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1. INTRODUCTION

Already in the 1978 monograph Lagrangian Analysis and Quantum Mechan-
ics [12], written by Jean Leray in response to a question posed to him by V.
I. Arnol’d eleven years before, a bridge is built between the theory of the real
metaplectic group of André Weil (cf. [21]), or the double cover of the real
symplectic group, and the formalism surrounding the Maslov index. For our
purposes, however, we turn to the 1975 paper [20] by Jean-Marie Souriau,
presenting, as its title indicates, an explicit construction of the Maslov index,
which, again for our purposes, we shall term the Arnol’d-Leray-Maslov index.
Souriau’s work is connected to that of Leray, more specifically to the latter’s
1973 communication [11], but places its stresses elsewhere: while Leray ad-
dresses the abstract Fourier analysis that goes into the definition of the real
metaplectic group in a novel way, distinct form the approach chosen by Weil
(and before him, D. Shale, in the context of physics), Souriau builds on the
according connections with symplectic and Lagrangian analysis to provide a
formula directly involving the Arnol’d-Leray-Maslov index and the time evo-
lution of a simple (or single) quantum mechanical system, in other words, a
unitary operator involving a Feynman path integral equipped with a certain
quadratic (or Gaussian) phase function.
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Maslov’s index, in its first incarnation, was originally presented in 1965, by
V. P. Maslov, in a pair of monographs [14][15] one of which directly addressed
the W(entzel-)K(ramers-)B(rillouin) method in quantum mechanics; he pre-
sented his discussion in the context of phase-integral methods in physics: a
very telling circumstance. It was Arnol’d, however, in his famous paper [1]
revealingly titled ”[A] Characteristic class entering in[to] quantization condi-
tions,” who explicated the connections with symplectic geometry alluded to
above, a theme in turn taken up by Leray in [12]. It therefore is indeed proper
that the index in question be termed the Arnol’d-Leray-Maslov index. How-
ever, there is a more prosaic reason to do this, namely, to distinguish it from
another index which, while related to it, is not identical with it. In what
follows this index will be referred to as the Kashiwara-Maslov index, to signify
that its definition goes back to Masaki Kashiwara [7] and that it was G. Lion
and M. Vergne, in [13], who introduced the term Maslov index in connection
with their analysis of the projective representation of the symplectic group
that has come to be called the Weil representation.

Despite this ambiguity, and as already noted, these two types of Maslov
indices are closely related and this theme (among others) was addresses very
carefully in the important 1994 article, ”On the Maslov index” [2], authored
by S. Cappell, R. Lee, and E. Y. Miller, in the context of a sweeping and
exhaustive comparison of half a dozen equivalent but separate definitions of a
Maslov index and an explication of their relationships to other indices includ-
ing, besides the Kashiwara index, Wall’s index and indices of Atyiah-Singer
type. We note in this connection that already in [1] Arnol’d addresses (in the
paper’s last section) a ”connection between the Maslov and Morse indices.”

Going over, next, to the viewpoint provided by Lion-Vergne in [13], i.e. that
of 2-dimensional group cohomology per se, the salient point for our objectives
is that they establish a means whereby to relate the projective Weil represen-
tation of the symplectic group to the Kashiwara-Maslov index. In point of
fact this is done in the form of explicit formulas so that the 2-cocycle defining
the metaplectic group, which is to say the 2-cocycle that arises due to the
projectivity of the Weil representation, is directly expressible in terms of the
Kashiiwara-Maslov index. Therefore, putting together what Souriau did in
[20] with Lion-Vergne’s work, and using the appropriate traslations offered by
[16][17], we can derive a direct and explicit realtionship, at least in the present
real case, between the aforementioned 2-cocycle, which we will term the Weil
2-cocycle, and what amounts to a unitary operator in the context of quan-
tum mechanics expressed in terms of Feynman’s yoga of path integrals. This
explicit relationship is the raison d’étre of the present article.

This having been said, the work we present here is properly speaking a
prelude to a number theoretic undertaking aiming at an old open question; our
greater aim is to approach this overarching theme in two phases, the first of
which is projected for the immediate future, while the second is of course more
ephemeral. The open question goes back to 1923 and is due to Erich Hecke
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who posed it at the end of his Vorlesungen tiber die Theorie der Algebraischen
Zahlen [5] and consists in the challenge to craft a generalization to higher
reciprocity laws of his Fourier-analytic proof of quadratic reciprocity given in
the preceding pages. This entire matter was reformulated in the 1960’s by
Weil, in [21], who recast Hecke’s proof in terms of the behavior of the double
cover of the lowest-dimensional symplectic group (identifiable with SL(2)) over
the ring of adeles of the number field in question: 2-Hilbert(-Hasse) reciprocity
follows from the fact that this double cover, equivalently its defining adelic 2-
cocycle, is split on the subgroup of rational points. This latter result in
turn follows from fact that a certain natural adelic linear functional, the Weil
O-functional, is invariant under the action of the indicated rational points
through the agency of the Weil representation. Subsequent to this work on
Weil’s part, Tomio Kubota established in [10] that n-Hilbert reciprocity follows
as a consequence of having the n-fold cover of SL(2) over the adeles split on
the rational points; however, as of the date of this writing the proof of this
splitting in fact invokes n-Hilbert reciprocity, so this is precisely where the
battle should be joined if Hecke’s challenge is to be met.

Accordingly, the second and more distant phase of of our projected future
investigation conserns this sufficient condition identified by Kubota: we seek
to approach this matter not with Fourier analysis directly, as Hecke and Weil
brought to bear on the quadratic case, but ultimately with the formalism of
Feynman path integrals and, more generally, oscillatory integrals in the sense
of Hormander [6]. With this goal in mind, the first and more proximate phase
of our projected strategy is to carry out what we do in the pages that follow
for all places of the underlying number field, specifically the non-archimedean
ones, and for the corresponding adeles (at least in the lowest dimensional case,
which suffices for reciprocity laws). And so, in the present paper, we develop
the indicated line in the paradigmatic real case. Thus, this work can be
regarded as the initial step, i.e. laying the foundation, for a more ramified
attempt to introduce a new methodology into analytic number theory as it
pertains to the analytic proof of reciprocity laws for number fields.

2. THE ARRANGEMENT OF THE PAPER

In light of our preceding remarks, in the Introduction, it is natural to split
our presentation into four parts, or four sections. We begin with a lay out
of the theory and fundamental facts surrounding what we will here refer to
a "the” metaplectic group (over R). There is some ambiguity to this term
and it is perhaps apposite to address this matter, if only very briefly. The
adjective itself goes back to André Weil himself who introduced it in 1964
in the context of his seminal paper [21]; in a private communication [22] to
the present author dating to a quarter of a century later Weil also used this
nomenclature in connection with the object of present interest to us, viz. the
double cover of the symplectic group. To be precise, however, and as was
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already hinted, with his greater goal being a unitary representation theoretic
explication of C. L. Siegel’s analytic theory of quadratic forms, Weil’s focus
fell not only on the real symplectic group (of lowest dimension) but on the
symplectic groups over all the local fileds obtained as completions of the base
(A-)field at its primes, archimedean or not, and then over the attendant ring
of adeles over this base field. However we train our attention exclusively on
the real case in the pages that follow.

But this is only part of the story as far as the term "metaplectic” is con-
cerned. As we also noted above, Weil’s pioneering work on quadratic reci-
procity in [21] was taken up soon afterward by Kubota who first replaced the
symplectic group by SL(2) in [9], and provided a 2-cocycle for the all-important
double cover directly in terms of the 2-Hilbert symbol, and then, in [10], ad-
dressed the question of higher Hilbert reciprocity laws: n-Hilbert reciprocity
was dealt with in terms of n-fold covers of SL(2), locally and adelically. The
latter are today also often referred to as metaplectic groups, in a different sense
than Weil’s original one. The hugely important paper, ”"Metaplectic forms’
[8], by D. Kazhdan and S. J. Patterson, doubtless contributed profoundly to
the popularity of this usage which is probably the prevailing one in number
theory.

Even so, although Weil’s original, more restrictive, terminology is not fa-
vored by arithmeticians, it is the prevailing language for other workers in the
field, e.g., mathematical physicists. This is particularly apt since the subject’s
prehistory involves a paper [19] by David Shale, dealing with particles satis-
fying Bose-Einstein statistics, in which the author, building on work of 1. E.
Segal [18], introduces a projective representation of a symplectic group which
is a prototype for the object now termed the oscillator representation, the
Segal-Shale-Weil representation, or, probably most commonly, just the Weil
representation. The latter nomenclature attests to the great significance and
influence of Weil’s work in this area: his 1964 paper [21] addressed above is
the cornerstone of all arithmetical activity in both of the areas mentioned, i.e.
the study of metaplectic groups as such and the accompanying study of the
aforementioned projective representation.

So, come what may, it is proper for us to start with a discussion of this
arithmetical and unitary representation theoretic material, and our subsequent
section deals with the relevant material concerning the real symplectic group
as located within the metaplectic group, the latter being a double cover of the
former.

Thereafter we turn to the natural transitional themes, given our objec-
tive, namely, the Arnol’d-Leray-Maslov (and Souriau) index, the Kashiwara(-
Maslov) index, and their interconnections. The former is the focus of both
the classic monograph [12] by Jean Leray himself and the paper [20] by Jean-
Marie Souriau which is so important to our purposes. The latter is dealt with
in great detail by Gerard Lion and Michele Vergne in [13]; the relationship
between them is treated in [2] by Cappell, Lee, and Miller.
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Having brought Souriau into the game we are now in a position to bring in his
analysis, presented at the end of [20], dealing with forging a direct connection
between the Arnol’d-Leray-Maslov index and a Feynman integral. Our focus
falls on a relation which provides the time evolution of a single QM system
attached to, or equipped with, a quadratic phase function and involves not
only the indicated Feynman integral but also a multiplier expression involving
the Arnol’d-Leray-Maslov index. We note, too, and discuss below, that this
relation appears to make another appearance in a much more recent work,
namely [17] by Robbin and Salamon. In their precursor [16] to this article
they note explicitly that ” [their] treatment is motivated by the formal similarity
between Feynman path integrals and the Fourier integrals of Hormander,” and
this observation also has bearing on what we are doing in the present paper:
Hormander’s theory of oscillatory integrals (cf. [6]) provides the proper larger
perspective on our undertaking.

Finally, with the aforementioned relation in place we are in a position to
assemble the pieces we crafted, or, rather, developed, in the aforementioned
three sections and accordingly present our central result in the closing section
of the paper: a direct connection between the real metaplectic group’s 2-cocycle
and a Feynman path integral for a certain simple QM system’s time evolution.
We finish by addressing, briefly, the connection between our result and the
work of Robbin-Salamon [16][17] mentioned earlier.

3. THE REAL METAPLECTIC GROUP

Following [13], let V' be a 2n-dimensional real vector space and let B be a
non-degenerate skew-symmetric quadratic form on V. We have that V is a
(real) symplectic space with respect to B if V' admits a basis {P;; Q;}1<ij<n
such that, for all ¢, 7,

(3.1) B(P;, P;) = 0= B(Q:,Q;) ; B(P;, Q) = 0ij = —B(Qy, P)

with B mapping bilinearly into R and d;; the Kronecker delta. Introduce a
formal symbol E and define the Heisenberg Lie algebra

(3.2) N:=VeRE=(PRP)® (PRQ;) ®RE
i=1 j=1
by stipulating that the attendant Lie bracket should be defined by
(3.3) M, E]=0; [2,y] = B(z,y)E
for any x,y € V. Then the Heisenberg group for this data is
(3.4) Heis(V; B) := exp(N)

and we have, for the indicated group law,

1
(3.5) exp(z +tE) exp(y + tE) = exp(z +y + 5 B(2,y)E).
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An n-dimensional subspace [ of V' is a Lagrangian plane if it is self-dual with
respect to B, i.e. [+ = [ where

(3.6) It ={r eV |Vyel B(xy) =0}

The collection Lag(V) of all such Lagrangian planes in V' (where we take

B for granted once and for all) actually carries the structure of an algebraic

variety, as we shall have occasion to consider in somewhat greater detail later;

it is called the Lagrangian Grassmannian for the data (V, B). It is standard

fare that V = (O RP,) @ (P RQ);) is indeed a decomposition into so-called
i=1 ‘

Jj=1

transverse Lagrangian planes: if | = @RP, and I' = @ RQ; then [ = [+
i=1 j=1

and ' = (I')*; additionally, I NI’ = (0). Thus, the decomposition we started

with is by no means exotic, but it is obviously very important: we fix this

decomposition
(3.7) V=Iial
and take L to be the following subgroup of N
(3.8) L =exp(l®RE).
Consider the character x, € L = Hom(L,Cy") defined by
(3.9) Xz i exp(z + tE) — e*™t

Abusing language a little (in keeping with what Lion-Vergne do in [13]) by
also writing x, for x, oexp, we can realize y as acting in the algebra U(H(l))
of unitary operators on the natural Hilbert space

(3.10) H() == {p € L*(N) | Vy € [, Ve € M p(yr) = x; ' (y)p(2)}
by means of the rule

(3.11) xi(exp(z + tE)) = €™ - idyy);

in other words, x; : L — U(H(l)) via

(3.12) exp(z +tE) — [p — ™ - ¢].

But this says that y; is a central character, given that Z(91) =exp RE, and
so we may invoke the theorem of Stone and von Neumann to great advantage:
the Heisenberg group is, by our earlier definition (3.4), exp(M) =: Heis(V, B)
and then the Schrodinger representation of this Heisenberg group,

(3.13) IndS™™(x,) : exp(MN) — UH(D))

is irreducible; therefore, if

(3.14) o: Heis(V,B) — U(H)

is any other unitary representation of Heis(V, B) such that o|zexpm) = X1,
(where we also have that Z(exp ) =RF (loc.cit.)), then g and the Schrodinger
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representation are unitarily equivalent. In other words, for all z € exp(M) we
have

(3.15) o(z) = U o IndS™ ™ (x,) o U

for some unitary mapping U : $ — H(I).

It is evident that the Schrodinger representation depends entirely on the
choice of Lagrangian plane | which motivates the notation of W (l) for this
irreducible representation, as given by Lion-Vergne whose discussion, in [13],
we are following rather closely, of course. With this abbreviation in place we
obtain that if I; and Iy are any two Lagrangian planes in V', i.e. l1,l € Lag(V),
the preceding relation (3.15) yields the intertwining

(316) W(ll)(l') = FTLQ e} W(lg)(l‘) e} Fngl

for all x € exp(M); here FTo; : H(l;) — H(l2) is a (partial) Fourier transform
in a most natural way (cf. p.34 of loc.cit.) and FT;, = FTQ_&.

Next, in light of the preceding we can define the symplectic group for the
data V| B) as

(3.17)
Sp(V,B) = Sp(2n,R) = {0 € GL(2n,R) | Vx,y € V, B(z°,y°) = B(z,y)}

and provide it with an action on exp(M) via
(3.18) o:exp(x +tE) — exp(z? + tF)

for which, obviously, 0|z(expo) = id|z(expo). Accordingly, (W(l),H(l)) is a
unitary exp(M)-module and if we write W7(l) : exp(M) — U(H(I)) for the
data W (17) : H(l) — H(l), then, noting that W7 (I)| z(expo) = Xy, it follows
from the foregoing that for all o € Sp(2n,R) we get that

(3.19) W(l)(z) = FT;' o Wo(I)(2) o FT,

where, obviously, FT, : H(l) — H(l), realizing H(l) first as the representation
space for W(l), then as the representation space for W(l).

But now Hilbert-Schmidt theory (loc.cit., p.21 ff.) provides that a bounded
unitary operator on H(l) commuting with all the W(l)(z) is necessarily a
scalar, whence it follows from a straightforward manipulation of the commu-
tative diagrams expressing the indicated intertwinings of the type (3.19) that
for all 01,09 € Sp(2n,R), we have FT,, o FT,, o FT;}U2 € C*; it then follows
from unitarity that |[FT,, o FT,, oFT_ |=1.

Furthermore, if we express the relationship between the given Fourier trans-
forms in the form

(320) FT0'102 = C(UI,UQ)FTO'l © FT0'2
then the usual manouvres with associativity suffice to establish that

(3.21) ¢:Sp(2n,R) x Sp(2n,R) — CY,
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as presented above, gives a 2-cocycle
(3.22) c € H*(Sp(2n,R), CY).

In other words, FT yields a projective unitary representation with ¢ as its
associated factor set. It is this projective representation that is called the
Segal-Shale-Weil representation, i.e. the Weil representation for short, or the
oscillator representation, as we mentioned above.

It is a classic result of André Weil [21] that this factor set ¢ as given by
(3.20) actually takes its values in the group {1, —1}, traditionally written as
ls, o that (3.22) can be strengthened to ¢ € H?(Sp(2n,R), u,); this in turn
is tautologically equivalent to the fact that a short exact sequence

(3.23) 1 — gy — Sp(2n,R) x. py — Sp(2n,R) — 1

is in place, defining the central object Sp(2n, R) X,y as the metaplectic group
discussed above, its group law being twisted by ¢: if 01,05 € Sp(2n,R) and

§1,82 € o, then
(3.24) (01,€1)(02,&5) = (0102, ¢(01,02)§165).

4. MASLOV INDICES

There are two indices which figure in what we are doing here, namely, the
index that Lion and Vergne term the Maslov index, but we will refer to as
the Kashiwara-Maslov index, and the index introduced by V. P. Maslov in
[14] and developed by, among others, V. I. Arnol’d [1], Jean Leray [12], and
J-M. Souriau [20], the Arnol’d-Leray-Maslov index. The Kashiwara-Maslov
index is tied directly to ¢ € H*(Sp(2n,R), u,) by means of developments pre-
sented in [13]; this index can be tied to the Arnol’d-Leray-Maslov index by
means of a set of results due to Cappell-Lee-Miller in [2]. In the context of
Souriau’s treatment in [20] the latter index appears in an expression for the
time-evolution of a single quantum mechanical system, i.e. a one-parameter
Lie group of unitary operators in a natural Hilbert space of states. This
quantum mechanical relation is expressed in Feynman’s language for quantum
mechanics, as we shall see in the next section; in this section, however, we
discuss the two flavors of Maslov index that enter into our analysis.  We
continue to follow [13] closely.

Given any triple of pairwise transverse Lagrangian planes [y, ls,l3 in V, i.e.
l1,1o,13 € Lag(V), consider the quadratic form gp : l; ® Iy ® I3 — R defined as

(41) qB(.Cli‘l + 29 + .]73) = B(.Z'l, .1172) + B(.Z'Q, .]73) -+ B(l’g, 33'1)
and then set
(42) T(lh l27 l3) = Sgn(QB)

where sgn stands for the signature map. In 7 we have defined the Kashiwara-
Maslov index, the first index in this game. The hypothesis of transversality
is weakened in the context of another theorem in [13] and Maurice de Gosson
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has explicitly addressed the matter of removing the hypothesis altogether in
[3].  As these technical matters do not have a direct bearing on what we are
up to it is not necessary to delve into them here.

On the other hand, it is proper to take note of two properties of 7, proven
in [13], that foreshadow its algebraic role, particularly its connection to low-
dimensional cohomology.

Proposition 1. The Kashiwara-Maslov index T satisfies the following prop-
erties:

i. Forallo e Sp(V,B) = Sp(2n,R), 7(17,15,15) = 7(l1, 2, l3).

1. For all suitable ll, lg, l3, ly € Sag(V), T(ll, lg, lg) = T(ll, lg, l4)+7’(l1, l3, l4)+
7(l3,11,14), engendering a chain condition.

Next, returning to (3.16) and varying 7, j through {1,2,3} in all possible
ways while suppressing x’s, we get
(4.3) W(l;) = FTi0 W(ly) o FTy,
whence, using the fact (cf. [13], p.34) that the indicated bounded unitary

operator on H(l;) commutes with the W (l;)(z) for all z, it follows essentially

by an induction on n (see p.25 of loc.cit.) that there exists a unimodular scalar
a(ly, 1o, l3) € C{ such that

(4.4) a(ly, ly, lg) = e T70108)

Furthermore, Lion and Vergne show that it is possible to pick a Lagrangian
plane [y in V such that for all o, 09 € Sp(V, B),

(4.5) a(lo, 154, 1527") = c(o1, 02),
ie.,
(4.6) (o1, 09) = 700l 152

Thus, in (4.6) we have a direct relationship between the Weil 2-cocyle and the
Kashiwara-Maslov index. The next order of business is to bring the Arnol’d-
Leray-Maslov index into play.

The focus falls on the variety Lag(V') as a topological space and its universal

covering space zﬁg(V). As per, e.g., [1], [12], or [20], Lag(V) can be identified
with U(n)/O(n), where V' =~ R?", whence, since U(n)’s covering space is

~

(4.7) Uln) = {(A,9) | A€ U(n),d € R with det(A) ="},

a Lie group, EEQ(V) can be identified with U Zn) /O(n), up to a diffeomorpism.

~

What this means, of course, is that a point of £ag(V’) can be realized as a pair

~

| = (A,9) where A is unitary and 9 € R is characterized by ¢ = det(l) =
det(A), modulo O(n). This allows us to synopsize the foregoing as

(4.8)  Lag(V) = {(A,9) | € Lag(V) and 0 € R with det(4;) = ¥}
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where [ = (A}, ) sits above [ € Lag(V') given the identification of [ with a uni-
tary matrix A; in the presence of the aforementioned identification Lag(V') ~
U(n)/O(n). The latter identification is made explicit by first providing an
orthonormal basis {eq, e, ...,e3} for [ realized as a vector space (not over R
but) over C by introducing a natural complex structure J (with J? = —1I)

n (V, B), preserving the symplectic form B, and equipping it with an inner
product in the form of —B(Jx,y) —iB(z,y) (cf. [20], p.122); subsequently A,
is just a Column matrix: A; = (eq, e, ..., €3).

Now, if l1 = (Ay,7;) and lg = (Ay,7s) in Sag(V) in accord with (4.8), then
Souriau defines their Maslov index as

~o 1 : _
(4.9) m(ly,lp) = ﬁ{ﬁl — ¥y + iTrace(Log(— A1 A1)}

where, by definition (loc.cit., p. 126),
0
(4.10) Log(A) = [{(sI — A" — (s = I)"'}ds

for A a square matrix.

Next, turning to [2] by Cappell-Lee-Miller, let P([a, b], Lag(V)?) be the set
of continuous piece-wise smooth paths f : [a,b] — Lag(V) x Lag(V) given
parameterically as f(t) = (I1(t),l2(t)),a < t < b, so that 1(t) and ls(t)
can regarded as piece-wise smoothly varying Largangian planes in V. Here
the status of Lag(V') as V’s Lagrangian Grassmannian manifold plays a role:
P([a,b], Lag(V)?) becomes a topological space when endowed with the piece-
wise smooth topology.

Under these circumstances an integer-valued mapping

(4.11) w: P([a,b], Lag(V)?) — Z

is a (or, as we shall see, "the”) Maslov index for (V, B) if it obeys the following
six axioms which we include here for completeness and motivation:

Axiom 1. For fized k > 0,1 >0 in R, let ¢ : [a.b] — [ka + 1, kb+ 1], so that
composition with 1 maps P([ka + 1, kb + 1], Lag(V)?) to P([a,b], Lag(V)?).

Then we require that

(4.12) u(f o) = p(f).

Axiom 2. Suppose that for all s € [0,1], f(s)(t) € P([a,b], Lag(V)?) such that
f(s) is continuous on [0, 1]. Suppose, too, that for all s1, se € [0, 1], Zf f(s)(t) is
lo(s

given as (11(s)(t),l2(s)(t)), then l1(s1)(a) = l1(s2)(a) and l3(s1)(a) = 2)(a),
and also 11(s1)(b) = l1(s2)(b) and l3(s1)(b) = la(s2)(b). Then

(4.13) p(£(0)) = p(f(1)).
Axiom 3. If f € P([a,b], Lag(V)?) and a < ¢ < b, then
(4.14) 1(f) = p(flia) + 1 flies)-



The real metaplectic group and Feynman’s QM 1959

Axiom 4. Defining P([a,b], Lag(V & W)?) in the obvious manner, with W
being a suitable symplectic space, too, we require that

(4.15) u(f @ g)=p(f)+ulg),

for fog € P([a,b], Lag(VEW)?) in view of the stipulation that f € P([a,b], Lag(V)?
and g € P([a,b], Lag(W)?).

Axiom 5. Let o, : V =V, ie. @ € Sp(V), with T varying continuously and
piece-wise smoothly, and consider the pull-back

(4.16) 2. () = . (L(t), 12(t)) : [a,0] — Lag(V) x Lag(V)
given by

(4.17) 2. (N)(7) = @, (1(1), 12(1));

then

(4.18) (. (f)) = n(f).

Axiom 6. Impart to C ~ R? the symplectic structure given by the rule B(z1,22) =
B((z1,41), (¥2,y2)) = 21y2—22y1 and consider the path fo € P([—7, 7], Lag(C)?)
gwen by fo(t) = (R-1,R-€"). Then

(4.19) p(fo) =1, M(f0|[—§,0]) =0, and M(f0|[0,§}) =1

In the presence of these axioms the authors present the following centrally
important result:

Proposition 2. There exists one, and only one, mapping u, as per (4.11),
satisfying all six of these axioms. Furthermore, if & : P([a,b], Lag(V)?) — Z
satisfies Azioms 1-5, then there exist fized integers A, B such that

(4.20)  &(f) = (A+ B)u(f) + B{dim(l(b) Nl2(b)) — dim(lr(a) Nlz(a))}
where, as before, f(t) = (I1(t),12(t)), a <t <b.

For the proof, consult section 4 of [ ].

Under this regime, it follows that if 7 : Lag(V) — Lag(V) is the natural pro-
jection map from its universal covering space to the Lagrangian Grassmannian

of V', then

@21)  r(x(1), 7 (ls,7(1s)) = 2{m(l1, 1s) + m(ls, 13) +m(ls, 1))},

This result, which is obviously central to our purposes, is ultimately a con-
sequence of several theorems stated by Cappell, Lee, and Miller in [ |; see
especially their p. 172. However, a quicker presentation of this material is
given by Maurice de Gosson in [4] (cf. p. 2, p.5), whose work along these lines
is specifically cited by Cappell-Lee-Miller.
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Now, having reached (4.21), we immediately obtain from (4.6) that, for any
01,09 € Sp(V)

~ ~O ~O] ~0207 ~OQ0] ~

(4.22) c(al, 02) = ei%{m(lovlol)er(lo Lo )+m(ly  Llo)}

by setting l; = ly,lo = [§',l3 = [J*’* and just noting that, generally, if | €

Lag(V) is situated above [ € £ag(V') then (tautologically) 7(1) = L.

It is this relation that makes for the possibility of forging a direct connec-
tion with Feynman’s formalism for quantum mechanics, as we shall see in the
upcoming section.

5. A CERTAIN FEYNMAN INTEGRAL

Jean-Marie Souriau’s 1975 article, ”Construction explicite de l'indice de
Maslov. Applications” [20], conbtains in its tenth section, on the harmonic
oscillator, a discussion of the indicated simple quantum mechanical system in
terms of a Feynman integral (and thus a prototype of an oscillatory integral)
and the Arnol’d-Leray-Maslov index m discussed above. Starting with a La-
grangian formalism in which the potential energy is given by the positive qua-
dratic form % >, w?q?, where, working in n dimensions, = (¢, .q) €
R™ and the wy,1 < k < n, provide the oscillator’s proper periods in the form

i—:; of course M stands for mass. Souriau shown that if a, is the diagonal

matrix (e7“*76y ) 1<k 1<n, With dx; the Kronecker delta and 7 indicating the
passage of time, then

(5.1) m(ue, Uprr) = %{2(@01 + - +wg) +iTrace(Log(—as;))}

realizes the aforementioned index, u;, u;,» being suitable Lagrangian planes; in
this connection, compare (4.9). Furthermore, writing ” Ent” for the greatest
integer function, Souriau goes on to establish that

n n WET

+ > Ent(—).

(5.2) m(ug, Wir) = ) -

Then, with this regime in place, Souriau presents the following all-important
result:

Proposition 3. For ¢,q¢ € R™, regarded as position vectors in a quantum
mechanical phase space, and for 1, a state at time t (in a suitable Hilbert
space),

—

— W LT (ug g N iSeon(Gud T
53) V@) = {[1 52 esclnn) e300 [ (eS80

where
(54) Ssou(av (]/; ;7 T) = Z Wk CSC(wkT){Qqu;q - (qlz + (q;q)Q) COS(wkT)},
k=1
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dq' = dq\dq, - - - dq.,, and T is not a half-period for the aforementioned harmonic
oscillator.

For the demonstration, see loc.cit., p. 142, ff.

Manifestly the integral in (5.3) fits into Feynman’s scheme for quantum
mechanics and, as we shall see in our next section, is the final link in the
chain as far as our staed objective is concerned. However, before we carry out
this last step in our argument we take note of the fact that Souriau’s result is
closely related to a more recent result due to Robbin and Salamon: in [17] (cf.
their Theorem 8.5) they present the relation

- ets ulto,t1;H)

. T zS :v:v’) ”
(5.5) Ulti, to; H)(f(2)) = (2n)% [det B2 - f( da’

where z,2’ € R", of course, U(ty,to; H) is an evolution operator (from time
to to time t1) and a generating function for a symplectomorphism qﬁto, H is
a (quadratic) Hamiltonian, B is a time-dependent square matrix that is part

of the decomposition of qﬁfé, S(z, ') is the attendant action (or phase), and,
indeed, pu(to,t1; H) is a Maslov index. Thus, we have in 1/)% a change of state
from time time ¢ to time ¢;, and the unitary operator U(ty, to; H) conveys this
evolution: we are on familiar quantum mechanical ground and if we identify

the phase S(z, x) with the earlier action Ssou( ¢,q;w,7) coming from (5.3),
then it appears that (5.5) coveys essentlally the same information as (5.3).
Thus, with a little more work (which we leave as an exercise for the reader)
it should be possible to tailer what we do here to the setting considered by
Robbin and Salamon.

6. FrRoM WEIL TO FEYNMAN

With Proposition 3 in place, specifically (5.3), and with (4.22) available, we
are at last in a position to write down the direct connection between Weil’s
metaplectic group’s defining 2-cocycle and the indicated facets of quantum
mechanics Feynman’s idiom. To wit:

—01 —0201 —0

-
Proposition 4. Write w, ,w,, ,wW,,,, for the data w = (w1, -+ ,wy) cor-
~ Nal ~O1 ~O201 ~NO201 ~

respondmg to respectwely, m(lo, Ly ),m(ly , 1y ),m(ly ,lo), taking uy =
~O20 1 o

~0201 ~
lo, Ur, = lo DUy = lo y Urgoy = Lo 5 w0 =1y ,u; = lo, again respec-
tively. Then, for all 01,09 € Sp(V'),

—01 —0201 —0

{ITr_ (@0 )i(@os >k(wm>k|csc<<wo DTy ese((@ar
(87"3) wn,l (q 1)907(,201 (62)57(63

0 1
kTozo1) CSC((Z’:HMH JeT|}2

) X
)

0(0'1,0'2) =

o et

7 201 — 7 =0
XfRS Yo (11)@0(‘12)50(‘13)62{Swu(q1q1 5t o)+ M(qz L ’TQ”HSSW(%’%'W"NI’T)}d(hd(Izd(M

(6.1)
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where 5]., q;-, 7 =1,2,3, range over R™ and the pairs wTUl,wO; Pr ooy P05 £, &
are the indicated instances of V¥, ., (t = 0) as given in (5.8) (which is to say
that we have opted for p,& to mitigate an even more cumbersome expression:
these are just the appropriate ¥’s in (5.3)).

Proof: With the stated assignment in place, solve (5.3) for ez ™(to:ur)
letting 7 take on the values given above. Then the result follows directly from
(4.22) plus an obvious application of Fubini’s Theorem.

For notational convenience we can restate our result more compactly as fol-
lows, using the usual multi-index conventions and some obvious abbreviations:

—0201 —0

ag
| e5C(Wy To1) SSC(Wg,  Tosr) (W0, )}

—01—0201—0

dova) = ()3 120 5n Yo
Y

wﬂ'(yl (31)907',,261 (52)57 (53)

- —/ —/ | i(go 090 oy, , — =/
X fR3n ¢0(Q1)900(Q2)§0(Q3)62(S LhSTEIES )dqu%d%‘

(6.2)

In view of our remarks at the close of the preceding section and the theorems
of Cappell-Lee-Miller discussed above, our relations (6.1), (6.2) should be eas-
ily amenable to translation into the language of Robbin-Salamon (cf. (5.5)),
setting the stage for an interpretation of the foregoing in terms of oscillatory
integrals, but, in any event, we have in these identities, i.e. in Proposition 4,
a direct formulaic connection between Weil’s 2-cocycle ¢ € H?(Sp(V'),Z) and
a Feynman integral. Turning the tables, this relation should also make for an
evaluation scheme for the indicated Feynman integrals in terms of the 2-values
2-cocycle: ¢ = +£1 after all, and this is promising in its own right.
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