Some Properties of Composition Operators on Weighted Hardy Spaces

L. Karimi

Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
lkarimi@iaushk.ac.ir

Abstract

Let \(\varphi \) be an analytic map of unit disk \(\mathbb{D} \) into itself, consider the composition operator \(C_{\varphi} \) defined by \(C_{\varphi}(f) = f \circ \varphi \) whenever \(f \) is analytic on \(\mathbb{D} \). In this paper, we discuss necessary and sufficient conditions under which a composition operator on a large class of weighted Hardy spaces is a compact.

1 Introduction and Preliminaries

An analytic self-map \(\varphi : \mathbb{D} \to \mathbb{D} \) of the open unit disk \(\mathbb{D} \) in the complex plane induces the composition operator \(C_{\varphi} \) on \(H(\mathbb{D}) \), the space of holomorphic functions on \(\mathbb{D} \), defined by \(C_{\varphi}(f) = \varphi \circ f \). A basic goal in the study of composition operators is to relate function theoretic properties of \(\varphi \) to operator theoretic properties of \(C_{\varphi} \). Here we review some results that characterize when \(\varphi \) induces a compact composition operator between various classical Banach spaces of holomorphic functions on \(\mathbb{D} \).

For \(p > 0 \), the Hardy space \(H^p(D) \) is the space of functions \(f \) that are analytic on \(\mathbb{D} \) and satisfy

\[
\lim_{r \to 1^-} \int_0^{2\pi} |f_r(e^{i\theta})|^p \frac{d\theta}{2\pi} < \infty,
\]

Denote the \(p^{th} \) root of this limit by \(\| f \|_p \). The Hard space \(H^\infty(D) \) is the set of analytic functions that are bounded in \(D \), with supremum norm \(\| f \|_\infty \) and the Bergman space \(A^p(D) \) consists of those analytic functions such that

\[
\int_D |f(z)|^p \frac{dA(z)}{\pi} < \infty
\]

Here \(dA \) denotes area measure on \(\mathbb{D} \) by, normalized so that \(A(\mathbb{D}) = 1 \), similarly \(\| f \|_p \) is the \(p^{th} \) root of this integral.
In the following the sufficient condition for compactness of composition operator \(C_\varphi \) in standard Hardy space \(H^2 \) is given.

The weighted Hardy space \(H^2(\beta) \) is a Hilbert space whose vectors are functions analytic on the unit disk and monomials \(1, z, z^2, \ldots \) form a complete orthogonal set of non-zero vectors. If \(\|z^j\| = \beta(j) \) and \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) then \(f \in H^2(\beta) \) if and only if

\[
\|f\|_\beta^2 = \sum_{n=0}^{\infty} |a_n|^2 \beta(n)^2 < \infty
\]

The weighted Bergman space defined for \(\alpha > -1 \) by

\[
A^p_\alpha(D) = \{ f \text{ analytic in } D : \int_D |f(z)|^p (1 - |z|^2)^\alpha \frac{dA(z)}{\pi} < \infty \}
\]

The linear functional \(K_x \) with \(K_x(f) = f(x) \) is called reproducing kernel. The generating function for the weighted Hardy space \(H^2(\beta) \) is the function \(k(z) = \sum_{j=0}^{\infty} \frac{z^j}{\beta(j)} \). This function is analytic on \(D \). Moreover, if \(w \in \mathbb{D} \) then \(K_w(z) = k(\bar{w}z) \) and \(\|K_w\|^2 = k(|w|^2) \), (see [1]).

Recently, there has been a great interest in studying operator theoretic properties of composition and weighted composition operators, see, for example, monographs [1] and [4], papers [2], [3], [7] and [8] as well as the reference therein.

Theorem 1. In a weighted Hardy space for which the series \(\sum \beta(n)^{-2} \) diverges, the normalized reproducing kernels

\[
\frac{K_\omega}{\|K_\omega\|}
\]

tends to 0 weakly as \(|\omega| \) tends to 1.

The Reproducing kernels for elements near of the \(\partial \mathbb{D} \) for weighted Hardy spaces has important consequences. For example we show that the generating function is smooth on the closed unit disk.

Theorem 2. If \(H^2(\beta) \) is a weighted Hardy space for which the generating function \(k \) is continuous on the closed disk then all functions in \(H^2(\beta) \) can be extended continuously to the closed disk.

Proof. Let \(f \in H^2(\beta), w_0 \in \partial \mathbb{D} \) we show that \(\lim_{w \to w_0} \) exists. To show this let \(z \in \mathbb{D} \)

\[
K_{w_0}(z) = \lim_{w \to w_0} = \lim_{w \to w_0} k(\bar{w}z) = k(\bar{w_0}z) < \infty
\]

and hence \(\|K_w - K_{w_0}\| \to 0 \) as \(w \to w_0 \). On the other hand \(\|K_w\|^2 = k(|w|^2) \) thus \(\|K_{w_0}\|^2 = k(|w_0|^2) \) and then
Composition operators on weighted Hardy spaces

$$\|K_w - K_{w_0}\|^2 = \|K_w\|^2 - 2\text{Re}\langle K_{w_0}, K_w \rangle + \|K_{w_0}\|^2$$

$$= \|K_w\|^2 - 2\text{Re}K_w(w_0) + \|K_{w_0}\|^2 \to 0 \text{ as } w \to w_0$$

thus

$$|f(w) - \langle f, K_{w_0} \rangle| = |\langle f, K_w - K_{w_0} \rangle| \leq \|f\| \|K_w - K_{w_0}\| \to 0$$

So

$$\lim_{w \to w_0} f(w) = \langle f, K_{w_0} \rangle = f(w_0)$$

In follow we give an example of a Hilbert space of analytic functions on \(\mathbb{D}\) consisting continuous functions on \(\overline{\mathbb{D}}\) but we can find at least one function that is not differentiable.

Example 1. Consider the Hardy space \(H^2(\beta)\) containing all analytic functions \(f\) on the unit disk for which

$$\|f\|^2 = \sum_{j=0}^{\infty} \beta(j)^2|a_j|^2 < \infty$$

where \(\beta(0) = 1\), \(\beta(j) = j\). It is clearly \(k(z)\) is continuous on \(\overline{\mathbb{D}}\) because

\(k(z) = \sum_{j=1}^{\infty} \frac{z^j}{j!^2} = \sum_{j=1}^{\infty} \frac{z^j}{j^2}\) by M-test weierstrass this series is uniformly convergence on \(\mathbb{D}\) thus by last Theorem each function in \(H^2(\beta)\) extends to continuous function on \(\overline{\mathbb{D}}\). The radius convergence of \(f\) is \(\geq 1\) thus \(f'(z) = \sum_{j=1}^{\infty} \frac{z^{j-1}}{j}\) is divergence, \(f\) is not differentiable at 1.

2 Necessary and sufficient conditions for Compactness

A linear operator on a Banach space is compact if the image of the unit ball under the operator has compact closure. This definition has a good reformation. Indeed If \(X\) is the weighted Hardy space \(H^2(\beta)\), The Hardy space \(H^p(D)\) or \(A_\alpha^p(D)\) for for \(0 < p \leq \infty\) and \(\alpha > -1\). Then \(C_\varphi\) is compact on \(X\) if and only if whenever \(\{f_n\}\) is bounded in \(X\) and \(f_n \to 0\) uniformly on compact subsets of \(D\) then \(C_\varphi f_n \to 0\) in \(X\).

Proposition 1. If \(\|\varphi\|_{\infty} < 1\) then \(C_\varphi\) is compact on \(H^2\).

Proof. Suppose \(\{f_n\}\) is a bounded sequence in \(H^2\) that converges to zero uniformly on compact subset of \(D\). By Theorem (2.1.12) it is enough to show
that \(\|f_n \circ \varphi\| \to 0 \). But even more is true: since \(\varphi(D) \) is a relatively compact subset of \(D \) and \(f_n \to 0 \) uniformly on \(\varphi(D) \), hence
\[
\|f_n \circ \varphi\| \leq \|f_n \circ \varphi\|_{\infty} = \sup_{z \in D} |(f_n \circ \varphi)(z)| \\
\leq \sup_{w \in \varphi(D)} |f_n(w)| \to 0.
\]
as desired.

Corollary 1. Consider \(H^p(D) \) or \(A^p_\alpha(D) \) for \(0 < p \leq \infty \) and \(\alpha > -1 \). If \(\overline{\varphi(D)} \subset D \) then \(C_\varphi \) is compact.

Proof. Suppose that \(\{f_n\} \) is a bounded sequence and \(f_n \to 0 \) uniformly on compact subsets of \(D \) since \(\varphi(D) \subset D \) is compact thus \(f_n \circ \varphi \to 0 \) uniformly and hence \(C_\varphi \) is compact.

Corollary 2. \(C_\varphi \) is compact on \(H^\infty(D) \) if and only if \(\overline{\varphi(D)} \subset D \).

Proof. Suppose that \(C_\varphi \) is compact on \(H^\infty(D) \), and \(\overline{\varphi(D)} \notin D \), so there exist \(w_0 \in \varphi(D) \) such that \(w_0 \in w_0 \) so \(|w_0| = 1 \) thus there exist a sequence \(\{z_n\} \) in \(D \) such that \(\varphi(z_n) \to w_0 \). Thus \(\|\varphi\|_{\infty} = 1 \). On the other hand, if \(f_n(z) = z^n \), \(f_n \to 0 \), uniformly on compact subsets of \(D \). But \(C_\varphi \) is compact, so by proposition? \(f_n \circ \varphi \to 0 \) in \(H^\infty(D) \), that means \(\varphi^n \to 0 \) in \(H^\infty(D) \) or \(\|\varphi^n\|_{\infty} \to 0 \). It is a contradiction since \(\|\varphi\|_{\infty} = 1 \), and consequently for every \(n \) we have \(\|\varphi^n\|_{\infty} = 1 \) so we must have \(\varphi(D) \subset D \).

Conversely suppose that \(\overline{\varphi(D)} \subset D \), and \(\{f_n\} \) is a bounded sequence in \(H^\infty(D) \) and \(f_n \to 0 \) uniformly on compact subsets of \(D \). Since \(\overline{\varphi(D)} \) is compact thus \(f_n \to 0 \) uniformly on \(\overline{\varphi(D)} \). Since \(\{f_n(w) : w \in \varphi(D)\} \subset \{f_n(w) : w \in \varphi(D)\} \) then \(\|f_n \circ \varphi\|_{\infty} \to 0 \) as \(n \to \infty \).

An equivalence necessary condition for compactness of composition operator \(C_\varphi \) on Hardy space \(H^p(D) \) or \(A^p_\alpha(D) \) with respect to Jullia-caratheodory Theorem so makes the relationship between the angular derivative \(\varphi'(x\xi) \) and the evale \(d(\xi) \) is following.

Corollary 3. If \(C_\varphi \) is compact on \(H^p(D) \) or \(A^p_\alpha(D) \) then \(\varphi \) has no finite angular derivative at any point of \(\partial D \).

Theorem 3 (P.Ahem and D.Clark). The singular inner function
\[
\varphi(z) = exp \int_{\partial D} \frac{z + \xi}{z - \xi} d\mu(\xi)
\]
for \(\mu \) singular to lebesgue measure has finite angular derivative at \(\eta \) in \(\partial D \) if and only if
\[
\int_{\partial D} \frac{d\mu(\xi)}{|\xi - \eta|^2} < \infty.
\]
Corollary 4. There exist inner functions that induce compact composition operators on $A^p_\alpha(D)$, for $\alpha > -1$ and $0 < p < \infty$.

Proof. Choose positive numbers $(\mu_n)_n$ such that $\sum_n \mu_n < \infty$, but $\sum_n \sqrt{\mu_n} = \infty$. (for example $\mu_n = \frac{1}{n^2}$). Let $(I_n)_n$ be a sequence of consecutive arcs on $\partial \mathbb{D}$ with $l(T_n) = \sqrt{\mu_n}$, and let ξ_n be the center of T_n. Let $\mu = \sum_n \mu_n \delta_n$, where δ_n is the unit mass at ξ_n.

Now we show that for every $w \in \partial \mathbb{D}$, w belongs to infinitely many intervals I_n, hence $|w - \xi_n| < \sqrt{\mu_n}$ for infinitely many n, so the series $\sum_n \frac{\mu_n}{|\xi_n - w|^2}$ diverges, since infinitely many terms are > 1. But

$$
\int_{\partial \mathbb{D}} \frac{d\mu(\xi)}{|\xi - w|^2} = \sum_n \frac{\mu_n}{|\xi_n - w|^2} = \infty.
$$

Hence by last Theorem φ has no finite angular derivative at any point of ∂D and then $C\varphi$ is compact on $A^p_\alpha(D)$.

In the following we show that the converse of corollary 3. is not necessary valid. Indeed we give an example on $H^p(D)$ such that map φ maps \mathbb{D} into itself, has no finite angular derivative and $C\varphi$ is not compact on $H^p(D)$.

Example 2. Let ψ_0 be an inner function as in Theorem 3. Let $a = \psi_0(0)$, consider $\psi(z) = \frac{a - \psi_0(z)}{1 - \bar{a}\psi_0(z)} \ \forall z \in \mathbb{D}$.

It is clearly $\psi(0) = 0$. Define $\varphi(z) = \frac{1 + \psi(z)}{2}$ for all $z \in \mathbb{D}$; clearly $|\varphi^*(\xi)| < 1$ almost every where.

We have $\varphi = \chi \psi_0$, where $\chi(z) = \frac{1 + z}{2}$, then $C\varphi = C\psi_0 \o C\chi$ since χ has finite angular derivative at every point of $\partial \mathbb{D}$ so $C\chi$ is no compact, so it takes the unit ball of H^p into a set A whose closure is not compact, but ψ_0 is an inner, which fixes the origin, so $C\varphi$ is an isometry of H^p, so $C\chi(A)$ does not have compact closure either. But $C\psi(A) = C\varphi(ballH^p)$ so $C\varphi$ is not compact operator

Now we put many conditions on weighted sequence $\beta(n)$ such that weighted Hardy space $H^2(\beta)$ become "small" or "large". Although the terminology small weighted Hardy space is vary somewhat from theorem to theorem, but one of this conditions is $\sum_{n=0}^{\infty} \frac{1}{\beta(n)^2} < \infty$, on each other if weight $\beta(n)$ on $H^2(\beta)$ tends to 0 sufficiently rapidly so that $\lim_{n \to \infty} n^a \beta(n) = 0$, for all $a > 0$ $H^2(\beta)$ is called large weighted Hardy space.

Krete and MacCluer in [3] proved in such large weighted Hardy space if the symbol function φ has angular derivative in D at some point in the circle then composition operator $C\varphi$ does not map $H^1(\beta)$ into itself. In the following a dual result of Krete and MacCluer Theorem is obtained.
Theorem 4. Suppose \(\varphi : D \rightarrow D \) is analytic with \(|\varphi'(\xi)| > 1 \) for some \(\xi \in \partial D \) satisfying \(|\varphi(\xi)| = 1 \). Then \(C_\varphi \) is not compact on \(H^2(\beta) \) when ever \(\{\beta(n)\} \) satisfies
\[
\sum_{n=0}^{\infty} \frac{1}{\beta(n)^2} < \infty.
\]

Proof. Suppose \(\varphi(\xi) = \eta \in \partial D \). Let \(\psi(z) = \xi \bar{\eta} \varphi(z) \) then we have \(\psi(\xi) = \xi \bar{\eta} \varphi(\xi) = \xi \bar{\eta} = \xi \) and \(\psi'(\xi) = |\psi'(\xi)| = |\varphi'(\xi)| > 1 \). Since \(\psi \) is analytic self-map of \(D \) if \(\psi \) has no fixed point in \(D \) then by Wolff’s Theorem there is a unique point on \(\partial D \) such that \(\varphi \) has angular derivative less than or equal one. Therefore this point can not be \(\xi \). Call this point \(a \). We have
\[
C_\varphi^*(K_\xi) = K_{\psi(\xi)} = K_\xi \quad C_\psi^*(K_a) = K_{\psi(a)} = K_a,
\]
where \(K_w \) denotes the kernel function for evaluation at \(w \in \bar{D} \). Thus if \(C_\varphi \), and hence \(C_\psi \), is compact on \(H^2(\beta) \), then \(\dim \ker(C_\psi - 1) = \dim \ker(C_\psi^* - 1) \geq 2 \).

But if \(f \in \ker(C_\psi - 1) \) then \(C_\psi f = f \) and therefore \(f \circ \psi_n = f \), where \(\psi_n \) is the \(n \)th iterate of \(\psi \). Now by Denjoy-Wolff theorem and continuity of \(f \) on \(\bar{D} \) implies that \(f \) is constant.

If \(\psi \) has a fixed point in \(D \), since \(\psi \) is not an elliptic automorphism of \(D \) and by proportion (2.4.1) implies that \(f \) is constant and its contradiction with \(\dim \ker(C_\psi - 1) \geq 2 \). Thus \(C_\varphi \) can not be compact on \(H^2(\beta) \). \(\square \)

The next result applies to small spaces defined slightly more restrictively by requiring that functions in the space have derivative which extends continuously to \(\bar{D} \).

Theorem 5. Suppose \(\varphi : D \rightarrow D \) is analytic with \(|\varphi'(\xi)| = 1 \) for some \(\xi \in \partial D \) with \(|\varphi(\xi)| = 1 \). If
\[
\sum_{n=0}^{\infty} \frac{n^2}{\beta(n)^2} < \infty,
\]
then \(C_\varphi \) is not compact on \(H^2(\beta) \).

Proof. We normalize by choosing \(e^{i\theta} \) such that \(\psi = e^{i\theta} \varphi \) fixes \(\xi \), therefore \(\psi(\xi) = \xi \). By theorem (2.4.3) we have
\[
\psi'(\xi) = |\psi'(\xi)| = |e^{i\theta} \varphi'(\xi)| = |\varphi'(\xi)| = 1.
\]
Thus \(\psi'(\xi) = 1 \). As before \(C_\psi^*(K_\xi) = K_\xi \), where \(K_\xi \) is the kernel function for evaluation at \(\xi \).

If \(K^{(1)}_\xi \) is the kernel function for the evaluation of the first derivative at \(\xi \), then we have
\[
K_\xi(z) = \sum_{n=0}^{\infty} \frac{1}{\beta(n)^2}(\xi z)^n,
\]
and

\[K_{ξ}^{(1)}(z) = \sum_{n=1}^{∞} \frac{n}{β(n)^2} ξ^{n-1} z^n. \]

\(K_{ξ}^{(1)}(z) \) is a function in \(H^2(β) \) and for \(f \in H^2(β) \) we have

\[
< f, K_{ξ}^{(1)}(z) >_β = \sum_{n=0}^{∞} a_n \frac{n}{β(n)^2} ξ^{n-1} \frac{β(n)^2}{β(n)^2}
= \sum_{n=0}^{∞} n a_n ξ^{n-1}
= f'(ξ).
\]

Thus

\[
< f, C_ψ K_{ξ}^{(1)}>_β = < C_ψ f, K_{ξ}^{(1)}>_β
= < f \circ ψ, K_{ξ}^{(1)}>_β
= (f \circ ψ)'(ξ)
= ψ'(ξ) f'(ψ(ξ))
= ψ'(ξ) < f, K_{ψ(ξ)}^{(1)}>_β
= < f, ψ'(ξ) K_{ψ(ξ)}^{(1)}>_β
= < f, K_{ξ}^{(1)}>_β.
\]

Therefore

\[C_ψ K_{ξ}^{(1)} = K_{ξ}^{(1)} \]

But we know that \(C_ψ K_{ξ} = K_{ξ} \), thus 1 is an eigenvalue of \(C_ψ \) with multiplicity at least 2. As in the proof of theorem (2.4.3) this show that \(C_ψ \) (and hence \(C_φ \)) cannot be compact, since \(\dim \ker(C_ψ - 1) = 1 \). □

The next result, due to \(J. \) Shapiro [17], provides a stepping stone for obtaining a necessary condition, in term of the angular derivative, for \(C_φ \) to be bounded on \(H^2(β) \).

\[\]

In contrast to the function spaces considered in the last chapter, here we consider weighted Bergman or Hardy spaces that include functions which grow much more rapidly than functions in \(H^2(D) \) or the standard weighted Bergman spaces \(A^2_α(D) \). We will confine our attention to function spaces on the disk, and concentrate on spaces \(A^2_δ(D) \) defined for weights \(G \) positive, continuous, and
non-increasing on $(0, 1)$ with $\int_0^1 G(r) < \infty$ so that $G(|z|) dA(z)$ is a positive, circularly symmetric finite measure on D. Set
\[
A^2_G(D) \equiv \{ \text{fanalytic} : \int_D |f(z)|^2 G(|z|) \frac{dA(z)}{\pi} \}
\]
with
\[
||f||^2_G = \int_D |f(z)|^2 G(|z|) \frac{dA(z)}{\pi}
\]
The space A^2_G is equivalent to the weighted Hardy space $H^2(\beta)$ where, $\beta(n)^2 = p_n/c$ where $\{p_n\}$ are the moments
\[
p_n = \int_0^1 r^{2n+1} G(r) dr
\]
and $c = 2 \int_0^1 G(r)r dr$, chosen so that $\beta(0) = 1$.

Theorem 6. *(Kriete and MacCluer)* Let G be a regular fast weight. Then the following statement are equivalent.
(i) C_φ is compact on A^2_G
(ii) $\lim_{|z| \to 1} G(|z|)/G(|\varphi(z)|) = 0$
(iii) $|\varphi'(\xi)| > 1$ for all ξ in ∂D
(iv) $\beta(\varphi) > 1$

Corollary 5. If $\varphi(0) = 0$ and φ is not a rotation of D, then C_φ is compact on $A^2_G(D)$, where G is fast and regular.

Proof. By Theorem 6, it is enough to show that $|\varphi'(\xi)| > 1$ for all ξ in ∂D.

suppose ξ is in the unit circle and $|\varphi'(\xi)| \leq 1$ thus $d(\xi)$ is finite and then by julia’s Lemma we conclude that $d(\xi) = 1$ that means equality holds for $0 \in D$ and then φ is an automorphism of the disk. Thus
\[
\varphi(z) = \lambda \frac{a - z}{1 - \bar{a}z}, \quad |\lambda| = 1, \quad |a| < 1.
\]
But $0 = \varphi(0) = \lambda a$ thus $a = 0$. This is a contradiction with φ is not a rotation.

References

Received: May, 2012