p-1)a \) or \(a = (q-1)b \)).
(ii) If \(pq < 0 \), then
\[
|a + b|^2 \geq p|a|^2 + q|b|^2
\](5)

with equality if and only if \(pa = qb \).

Proof. (i) Assume \(pq > 0 \). We have the identity
\[
|a + b|^2 = |a|^2 + (a^*b + b^*a) + |b|^2.
\]
So, we get
\[
p|a|^2 + q|b|^2 - |a+b|^2 = (p-1)|a|^2 - (a^*b + b^*a) + (q-1)|b|^2.
\]

In the view of Lemma 2.1, it suffices to show that
\[
X := \begin{pmatrix} p-1 & -1 \\ -1 & q-1 \end{pmatrix} \geq 0.
\]

If \(0 < p < 1 \), then \(q < 0 \) and \(pq < 0 \), a contradiction. If \(p < 0 \), then \(q > 0 \)
which is impossible. Then \(p > 1 \) and \(q > 1 \). Since \((p-1)(q-1) = 1 \), the
matrix \(X \) is positive semidefinite, i.e., (4) holds. If follows from Lemma 2.2
that the equality in (4) occurs if and only if one of the following holds:

(i) \(a = b = 0 \),

(ii) \((p-1)a - b = 0 \) and \((p-1)(q-1) = (-1)^2 \neq 0 \).

From the hypothesis, this is equivalent to \(a = (q-1)b \) or \(pa = qb \). The proof
of (ii) is similar to (i).

The Bohr inequality (4) can be stated equivalently
\[
|a + b|^2 \leq (1 + t)|a|^2 + (1 + \frac{1}{t})|b|^2
\](6)

for any \(t > 0 \). In this case, the equality holds if and only if \(b = ta \).

We would like to find the maximum value of a real constant \(c \) for which (4)
holds for all \(a, b \in \mathcal{A} \). The best possibility of the constant is discussed in the
next proposition.

Proposition 2.4. (i) For each \(p, q \in \mathbb{R} \) such that \(p+q > 0 \), the maximum
value of \(c \in \mathbb{R} \) for which the inequality
\[
c|a + b|^2 \leq p|a|^2 + q|b|^2.
\](7)

holds for all \(a, b \in \mathcal{A} \) is equal to \(pq/(p+q) \). Moreover, if \(c = pq/(p+q) \),
then the equality holds if and only if \(pa = qb \).
(ii) For each \(p, q \in \mathbb{R} \) such that \(p + q < 0 \), the minimum value of \(c \in \mathbb{R} \) for which the inequality
\[
 c|a + b|^2 \geq p|a|^2 + q|b|^2.
\]
holds for all \(a, b \in A \) is equal to \(pq/(p + q) \).

Proof. (i) Suppose \(c \) satisfies \((7) \) for all \(a, b \in A \). Define \(X \) to be the matrix
\[
\begin{pmatrix}
 c - p & c \\
 c & c - q
\end{pmatrix}.
\]
By the second part of Lemma 2.2, the matrix \(X \) is necessarily negative semidefinite, i.e., \(c - p \leq 0 \), \(c - q \leq 0 \) and \((c - p)(c - q) \geq c^2 \). Hence, we have
\[
c \leq \min (p, q, pq/(p + q)) = pq/(p + q).
\]
and therefore the maximum value of \(c \) is equal to \(pq/(p + q) \). If \(c = pq/(p + q) \), then by direct computation, the equality in \((7) \) is valid if and only if \(pa = qb \). The proof of (ii) is similar to (i). \(\square \)

So, the constant 1 in (4) and (5) is the optimal constant. This shows the sharpness of the inequalities. As a consequence result of Theorem 2.3, we get an analogue result of [6, Corollary 3].

Corollary 2.5. Let \(a, b \in A \) and \(t > 0 \). Then
\[
(i) \quad a^*b + b^*a \leq t|a|^2 + \frac{1}{t}|b|^2 \text{ with equality if and only if } b = ta,
\]
\[
(ii) \quad -(a^*b + b^*a) \leq t|a|^2 + \frac{1}{t}|b|^2 \text{ with equality if and only if } b = -ta.
\]

Proof. (i) Set \(t = p - 1 \) in Theorem 2.3 (i) and use the fact that \((p - 1)(q - 1) = 1 \).
To prove (ii), replace \(a \) with \(-a \) in (i). \(\square \)

The Bohr’s inequality is extended to all possible cases of conjugate exponents in the following theorems. The analogue results for the case of operators on a Hilbert space are obtained in [6] (cf. Theorem 2, Theorem 1 and Corollary 1 in [6], respectively).

Theorem 2.6. Let \(a, b \in A \) and \(p, q \) real numbers such that \(1/p + 1/q = 1 \).

(i) If \(p < 1 \), then
\[
|a - b|^2 + |(p - 1)a + b|^2 \geq p|a|^2 + q|b|^2,
\]
\[
|a - b|^2 + |a + (q - 1)b|^2 \geq p|a|^2 + q|b|^2,
\]
with equality if and only if \(b = (1 - p)a \).
(ii) If $1 < p \leq 2$, then
\[|a - b|^2 + |(p - 1)a + b|^2 \leq p|a|^2 + q|b|^2, \]
\[|a - b|^2 + |a + (q - 1)b|^2 \geq p|a|^2 + q|b|^2, \]
with equality if and only if $p = q = 2$ or $b = (1 - p)a$.

(iii) If $p > 2$, then
\[|a - b|^2 + |(p - 1)a + b|^2 \geq p|a|^2 + q|b|^2, \]
\[|a - b|^2 + |a + (q - 1)b|^2 \leq p|a|^2 + q|b|^2, \]
with equality if and only if $b = (1 - p)a$.

Proof. The proofs of (i)-(iii) are similar and so we prove (i) only. By expanding, we have
\[
|a - b|^2 + |(p - 1)a + b|^2 = |a|^2 - (a^*b + b^*a) + |b|^2 + (p - 1)^2|a|^2 + (p - 1)(a^*b + b^*a) + |b|^2 - p|a|^2 - q|b|^2
\]
\[= (p^2 - 3p + 2)|a|^2 + (p - 2)(a^*b + b^*a) + (2 - q)|b|^2.\]

We can check that
\[
\left(\begin{array}{cc} p^2 - 3p + 2 & p - 2 \\ p - 2 & 2 - q \end{array} \right) \leq 0.
\]

By Lemma 2.1, (9) holds. In the view of Lemma 2.2, the equality in (9) holds if and only if one of the following holds:

(i) $a = b = 0$,

(ii) $(p^2 - 3p + 2)a + (p - 2)b = 0$ and $(p^2 - 3p + 2)(2 - q) = (p - 2)^2 \neq 0$.

which can be simplified to the single condition $b = (1 - p)a$.

A proof of (10) is similar to that of (9). In this case, we get
\[
|a - b|^2 + |a + (q - 1)b|^2 - p|a|^2 - q|b|^2
\]
\[= (2 - p)|a|^2 + (q - 2)(a^*b + b^*a) + (q^2 - 3q + 2)|b|^2.
\]

We can check that
\[
\left(\begin{array}{cc} 2 - p & q - 2 \\ q - 2 & q^2 - 3q + 2 \end{array} \right) \geq 0,
\]
which means (10) holds. The equality case in (10) is obtained via 2.2. Repeating the above procedure yields that the equality holds if and only if $(q - 2)a + (q^2 - 3q + 2)b = 0$, which is $a = (1 - q)b$, i.e., $b = (1 - p)a$. \qed
Remark 2.7. The exactly Bohr inequality can be obtained from (11) and (14).

Next we consider inequalities in a more general form, namely, $|sa + tb|^2 \leq p|a|^2 + q|b|^2$ where s, t, p, q are constants.

Theorem 2.8. Let $a, b \in \mathcal{A}$ and $s, t \in \mathbb{C}$, $p, q \in \mathbb{R}\{0\}$ such that $\frac{|a|^2}{p} + \frac{|b|^2}{q} \leq 1$.

1. If $|s|^2 \leq p$ and $|t|^2 \leq q$, then

$$|sa + tb|^2 \leq p|a|^2 + q|b|^2. \quad (15)$$

2. If $|s|^2 \geq p$ and $|t|^2 \geq q$, then

$$|sa + tb|^2 \geq p|a|^2 + q|b|^2. \quad (16)$$

In both cases, equalities if and only if one of the following occurs:

(i) $a = b = 0$,
(ii) $a = 0$ and $q = |t|^2$,
(iii) $b = 0$ and $p = |s|^2$,
(iv) $(p - |s|^2)a = \bar{st}b$ and $|st| = \sqrt{(p - |s|^2)(q - |t|^2)}$ (equivalently, $\bar{s}ta = (q - |t|^2)b$ and $|st| = \sqrt{(p - |s|^2)(q - |t|^2)}$).

Proof. The proofs of (15) and (16) are similar. For the first part, by expanding $|sa + tb|^2$, we get

$$p|a|^2 + q|b|^2 - |sa + tb|^2 = (p - |s|^2)|a|^2 - \bar{st}a^*b - \bar{s}t^*a + (q - |t|^2)|b|^2.$$

Since $|s|^2/p + |t|^2/q \leq 1$, we have $(p - |s|^2)(q - |t|^2) - \bar{st}t \geq 0$. By Lemma 2.1 we arrive (15). For the case of equality, the sufficiency is routine. In the necessity, there are only 3 possible cases: (i) $p > |s|^2, q = |t|^2$, (ii) $p = |s|^2, q > |t|^2$ and (iii) $p > |s|^2, q > |t|^2$. For $p > |s|^2, q = |t|^2$, by Lemma 2.2, we get $a = 0$ and $q = |t|^2$. For $p = |s|^2, q > |t|^2$, by Lemma 2.2, we get $b = 0$ and $p = |s|^2$. Now for $p > |s|^2, q > |t|^2$, it can occurs in 2 ways; $st = 0$ and $|st| > 0$. If $st = 0$, it can be referred to part (ii) in Lemma 2.2 that $a = b = 0$. If $|st| > 0$, we obtain via Lemma 2.2 that $(p - |s|^2)a = \bar{st}b$ and $|st| = \sqrt{(p - |s|^2)(q - |t|^2)}$.

Corollary 2.9. The map $a \mapsto |a|^2$ is convex on \mathcal{A}, that is, for each $a, b \in \mathcal{A}$ and $t \in (0, 1)$,

$$|ta + (1-t)b|^2 \leq t|a|^2 + (1-t)|b|^2.$$
Remark 2.10. The map $a \mapsto |a|$ is not necessarily convex on A, even if A is the set of 3-by-3 complex matrices.

Next we consider an inequality in more general form; compare $\sum_{i=1}^{n} |\alpha_i a + \beta_i b|^2$ with $p|a|^2 + q|b|^2$.

Theorem 2.11. Let $a, b \in A$, $\lambda_i, \mu_i \in \mathbb{C}$ for $i = 1, 2, \ldots, n$ and $p, q \in \mathbb{R}$. Set

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix}, Y = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$$

where

$$x_{11} = \sum_{i=1}^{n} |\lambda_i|^2, \quad x_{12} = \sum_{i=1}^{n} \lambda_i \mu_i, \quad x_{22} = \sum_{i=1}^{n} |\mu_i|^2.$$

(a) If $X \succeq Y$, then $\sum_{i=1}^{n} |\lambda_i a + \mu_i b|^2 \geq p|a|^2 + q|b|^2$.

(b) If $X \preceq Y$, then $\sum_{i=1}^{n} |\lambda_i a + \mu_i b|^2 \leq p|a|^2 + q|b|^2$.

In both cases, the equality holds if and only if one of the following occurs:

(i) $x_{11} = p$ and $x_{22} = q$,

(ii) $a = b = 0$,

(iii) $a = 0$ and $x_{22} = q$,

(iv) $b = 0$ and $x_{11} = p$,

(v) $(x_{11} - p)a + (x_{12} - q)b = 0$ and $(x_{11} - p)(x_{12} - q) = |x_{12}|^2 \neq 0$.

Proof. (a) Expanding $\sum_{i=1}^{n} |\lambda_i a + \mu_i b|^2$, we get

$$\sum_{i=1}^{n} |\lambda_i a + \mu_i b|^2 - p|a|^2 - q|b|^2$$

$$= (|\lambda_1|^2 + \cdots + |\lambda_n|^2 - p)|a|^2 + (\lambda_1 \mu_1 + \cdots + \lambda_n \mu_n) a^* b$$

$$+ (\lambda_1 \mu_1^* + \cdots + \lambda_n \mu_n^*) b^* a + (|\mu_1|^2 + \cdots + |\mu_n|^2 - q)|b|^2$$

$$= (x_{11} - p)|a|^2 + x_{12} a^* b + \overline{x_{12}} b^* a + (x_{22} - q)|b|^2.$$

Since $X \succeq Y$, we have $x_{11} - p \geq 0, x_{22} - q \geq 0$ and $(x_{11} - p)(x_{22} - q) \geq |x_{12}|^2$.

It follows from Lemma 2.1 that (a) holds. The case of equality can be obtained from Lemma 2.2. Part (b) can be proved in the similar way. \square
This idea of this theorem is very useful. In order to obtain absolute value inequalities, it suffices to consider the inequalities between two representative matrices, namely, \(X \) and \(Y \) in this theorem. So, with appropriate values of the parameters \(\lambda_i, \mu_i, p, q \), we get beautiful inequalities.

\textbf{Theorem 2.12.} Let \(a, b \in A, \alpha_i, \beta_i \in \mathbb{C} \) for \(i = 1, 2, \ldots, n \) and \(\lambda_j, \mu_j \in \mathbb{C} \) for \(j = 1, 2, \ldots, m \). Set

\[
\Delta_1 = \sum_{i=1}^{n} |\alpha_i|^2, \quad \Omega_1 = \sum_{i=1}^{n} |\beta_i|^2, \quad \Theta_1 = \sum_{i=1}^{n} \alpha_i \beta_i,
\]

\[
\Delta_2 = \sum_{j=1}^{m} |\lambda_j|^2, \quad \Omega_2 = \sum_{j=1}^{m} |\mu_j|^2, \quad \Theta_2 = \sum_{j=1}^{m} \lambda_j \mu_j.
\]

If \(\Delta_1 \geq \Delta_2 \), \(\Omega_1 \geq \Omega_2 \) and \(\Theta_1 = \Theta_2 \), then

\[
\sum_{i=1}^{n} |\alpha_i a + \beta_i b|^2 \geq \sum_{j=1}^{m} |\lambda_j a + \mu_j b|^2 \tag{17}
\]

with equality if and only if one of the following holds:

(i) \(\Delta_1 = \Delta_2 \) and \(\Omega_1 = \Omega_2 \),
(ii) \(a = b = 0 \),
(iii) \(a = 0 \) and \(\Omega_1 = \Omega_2 \),
(iv) \(b = 0 \) and \(\Delta_1 = \Delta_2 \).

\textbf{Proof.}

\[
\sum_{i=1}^{n} |\alpha_i a + \beta_i b|^2 - \sum_{j=1}^{m} |\lambda_j a + \mu_j b|^2
\]

\[
= \left(\sum_{i=1}^{n} |\alpha_i|^2 - \sum_{j=1}^{m} |\lambda_j|^2 \right) |a|^2 + \left(\sum_{i=1}^{n} \alpha_i \beta_i - \sum_{j=1}^{m} \lambda_j \mu_j \right) a^* b
\]

\[
+ \left(\sum_{i=1}^{n} \alpha_i \beta_i - \sum_{j=1}^{m} \lambda_j \mu_j \right) b^* a + \left(\sum_{i=1}^{n} |\beta_i|^2 - \sum_{j=1}^{m} |\mu_j|^2 \right) |b|^2
\]

\[
= (\Delta_1 - \Delta_2) |a|^2 + (\Theta_1 - \Theta_2) a^* b + (\Theta_1 - \Theta_2) b^* a + (\Omega_1 - \Omega_2) |b|^2.
\]

Since \(\Delta_1 - \Delta_2 \geq 0, \Omega_1 - \Omega_2 \geq 0 \) and \((\Delta_1 - \Delta_2)(\Omega_1 - \Omega_2) \geq 0 = |\Theta_1 - \Theta_2|^2 \), by making use of Lemma 2.1, we obtain (17). The case of equality follows from Lemma 2.2.

For the case \(n = m = 1 \), we obtain:
Corollary 2.13. Let $a, b \in \mathcal{A}$ and $\alpha, \beta, \lambda, \mu \in \mathbb{C}$. If $|\alpha| \geq |\lambda|, |\beta| \geq |\mu|$ and $\overline{\alpha} \mu = \overline{\beta} \lambda$, then
\[|\alpha a + \beta b|^2 \geq |\lambda a + \mu b|^2\]with equality if and only if one of the following holds:
(i) $|\alpha| = |\lambda|$ and $|\beta| = |\mu|$.
(ii) $a = b = 0$.
(iii) $a = 0$ and $|\beta| = |\mu|$.
(iv) $b = 0$ and $|\alpha| = |\lambda|$.

For each a in a hermitian Banach $*$-algebra, the relation $a > 0$ means that $a \geq 0$ and $0 \notin \sigma(a)$. Recall that if a hermitian Banach $*$-algebra \mathcal{A} has a unit, we define a^z for each $a \in \mathcal{A}$ such that $\sigma(a) \subset (0, \infty)$ and $z \in \mathbb{C}$ by $a^z = \exp(z \log a)$ where log is the principal value of the complex logarithm. The Löwner-Heinz inequality [11, Theorem 2] asserts the monotonicity of the map $a \mapsto a^r$, i.e. $0 < a \leq b$ implies $a^r \leq b^r$, for any $0 \leq r \leq 1$ when the involution on \mathcal{A} is continuous with respect to the norm topology.

Corollary 2.14. Let \mathcal{A} be a unital hermitian Banach $*$-algebra with norm-continuous involution and $a, b \in \mathcal{A}$. Let $\alpha, \beta, \lambda, \mu \in \mathbb{C}$ be such that $|\alpha| \geq |\lambda|, |\beta| \geq |\mu|$ and $\overline{\alpha} \mu = \overline{\beta} \lambda$. If $0 \notin \sigma(|\alpha a + \beta b|) \cap \sigma(|\lambda a + \mu b|)$, then for any $r \in [0, 2]$
\[|\alpha a + \beta b|^r \geq |\lambda a + \mu b|^r.\]

Proof. By spectral mapping theorem, $\sigma(|\alpha a + \beta b|) = \{k \in \mathbb{C} : k \in \sigma(\alpha a + \beta b)\} \subset (0, \infty)$ and hence $|\alpha a + \beta b| > 0$ and, similarly, $|\lambda a + \mu b| > 0$. The desired result follows via applying the Löwner-Heinz inequality to (18). ☐

3 Related absolute value inequalities for multiple elements

Lemma 3.1. For $a_i \in \mathcal{A}$ ($i = 1, 2, \ldots, n$), we have the following identities
\[\left| \sum_{i=1}^{n} a_i \right|^2 = \sum_{i=1}^{n} |a_i|^2 + \sum_{1 \leq i < j \leq n} a_i^* a_j + a_j^* a_i\] \tag{19}\]
\[\sum_{1 \leq i < j \leq n} |a_i - a_j|^2 = (n - 1) \sum_{i=1}^{n} |a_i|^2 - \sum_{1 \leq i < j \leq n} a_i^* a_j + a_j^* a_i.\] \tag{20}
Proof. Expand.

Corollary 3.2. For $a_i \in A$ ($i = 1, 2, \ldots, n$), the inequality

$$\left| \sum_{i=1}^{n} a_i \right|^2 \leq n \sum_{i=1}^{n} |a_i|^2$$

(21)

holds with equality if and only if all a_i's are equal.

Proof. The identities (19) and (20) imply

$$n \sum_{i=1}^{n} |a_i|^2 - \sum_{i=1}^{n} |a_i|^2 = n \sum_{i=1}^{n} |a_i|^2 - \sum_{1 \leq i < j \leq n} a_i a_j + a_j a_i$$

$$= (n - 1) \sum_{i=1}^{n} |a_i|^2 - \sum_{1 \leq i < j \leq n} a_i a_j + a_j a_i$$

$$= \sum_{1 \leq i < j \leq n} |a_i - a_j|^2$$

$$\geq 0.$$

Hence, we arrive at (21). Moreover, the equality in (21) occurs if and only if $a_i - a_j = 0$ for $i \neq j$ which is $a_i = a_j$ for $i \neq j$.

Remark 3.3. For each $i = 1, 2, \ldots, n$, let $a_i, b_i \in A$ and let $p_i, q_i \in \mathbb{R}$ be such that $1/p_i + 1/q_i = 1$. It is easy to see that if $p_i q_i > 0$ for all i, then

$$\sum_{i=1}^{n} |a_i + b_i|^2 \leq \sum_{i=1}^{n} \left(p_i |a_i|^2 + q_i |b_i|^2 \right).$$

(22)

and the inequality is reverse if $p_i q_i < 0$ for all i. The computation shows that equalities hold if and only if $b_i = (p_i - 1)a_i$ for all i.

The next theorem is an extension of Bohr’s inequality for multiple elements. This result generalizes [6, Theorem 4].

Theorem 3.4. For any integer $n > 2$, let $a_i \in A$ ($i = 1, 2, \ldots, n$) and $p_{ij}, q_{ij} \in \mathbb{R}$ such that $1/p_{ij} + 1/q_{ij} = 1$ for $1 \leq i < j \leq n$.

(i) If $p_{ij} > 1$ for all $1 \leq i < j \leq n$, then

$$\left| \sum_{i=1}^{n} a_i \right|^2 \leq \left(\sum_{j=2}^{n} p_{1j} + 2 - n \right) |a_1|^2 + \sum_{k=2}^{n-1} \left(\sum_{j=k+1}^{n} p_{kj} + \sum_{j=1}^{k-1} q_{jk} + 2 - n \right) |a_k|^2$$

$$+ \left(\sum_{j=1}^{n-1} q_{jn} + 2 - n \right) |a_n|^2.$$

(23)
(ii) If \(p_{ij} < 1 \) for all \(1 \leq i < j \leq n \), then the reverse of (23) is obtained.

Moreover, all equalities hold if and only if \(a_j = (p_{ij} - 1)a_i \) for all \(1 \leq i < j \leq n \).

Proof. We shall prove only (i) since the proof of (ii) is similar to that of (i). From (19) in Lemma 3.1, we have

\[
\left| \sum_{i=1}^{n} a_i \right|^2 - \sum_{i=1}^{n} |a_i|^2 = \sum_{1 \leq i < j \leq n} (a_i^* a_j + a_j^* a_i)
\]

\[
= \sum_{1 \leq i < j \leq n} \left[|a_i + a_j|^2 - (|a_i|^2 + |a_j|^2) \right].
\]

The Bohr’s inequality and Remark 3.3 yield

\[
\sum_{1 \leq i < j \leq n} \left[|a_i + a_j|^2 - (|a_i|^2 + |a_j|^2) \right] \leq \sum_{1 \leq i < j \leq n} \left[(p_{ij} - 1)|a_i|^2 + (q_{ij} - 1)|a_j|^2 \right]
\]

with equality if and only if \((p_{ij} - 1)a_i = a_j \) for all \(1 \leq i < j \leq n \). Denote \(\tilde{p}_{ij} = p_{ij} - 1 \) and \(\tilde{q}_{ij} = q_{ij} - 1 \) for each \(i, j \). Hence

\[
\left| \sum_{i=1}^{n} a_i \right|^2 \leq \sum_{i=1}^{n} |a_i|^2 + \sum_{1 \leq i < j \leq n} [\tilde{p}_{ij}|a_i|^2 + \tilde{q}_{ij}|a_j|^2]
\]

\[
= |a_1|^2 + \sum_{j=2}^{n} \tilde{p}_{1j}|a_1|^2 + \sum_{j=1}^{n-1} \tilde{q}_{jn}|a_n|^2 + |a_n|^2 + \sum_{k=2}^{n-1} \left(1 + \sum_{j=k+1}^{n} \tilde{p}_{kj} + \sum_{j=1}^{k-1} \tilde{q}_{jk} \right)|a_k|^2
\]

\[
= \left(1 + \sum_{j=2}^{n} \tilde{p}_{1j} \right)|a_1|^2 + \left(1 + \sum_{j=1}^{n-1} (q_{jn} - 1) \right)|a_n|^2
\]

\[
+ \sum_{k=2}^{n-1} \left(\sum_{j=k+1}^{n} p_{kj} + \sum_{j=1}^{k-1} q_{jk} + 2 - n \right)|a_k|^2
\]

\[
= \left(\sum_{j=2}^{n} p_{1j} + 2 - n \right)|a_1|^2 + \left(\sum_{j=1}^{n-1} q_{jn} + 2 - n \right)|a_n|^2
\]

\[
+ \sum_{k=2}^{n-1} \left(\sum_{j=k+1}^{n} p_{kj} + \sum_{j=1}^{k-1} q_{jk} + 2 - n \right)|a_k|^2,
\]

with equality if and only if \((p_{ij} - 1)a_i = a_j \) for all \(1 \leq i < j \leq n \). \(\square \)

This result has a pattern. An easy way to remember is to use the rectangular array as follows. For the case \(n = 4 \), write the 4-by-4 rectangular array of \(p_{ij} \) without the main diagonal entry. For \(n = 4 \), there are \(n - 1 = 3 \) coefficients...
of \(p_{ij} \) and \(q_{ij} \) to sum and we have to subtract them with \(n-2 = 2 \). For each entry below the main diagonal, interchange it from \(p_{ij} \) to \(q_{ji} \). So, we obtain

\[
\begin{bmatrix}
p_{12} & p_{13} & p_{14} \\
q_{12} & p_{23} & p_{24} \\
q_{13} & q_{23} & p_{34} \\
q_{14} & q_{24} & q_{34}
\end{bmatrix}.
\]

Here, the coefficients \(p_{ij} \) and \(q_{ij} \) of \(|a_i|^2\) appear in the \(i \)th row of resulting array. The resulting inequality is for \(a_1, a_2, a_3, a_4 \in \mathcal{A} \) and \(p_{ij}, q_{ij} > 1 \) such that \(1/p_{ij} + 1/q_{ij} = 1 \) for \(1 \leq i < j \leq 4 \), we have

\[
|a_1 + a_2 + a_3 + a_4|^2 \leq (p_{12} + p_{13} + p_{14} - 2)|a_1|^2 + (p_{23} + p_{24} + q_{12} - 2)|a_2|^2
\]
\[
\quad + (p_{34} + q_{13} + q_{23} - 2)|a_3|^2 + (q_{14} + q_{24} + q_{34} - 2)|a_4|^2
\]

with equality if and only if \((p_{12} - 1)a_1 = a_2, (p_{13} - 1)a_1 = a_3, (p_{14} - 1)a_1 = a_4, (p_{23} - 1)a_2 = a_3, (p_{24} - 1)a_2 = a_4 \) and \((p_{34} - 1)a_3 = a_4 \). The method can be used for arbitrary \(n > 2 \).

Remark 3.5. Corollary 3.2 can be obtained from Theorem 3.4 by setting \(p_{ij} = q_{ij} = 2 \) for all \(1 \leq i < j \leq n \).

References

Bohr’s inequality and its extensions in Banach \(*\)-algebras

Received: August, 2011