Regular Semigroups with a $S^0 -$ Orthodox Transversal

K. Indhira and V. M. Chandrasekaran

School of Advanced Sciences
VIT University
Vellore-632 014, India
vmcsn@vit.ac.in

Abstract

In this paper, we consider another generalization for quasi-ideal orthodox transversal, the so-called S^0-orthodox transversals. We give a structure theorem for regular semigroups with S^0-orthodox transversals. If S^0 is a S^0-orthodox transversal of S then S can be described in terms of S^0.

Mathematics Subject Classification: 20M10

Keywords: regular semigroup; quasi-ideal; inverse transversal; orthodox transversal

1 Introduction

Let S be a regular semigroup and S^0 be a regular subsemigroup of S. A natural question that has been considered by many authors is to what extent is S determined by S^0? The concept of an inverse transversal is one of the answer to this question. Recall that an inverse transversal of a regular semigroup S is an inverse subsemigroup S^0 that contains precisely one inverse for every $x \in S$. In 1982, Blyth and McFadden introduced the class of regular semigroups with an inverse transversal [1].

Recently, the concept of inverse transversal was generalized by many authors [2-10]. In particular, the concept of orthodox transversals was introduced by Chen Jianfei [2] as a generalization of inverse transversals. Chen Jianfei obtained an excellent structure theorem for regular semigroups with quasi-ideal orthodox transversals. In 2007, Xiangjun Kong [7] constructed regular semigroups with quasi-ideal orthodox transversals by a simpler format set. In 2009, Xiangjun Kong and Xianzhong Zhao [10] gave a structure theorem for regular semigroups with quasi-ideal orthodox transversals by two orthodox
semigroups. Hence the general case of orthodox transversals is to be considered. The main results are the sets

\[I = \{ aa^0 : a \in S, a^0 \in V(a) \cap S^0 \} \]

and

\[\Lambda = \{ a^0 a : a \in S, a^0 \in V(a) \cap S^0 \} \]

are two components of regular semigroups with orthodox transversals. Chen-Jianfei [2] have shown that \(I \) and \(\Lambda \) are subbands if \(S^0 \) is a quasi-ideal orthodox transversal of \(S \). Though each element of the sets \(I \) and \(\Lambda \) is an idempotent, they are necessarily subbands of \(S \). In 2001, Chen Jianfei and Guo Yugi [3] shown that, if \(S^0 \) is an orthodox transversal of \(S \), then the semi bands \(\langle I \rangle \) and \(\langle \Lambda \rangle \) generated by \(I \) and \(\Lambda \) respectively are bands. In this paper, we consider another generalization for quasi-ideal orthodox transversal, called \(S^0 \)-orthodox transversals. We give a structure theorem for regular semigroups with \(S^0 \)-orthodox transversals. This is also one of the answer to our question. That is, if \(S^0 \) is a \(S^0 \)-orthodox transversal of \(S \) then \(S \) can be described in terms of \(S^0 \).

Section 2 presents some necessary notation and known results. In section 3, we introduce two new subclasses, \(S^- \)-orthodox transversals and \(S^0^- \)-orthodox transversals of orthodox transversals and we obtain some basic properties of \(I \) and \(\Lambda \) when \(S \) is an \(S^0^- \)-orthodox transversal. In section 4, we give a structure theorem for regular semigroup with \(S^0^- \)-orthodox transversals. When \(S^0 \) is a quasi ideal of \(S \), our theorem simplifies considerably.

2 Preliminaries

We adopt the terminology, notation and results of [2] and [3].

Definition 2.1 Let \(S \) be a semigroup and \(S^0 \) a subsemigroup of \(S \). We call \(S^0 \) an orthodox transversal of \(S \) if the following conditions are satisfied.

(i) \(V_{S^0}(x) \neq \phi \) for all \(x \in S \).

(ii) if \(x, y \in S \) and \(\{ x, y \} \cap S^0 \neq \phi \), then \(V_{S^0}(x)V_{S^0}(y) \subseteq V_{S^0}(yx) \).

Note that if \(S^0 \) is an orthodox transversal of \(S \), then \(S \) is regular by (i) and \(S^0 \) is an orthodox subsemigroup of \(S \) by (ii).

Theorem 2.2 Let \(S \) be a regular semigroup and \(S^0 \) a quasi-ideal orthodox transversal of \(S \). Then
(i) \(I \cap \Lambda = E(S^0) \)
(ii) \(I = \{ e \in E(S) : (\exists e^* \in E(S^0)), eLe^* \} \)
\[\Lambda = \{ f \in E(S) : (\exists f^+ \in E(S^0)), fRf^+ \} \]
(iii) \(IE(S^0) \subseteq I, E(S^0)\Lambda \subseteq \Lambda \).
(iv) \(I \) and \(\Lambda \) are subbands of \(S \).

Theorem 2.3 Let \(S^0 \) be a quasi-ideal orthodox transversal of a regular semigroup \(S \). Then

(i) if \(e \in I \) (or \(\Lambda \)) then \(V_{S^0}(e) \subseteq E(S^0) \).
(ii) if \(x \in S \) and \(x^0 \in V_{S^0}(x) \), then \(V_{S^0}(x) = V_{S^0}(x^0)x^0V_{S^0}(xx^0) \).
(iii) if \(V_{S^0}(x) \cap V_{S^0}(y) \neq \phi \) for any \(x, y \in S \), then \(V_{S^0}(x) = V_{S^0}(y) \).

Theorem 2.4 Let \(S^0 \) be an orthodox transversal of \(S \), then the Green relation \(\mathbb{H} \) on \(S \) saturates \(S^0 \). (That is, \(S^0 \) is a union of some \(\mathbb{H} \)-classes on \(S \).) In particular, the maximum idempotent-separating congruence on \(S \) saturates \(S^0 \).

Theorem 2.5 Let \(S^0 \) be an orthodox transversal of \(S \). Then \(S \) is an orthodox semigroup if and only if for every \(a, b \in S \), \(V_{S^0}(a)V_{S^0}(b) \subseteq V_{S^0}(ba) \).

Lemma 2.6 If \(S^0 \) is an orthodox transversal of \(S \) then for any \(a, b \in S^0 \), \(V(a) \cap V(b) \neq \phi \Rightarrow V_{S^0}(a) = V_{S^0}(b) \).

Lemma 2.7 Let \(S^0 \) be an orthodox transversal of \(S \). For \(e \in S \), if \(V_{S^0}(e) \cap E(S^0) \neq \phi \), then \(V_{S^0}(e) \subseteq E(S^0) \).

Theorem 2.8 Let \(S^0 \) be an orthodox transversal of \(S \). The semiband \(\langle I \rangle \) (respectively \(\langle \Lambda \rangle \)) generated by \(I \) (respectively \(\Lambda \)) is a subband of \(S \).

Note that if \(S^0 \) is an orthodox transversal of \(S \) then \(I \) is a band if and only if \(E(S^0)I \subseteq I \).

3 \(S^0 \)– ORTHODOX TRANSVERSALS

Definition 3.1 Let \(S^0 \) be an orthodox transversal of \(S \). \(S^0 \) is said to be an \(S \)–orthodox transversal of \(S \) if \(I \) and \(\Lambda \) are subbands of \(S \).

Definition 3.2 Let \(S^0 \) be an \(S \)–orthodox transversal of \(S \). Then \(S^0 \) is said to be an \(S^0 \)–orthodox transversal of \(S \) if the regular semigroup \(S^0SS^0 \) is an orthodox transversal of \(S \).
It is clear that a quasi-ideal orthodox transversal is an S^0—orthodox transversal. We denote S^0SS^0 by U.

Lemma 3.3 Let S^0 be an S^0—orthodox transversal of S. If $i \in I$, then iRe for some $e \in E(U)$ implies $i \in E(U)$; if $\lambda \in \Lambda$, then λLe for some $e \in E(U)$ implies $\lambda \in E(U)$.

Proof. If iRe then $i = ei = eii^* \in S^0SS^0 = U$, and hence $i \in E(U)$. The second statement can be proved dually.

Lemma 3.4 Let S^0 be an S^0—orthodox transversal of S. If $i \in I$ (or Λ) then $V_{S^0}(i) \subseteq E(U)$.

Proof. Let $i \in I$. Take $i^* \in E(S^0)$ such that iLi^*, and suppose that $x \in V_{S^0}(i)$ and $x^0 \in V_{S^0}(x)$. Since $x^0x \in E(S^0)$, $x^0xi \in S^0SS^0 = U$ and hence $x^0xi \in E(U)$. On the other hand, $i^*xx^0 \in E(U)$ since U is orthodox. Therefore,

$$
x^0 = x^0xx^0 = x^0xiix^0 \text{ since } x \in V_{S^0}(i) = x^0xi.i^*xx^0 \text{ since } iLi^* = E(U).E(U) \subseteq E(U).
$$

Therefore, $x \in E(U)$, since U is orthodox. Thus $V_{S^0}(i) \subseteq E(U)$.

Define

$$
\tilde{I} = \{i \in E(S) : (\exists i^* \in E(U)) : i^*Li\}
\tilde{\Lambda} = \{\lambda \in E(S) : (\exists \lambda^* \in E(U)) : \lambda'^*\Lambda\}
$$

Clearly \tilde{I} and $\tilde{\Lambda}$ are subbands of S.

For each $e \in E(U)$, let

$$
I_e = \{i \in \tilde{I} : (\exists i^* \in E(U)) : i^*Re\}
\Lambda_e = \{\lambda \in \tilde{\Lambda} : (\exists \lambda^* \in E(U)) : \lambda'^*Le\}.
$$

Lemma 3.5 Let S^0 be an S^0—orthodox transversal of S. Then I_e and Λ_e are rectangular bands.

Proof. Let $i, i_1 \in I_e$. Then there exist $i^*, i_1^* \in E(U)$ such that $i^*ReRi_1^*$. Since S^0 is S^0—orthodox transversal, $ii_1 \in I$ and $i^*i_1^* \in E(U)$. Further, since $i^*ReRi_1^*$, $i^*i_1^* = i_1^*Re$. Hence I_e is a band. Let $i, i_1 \in I_e$. Then by Lemma 2.6, $V_{S^0}(ii_1i) = V_{S^0}(i)$. Since $E(U)$ is a band, so it is a semilattice of rectangular
bands. Therefore $ii_i i$ and i are in the same rectangular band. Hence

$$ii' i = i.$$

Therefore I_e is a rectangular band. Similarly, Λ_e is also a rectangular band.

Lemma 3.6 Let S^0 be an S^0-orthodox transversal of S. For any $i_1, i_2, i_3 \in I$ with $i_3 R i_1$, we have $i_3 i_2 = i_1 i_2$. Dually, for any $\lambda_1, \lambda_2, \lambda_3 \in \Lambda$, with $\lambda_3 L \lambda_1$, we have $\lambda_2 \lambda_3 = \lambda_2 \lambda_1$.

Proof. If $i_1, i_2, i_3 \in I$ then for some $i_1^*, i_2^*, i_3^* \in E(U)$, we have $i_1^* L i_1, i_2^* L i_2$ and $i_3^* L i_3$. If $i_3 R i_1$, then by Green’s lemma, $i_3 i_1^* = i_1$, and hence $i_3 i_2 = i_3 (i_1^* i_2) = (i_3 i_1^*) i_2 = i_1 i_2$. The second statement can be proved dually.

Maintaining the notation followed in [5], the following theorem is similar to Theorem of 2.5 of [5].

Theorem 3.7 The association $r(e) \mapsto A_{r(e)}$, $(r(e), r(f)) \mapsto A(r(e), r(f))$ where

$$A_{r(e)} = I_e / R = \{ \overline{i} \in I / R : (\exists i^* \in E(U)) i^* R e \}$$

with $\overline{i} = r(e)$ as base point and where the map

$$A(r(e), r(f)) : A_{r(e)} \to A_{r(f)}$$

is given by $\overline{i} A(r(e), r(f)) = \overline{i e}$, defines a functor $A : E(U)/R \to P$.

Dually, the association, $\ell(e) \mapsto B_{\ell(e)}, (\ell(e), \ell(f)) \mapsto B(\ell(e), \ell(f))$, where $B_{\ell(e)} = \bar{\Lambda}_e / L = \{ \overline{\lambda} \in \bar{\Lambda} / L : (\exists \lambda L \in E(U)) \lambda L e \}$ with $\overline{\lambda} = \ell(e)$ as base point, and where the map $B(\ell(e), \ell(f)) : B_{\ell(e)} \to B_{\ell(f)}$ is given by $\overline{\lambda} B(\ell(e), \ell(f)) = \overline{f \lambda}$ defines a functor $B : E(U)/L \to P$.

4 Main Theorem

Let us define S^0-pair for an orthodox semigroup S^0.

Definition 4.1 Let S^0 be an orthodox semigroup. By an S^0-pair (A, B) we mean a pair of functors

$$A : E(S^0)/R \to P, B : E(S^0)/L \to P.$$

Given an S^0-pair (A, B), a $B \times A$ matrix over S^0 is a function
\[* : (b, a) \mapsto b * a : \bigcup_{\ell(e) \in E(S^0)/L} B_{\ell(e)} \times \bigcup_{r(f) \in E(S^0)/R} A_{r(f)} \to S^0 \]

Definition 4.2 Let \((A, B)\) be an \(S^0\)-pair with a \(B \times A\) matrix \(*\) over \(S\). By an *enrichment* \(\xi = \xi(A, B)\) of \((A, B)\) relative to \(*\) we mean a family of maps

\[
A^{x,y}_{b,a} : A_{r(x)} \to A_{r(x,b*a,y)}, \quad B^{x,y}_{b,a} : B_{\ell(y)} \to B_{\ell(x,b*a,y)}
\]

where \(x, y \in S^0, b \in B_{\ell(x)}, a \in A_{r(y)}\), such that

1. \((M_1)\) \(A^{x,y}_{\ell(x),r(y)} = A(r(x), r(xy))\) and \(B^{x,y}_{\ell(x),r(y)} = B(\ell(y), \ell(xy))\),
2. \((M_2)\) if \(xRx.b * a.y\) then \(A^{x,y}_{b,a} = \text{id}\); and if \(yLx.b * a.y\) then \(B^{x,y}_{b,a} = \text{id}\),
3. \((M_3)\) \(A^{x,y}_{b,a} A^{x,y,z}_{c,b,a} = A^{x,y,c,d}_{b,a} A^{x,y}_{c,d}\),
4. \((M_4)\) \(B^{y,z}_{c,d} B^{x,y,c,d}_{b,a} = B^{x,y,c,d}_{c,B^{y,z}_{b,a}}\),
5. \((M_5)\) \(x.b * a.y.c B^{x,y}_{b,a} * d.z = x.b * a A^{y,z}_{c,d} y.c * d.z\)

for all \(x, y, z \in S, b \in B_{\ell(x)}, a \in A_{r(y)}, c \in B_{\ell(y)}, d \in A_{r(z)}\).

Theorem 4.3 Let \(S^0\) be an orthodox semigroup and let \((A, B)\) be an \(S^0\)-pair. Let \(*\) be a \(B \times A\) matrix over \(S^0\) satisfying

1. \((N_1)\) if \(b \in B_{\ell(e)}\) and \(a \in A_{r(f)}\) then \(b * a \in \ell(e) . S r(f)\).
2. \((N_2)\) for any \(b \in B_{\ell(e)}, a \in A_{r(f)}, b * r(f), \ell(e) * a \in \ell(e)r(f)\).

Let \(\xi\) be an enrichment of \((A, B)\) relative to \(*\). Then the set

\[W = W(S^0; A, B; *; \xi) = \{(a, x, b) : x \in S^0, a \in A_{r(x)}, b \in B_{\ell(x)}\} \]

is a regular semigroup under the multiplication

\[(a, x, b)(c, y, d) = \{aA^{x,y}_{b,c}, x.b*c,y, dB^{x,y}_{b,c}\} \quad (4.1) \]

The map \(\eta : S^0 \to W, x\eta = (r(x), x \ell(x))\) is an injective homomorphism of \(S^0\) to \(W\). If we identify \(S^0\) with \(S^0\eta\), via \(\eta\), then \(S^0\) is an \(S^0\)-orthodox transversal of \(S\).

Conversely, every regular semigroup with an \(S^0\)-orthodox transversal can be constructed in this way.
Proof. The associativity of the multiplication follows from \((M_3)\) – \((M_5)\). We first prove that \(\eta\) is an injective homomorphism. Clearly \(\eta\) is one-to-one. Since \(A_{\ell(x),\ell(y)}^{x,y}, B_{\ell(x),\ell(y)}^{x,y}\) are base point preserving function by \((M_1)\), we get

\[
\begin{align*}
x\eta.y\eta &= (r(x), x, \ell(x)) (r(y), y, \ell(y)) \\
&= (r(xy), xy, \ell(xy)) \\
&= (xy)\eta.
\end{align*}
\]

Hence \(\eta\) is an injective homomorphism.

Let \((a, x, b) \in W\). Then \(x \in S^0\), let \(x^* \in V_{S^0(x)}\), by \((N_2)\) and \((M_2)\),

\[
(a, x, b) (r(x^*), x^*, \ell(x^*)) (a, x, b) = (a, xx^*, \ell(x^*)) (a, x, b) = (a, x, b)
\]

and

\[
\begin{align*}
r(x^*), x^*, \ell(x^*)) (a, x, b) (r(x^*), x^*, \ell(x^*)) &= (r(x^*), x^*, \ell(x^*)) (r(x^*), x^*, \ell(x^*)) \\
&= (r(x^*), x^*, \ell(x^*))
\end{align*}
\]

so that \((r(x^*), x^*, \ell(x^*)) \in V_{S^0}((a, x, b))\), since we can identify \(S^0\) with \(S^0 \eta\), \(V_{S^0}((a, x, b)) \neq \emptyset\).

Moreover, for any \((a, x, b) \in W\),

\[
V_{S^0}((a, x, b)) = \{(r(x^*), x^*, \ell(x^*)) : x^* \in V_{S^0}(x)\}.
\]

Hence \(W\) is a regular semigroup. Now let \((a, x, b) \in W\) and \((r(y), y, \ell(y)) \in S^0 \eta \cong S^0\). Let \((r(x^*), x^*, \ell(x^*)) \in V_{S^0}((a, x, b))\) and \((r(y^*), y^*, \ell(y^*)) \in V_{S^0}((r(y), y, \ell(y)))\). Then

\[
(r(x^*), x^*, \ell(x^*)) (r(y^*), y^*, \ell(y^*)) \in V_{S^0}((a, x, b)) V_{S^0}((r(y), y, \ell(y)))
\]

\[
\Rightarrow (r(x^* y^*), x^* y^*, \ell(x^* y^*)) \in V_{S^0}((a, x, b)) V_{S^0}((r(y), y, \ell(y)))
\]

Consider \((r(y), y, \ell(y)) (a, x, b) = (r(yx), yx, bB_{\ell(y),a}^{x,y})\) by \((N_2)\) and \((M_2)\). Next we prove that \((r(x^* y^*), x^* y^*, \ell(x^* y^*)) \in V_{S^0}((r(yx), yx, bB_{\ell(y),a}^{x,y}))\). But this is immediately follows, since \(S^0\) is an orthodox semigroup and by \((M_2)\) and \((N_2)\).

Therefore, for any \((a, x, b) \in W\), \((r(y), y, \ell(y)) \in S^0 \eta \cong S^0\),

\[
V_{S^0}((a, x, b)) V_{S^0}((r(y), y, \ell(y))) \subseteq V_{S^0}((r(y), y, \ell(y))(a, x, b))
\]

Hence \(S^0\) is an orthodox transversal.
Note that by \((M_2)\),

\[
E(W) = \{(a, x, b) \in W : x.(b*a).x = x\}.
\]

Consider the sets

\[
I = \{(a, x, b) \in E(W) : (\exists((r(x_1), x_1, \ell(x_1))) \in E(S^0) (a, x, b)L(r(x_1), x_1, \ell(x_1))}\}
\]

\[
\Lambda = \{(c, y, d) \in E(W) : (\exists((r(y_1), y_1, \ell(y_1))) \in E(S^0) (c, y, d)R(r(y_1), y_1, \ell(y_1))}\}.
\]

Let \((a, x, b), (c, y, d) \in I\). Take \((r(x_1), x_1, \ell(x_1)) \in E(S^0)\) such that \((r(x_1), x_1, \ell(x_1)) \in L(a, x, b)\), then

\[
(a, x, b)(c, y, d) = (a, x, b)(r(x_1), x_1, \ell(x_1))(c, y, d)
\]

But \((r(x_1), x_1, \ell(x_1)) \in E(S^0)\) by \((N_2)\). Thus

\[
(a, x, b)(c, y, d) = (a, x, b)(r(x_1), x_1, \ell(x_1)) \subseteq IE(S^0) \subseteq I,
\]

by Theorem 2.2(iii). Hence \(I\) is a band. Similarly, we can prove \(\Lambda\) is a band. So \(S^0\) is a \(S\)–orthodox transversal of \(S\). Since \(S^0\) is an orthodox transversal of \(S\), \(S^0WS^0\) is a regular subsemigroup of \(S\). Let \((a, x, b) \in W, (r(x_1), x_1, \ell(x_1)), (r(x_2), x_2, \ell(x_2)) \in S^0WS^0\), then

\[
(r(x_1), x_1, \ell(x_1))(a, x, b)(r(x_2), x_2, \ell(x_2)) = (r(m), m, \ell(m)) \text{ by \((N_2)\)}
\]

where \(m = x_1.\ell(x_1) * a.x.b * r(x_2).x_2 \in S^0WS^0\).

Therefore,

\[
U = S^0WS^0 = S^0\eta.W.S^0\eta
\]

\[
= \{(r(m), m, \ell(m)) : m \in S^0WS^0\}.
\]

By \((N_2)\), \(U\) is an orthodox transversal of \(W\). Let \((A, B)\) be an \(U\)–pair with a \(B \times A\) matrix \(*\) over \(U\) and \(\xi = \xi(A, B)\) be an enrichment of \(A, B\) relative to \(*\).

Then the set

\[
\mathcal{W} = \mathcal{W}(U; A, B, *, \xi) = \{((a, x, b) : x \in U, a \in A_{r(x)}, b \in B_{\ell(x)}\}
\]

is a regular semigroup under the multiplication given by (4.1) and \(U\) is an
orthodox transversal of \mathbb{W}.

Conversely, suppose that S^0 is an S^0—orthodox transversal of S. Let (A, B) be the S^0SS^0—pair defined in Theorem 3.7, we define a $B \times A$ matrix λ over $S^0SS^0 = U$ as follows. Fix an R— invariant map $\alpha : \mathbb{T} \rightarrow \mathbb{T}$ so that α is constant on each R— class of \mathbb{T}. Similarly fix an L— invariant map $\beta : \overline{\Lambda} \rightarrow \overline{\Lambda}$ so that β is constant on each L— class of $\overline{\Lambda}$. For each $\overline{\lambda} \in B_{\ell(e)}$, $\overrightarrow{i} \in A_{r(f)},$

define

$$\overline{\lambda} * \overrightarrow{i} = (\lambda \beta)(i \alpha).$$

Clearly λ is well defined. For, if $\overline{\lambda}_1 = \overline{\lambda}_2$, $\overrightarrow{i}_1 = \overrightarrow{i}_2$ then $\lambda_1 \beta = \lambda_2 \beta$, $i_1 \alpha = i_2 \alpha$ and so $((\lambda \beta)(i \alpha)) = ((\lambda_2 \beta)(i_2 \alpha))$. We show that λ satisfies (N_1) and (N_2).

(N_1) If $\overline{\lambda} \in B_{\ell(e)}$, $\overrightarrow{i} \in A_{r(f)},$

then

$$\overline{\lambda} * \overrightarrow{i} = (\lambda \beta)(i \alpha)$$

easily $(e \lambda \beta)(i \alpha) f \in \ell(e)U r(f),$

(N_2) If $\overline{\lambda} \in B_{\ell(e)}$, $\overrightarrow{i} \in A_{r(f)}$ then

$$\overline{\lambda} * r(f) = (\lambda \beta)(f \alpha)$$

since $(\lambda \beta) \in U = S^0SS^0$. Similarly, $\ell(e) * \overrightarrow{i} \in \ell(e)r(f)$.

For each quadruple $(x, y, \overrightarrow{i}, \overline{\lambda})$, where $x, y \in U$, $\overline{\lambda} \in B_{\ell(x)}$, $\overrightarrow{i} \in A_{r(y)}$, define

$$A^{x,y}_{\lambda, \overrightarrow{i}} : A_{r(x)} \rightarrow A_{r(x, \overrightarrow{i} \cdot y)}$$

and

$$B^{x,y}_{\lambda, \overrightarrow{i}} : B_{\ell(y)} \rightarrow B_{\ell(x, \overrightarrow{i} \cdot y)}$$

by

$$\overrightarrow{w} A^{x,y}_{\lambda, \overrightarrow{i}} = \overrightarrow{w} h \text{ and } \overrightarrow{w} B^{x,y}_{\lambda, \overrightarrow{i}} = \overrightarrow{k w}$$

where $h \in \mathbb{T}$, $k \in \overline{\Lambda}$ are such that $hRx \lambda iy Lk \in S$. These maps are well defined. For, if $\overrightarrow{w}_1 \in A_{r(x)}$ and $h_1 \in \mathbb{T}$ are such that $\overrightarrow{w} = \overrightarrow{w}_1$ and $\overrightarrow{h} = \overrightarrow{h}_1$ with $hRx \lambda iy Lh_1$, then by Lemma 3.6, $wRw_1 \Rightarrow wh = w_1h$. Since $hRh_1 \Rightarrow w_1hRw_2h$, $whRw_1h$, and hence $\overrightarrow{w} h = w_1h$. We show that $\xi = \{A^{x,y}_{\lambda, \overrightarrow{i}}, B^{x,y}_{\lambda, \overrightarrow{i}}\}$ is an enrichment of (A, B) relative to λ. Clearly (M_1) holds. To verify (M_2), take any

$$A^{x,y}_{\lambda, \overrightarrow{i}} : A_{r(x)} \rightarrow A_{r(x, \overrightarrow{i} \cdot y)}$$
with \(xRx, \overrightarrow{\lambda} \ast i, y \), and let \(h \in T \) be such that \(hRx \lambda iy \). Then for any \(\overline{w} \in A_r(x) \),

\[
\overline{w} A_{\overrightarrow{\lambda}, i}^{x,y} = \overline{w} \overrightarrow{h} = \overline{w},
\]

since by Lemma 3.5, \(wRwh \). Hence \(A_{\overrightarrow{\lambda}, i}^{x,y} = id \). Dually, we have \(B_{\overrightarrow{\lambda}, i}^{x,y} = id \) whenever \(yLx. \overrightarrow{\lambda} \ast i, y \).

Now let

\[
W = W(U, A, B, \ast, \xi) = \{ (\overrightarrow{\lambda}, x, \overrightarrow{i}) : x \in U; \overrightarrow{\lambda} \in A_r(x), \overrightarrow{i} \in B_{\ell(x)} \}
\]

and define a multiplication on \(W \) by (4.1). Note that \(\xi \) satisfies \((M_3) - (M_5) \) if and only if the multiplication on \(W \) is associative. We verify \((M_3) - (M_5) \) by establishing the associativity of the multiplication. To this end, define \(\gamma : S \rightarrow W \) by

\[
s\gamma = (ss^s, s^{00}, s^*s)
\]

where \(s^0 \in V_U(s) \) and \(s^{00} \in V_U(s^0) \). Then \(\gamma \) is bijective map with inverse \(\mu : W \rightarrow S \) given by \((\overrightarrow{\lambda}, x, \overrightarrow{i})\mu = \lambda xi \). Multiplication is preserved by \(\gamma \), since

\[
(s\gamma)(t\gamma) = (ss^s, s^{00}, s^*s)(tt^t, t^{00}, t^*t) = (ss^sh, s^{00}s^*s \ast tt^t, t^{00}, t^*t) = (ss^sh, (st)^{00}, kt^*t) = (st)\gamma,
\]

the last step follows, since \(U \) is an orthodox transversal and \(s^0 \in V_U(s) \), \(s^{00} \in V_U(s^0) \), \(t^0 \in V_U(t) \), \(t^{00} \in V_U(t^0) \), \(h \in T \), \(k \in \Lambda \) with \(hRs^{00}.(s^*s \ast t^*)t^{00}Lk \). This implies that the multiplication in \(W \) is associative and \(\gamma \) is an isomorphism of regular semigroups. In particular \(\xi \) satisfies \((M_3) - (M_4) \) and hence \(\xi \) is an enrichment of \((A, B) \) relative to \(\ast \). Hence by the direct part of the theorem, \(\overline{W} = \overline{W}(U; A, B; \ast, \xi) \) is a regular semigroup with an orthodox transversal \(U = S^0SS^0 \simeq S^0\eta.W.S^0\eta \), since \(S \simeq W \) and the proof of the theorem is complete.

Lemma 4.4 The maps \(\{ A_{a,b}^{x,y}, B_{a,b}^{x,y} \} \) in the statement of the Theorem 4.3 are base point preserving maps if and only if \(S^0 = S^0\eta \) is a quasi-ideal of \(W \).

Proof. Suppose that the maps \(\{ A_{a,b}^{x,y}, B_{a,b}^{x,y} \} \) are base point preserving maps.
Let \((r(x), x, \ell(x)), (r(y), y, \ell(y)) \in S^0\) and \((a, z, b) \in W\). Then
\[
(r(x), x, \ell(x))(a, z, b)(r(y), y, \ell(y)) = (r(m), m, \ell(m)) \in S^0(= S^0\eta)
\]
where \(m = x.\ell(x) * a.x.bE_{\ell(x), a} * r(y).y \in S\). So \(S^0\) is a quasi-ideal of \(W\).

Conversely, assume that \(S^0\) is a quasi-ideal of \(W\). Then
\[
(r(x)A_{a,b}^{x,y}, x.a * b.y, \ell(y)B_{a,b}^{x,y}) = (r(x), x, a)(b, y, \ell(y))(r(f), f, \ell(f)) \text{ by } (M_2) \text{ and } (N_2)
\]
where \(e, f \in E(S^0)\) are such that \(eRx, fLy\).

This implies
\[
r(x)A_{a,b}^{x,y} = r(x.a * b.y) \text{ and } \ell(y)B_{a,b}^{x,y} = \ell(x.a * b.y).
\]

Hence \(A_{a,b}^{x,y}, B_{a,b}^{x,y}\) are base point preserving maps.

Note that when \(S^0\) is a quasi-ideal orthodox transversal of \(S\) then \(S^0S^0 = S^0\). So \(S^0\) is both an \(S\)–orthodox transversal and \(S^0\)–orthodox transversal. The following is the quasi-ideal version of the main theorem.

Theorem 4.5 Let \(S^0\) be an orthodox semigroup and let \((A, B)\) be an \(S^0\)–pair. Let \(*\) be a \(B \times A\) matrix over \(S\) satisfying \((N_1), (N_2)\) and the following condition:

\[
(N_3) \quad (i) e.(b * aA(r(f), r(f')))f' = e.b * a.f' \\
(ii) e'.(bB(\ell(e), \ell(e') * a)f = e'.b * a.f
\]

for all \(e, e', f, f' \in E(S^0)\) with \(\ell(e) \geq \ell(e'), r(f) \geq r(f'), a \in A_r(f), b \in B_{\ell(e)}\). Then
\[
W = W(S; A, B, *) = \{(a, x, b) : x \in S^0; a \in A_r(x), b \in B_{\ell(x)}\}
\]
is a regular semigroup under the multiplication
\[
(a, x, b)(c, y, d) = (aA(r(x), r(z)), z, dB(\ell(y), \ell(z))
\]
where \(z = x.b * c.y\). The map \(\eta : S \to W, x\eta = (r(x), x, \ell(x))\) is an injective
homomorphism of S to W. If the identity S with S_η, via η, then S is a quasi-ideal orthodox transversal of W.

Conversely, every regular semigroup with a quasi-ideal orthodox transversal can be constructed in this way.

Proof. For each quadruple (x, y, b, a), where $x, y \in S, b \in B_{\ell(x)}, a \in A_{r(y)}$, let

$$A_{b,a}^{x,y} = A(r(x), r(x.b*a.y)) \text{ and } B_{b,a}^{x,y} = B(\ell(y), \ell(x.b*a.y)).$$

Clearly the system $\xi = \xi(A, B) = \{A_{b,a}^{x,y}, B_{b,a}^{x,y}\}$ satisfies (M_1) and (M_2). Using (N_3) we get

$$(x.b*a.y)(c.B_{b,a}^{x,y} * d)z = (x.b*a.y)(cB(\ell(y), \ell(x.b*a.y)))z * d$$

$$= x.b*a.y.c * d.z$$

$$= x.b*aA(r(y), r(y.c * d.z))(y.c * d.z)$$

$$= (x.b*aA_{c,d}^{y,z})(y.c * d.z),$$

which implies (M_3) - (M_5). Thus ξ is an enrichment of (A, B) relation to \ast. Then $W = (S^0, A, B; \ast) = W(S^0; A, B, \ast, \xi)$ and the direct part of the theorem follows from the direct part of Theorem 4.3 except perhaps the fact that $S(= S_\eta)$ is a quasi-ideal of W. But this is immediate from Lemma 4.4, since $A_{b,a}^{x,y}, B_{b,a}^{x,y}$ are base point preserving maps.

Conversely, suppose S^0 is a quasi-ideal orthodox transversal of S. Let (A, B) be an S^0–pair with a $B \times A$ matrix over S^0, as in the converse part of Theorem 4.3. Then \ast satisfies (N_1) and (N_2). We now show that \ast also satisfies (N_3).

Take any $\lambda \in B_{\ell(e)}$, $i \in A_{r(f)}$ and $r(f) \geq r(f')$. Then $\lambda^i A(r(f), r(f')) = \bar{if}^f$ and,

$$e(\lambda^i A(r(f), r(f'))f') = e((\lambda^i \bar{if})f')f'$$

$$= e((\lambda \bar{i}(\alpha)f')f'$$

$$= e((\lambda \bar{i}(\alpha)f')f' \text{ by Lemma 3.3.}$$

$$= e(\lambda \bar{i} f')f'.$$

Hence (N_3)(i) is satisfied. A dual argument proves (N_3)(ii). Hence by the direct part of the theorem, $W = W(S; A, B; \ast)$ is a regular semigroup containing $S(= S_\eta)$ as a quasi-ideal orthodox transversal of W. Finally, as in the proof of Theorem 4.3 the map $\gamma : T \to W$ is an isomorphism of regular semigroups.
References

Received: January, 2012