Bi-Distance Pattern Uniform Number

K. A. Germina

Research Center & PG Department of Mathematics
Mary Matha Arts & Science College (Kannur University)
Mananthavady - 670645, India
srgerminaka@gmail.com

Rency Kurian

Department of Mathematics
Nirmalagiri College
Nirmalagiri, Kerala, India
rencykuryan@gmail.com

Abstract

A graph $G = (V, E)$ is Bi-Distance Pattern Uniform if there exists $M \subseteq V(G)$ such that the M-distance pattern $f_M(u) = \{d(u, v) : v \in M\}$ is identical for all u in M and $f_M(v)$ is identical for all v in $V - M$. The set M is called Bi-DPU set. The least cardinality of Bi-DPU set in G is called the Bi-DPU number of G. In this paper, we initiate a study on Bi-DPU number of different classes of graphs.

Mathematics Subject Classification: 05C78

Keywords: Bi-DPU set, Bi-DPU number

1 Introduction

For all terminology and notation in graph theory, we refer the reader to Chartrand [1]. Unless mentioned otherwise, all graphs considered in this paper are finite, simple and connected.

Given an arbitrary non-empty subset M of vertices in a graph $G = (V, E)$, each vertex u in G is associated with the set $f_M(u) = \{d(u, v) : v \in M\}$, where $d(u, v)$ denotes the usual distance between the vertices u and v in G, is called the M-distance pattern of u [3]. Germina and Rency [2] defined Bi-Distance Pattern Uniform (Bi-DPU) Graph as follows: Let $G = (V, E)$ be a (p, q) graph...
and M be any non-empty subset of $V(G)$. Then, the M-distance pattern of u is the set $f_M(u) = \{d(u, v) : v \in M\}$, where $d(u, v)$ denotes the usual distance between u and v in G. If $f_M(u)$ is identical for all $u \in M$ and $f_M(v)$ is identical for all $v \in V - M$, then G is called a Bi-distance pattern uniform (Bi-DPU) graph. The set M is called the Bi-DPU set. We need the following known results.

Theorem 1.1. [2] A non self-centered graph G is a Bi-DPU graph if and only if G has exactly two eccentricities and $\text{Cen}(G)$ is self-centered.

Theorem 1.2. [2] A tree T is a Bi-DPU graph if and only if $T \cong K_{1,n}$ or $B_{m,n}$ where $B_{m,n}$ is a bistar.

1.1 Bi-DPU numbers of different classes of graphs

Definition 1.3. Bi-DPU number of a graph G, denoted by $\varsigma_B(G)$, is the minimum cardinality of a Bi-DPU set in G.

Theorem 1.4. A graph G is a Bi-DPU graph with $\varsigma_B(G) = 1$ if and only if G has at least one vertex of full degree.

Proof. Assume that G has at least one full degree vertex. Let u be a full degree vertex. Choose $M = \{u\}$. Then, $f_M(u) = \{0\}$ and $f_M(v) = \{1\}, \forall v \in V - M$. Hence, $\varsigma_B(G) = 1$. Conversely, let $\varsigma_B(G) = 1$, that is $|M| = 1$. Hence, $f_M(u) = \{0\}$ whenever $u \in M$ and $f_M(v) = \{1\}$ for all $v \neq u$, which implies the vertex in M should necessarily be of full degree. \hfill \square

Corollary 1.5. $\varsigma_B(K_n) = 1$, $\varsigma_B(W_n) = 1$ where $W_n = K_1 + C_n$ is the Wheel graph and $\varsigma_B(K_{1,n}) = 1$.

Corollary 1.6. Given a fixed natural number p, for a (p, q) graph with Bi-DPU number 1, we have, $p - 1 \leq q \leq \frac{p(p-1)}{2}$.

Proof. We have, $K_{1,p-1}$ and K_p are Bi-DPU graphs with Bi-DPU number 1 of smallest and largest size respectively, we get $p - 1 \leq q \leq \frac{p(p-1)}{2}$. \hfill \square

Theorem 1.7. For bistar $B_{m,n}$, $\varsigma_B(B_{m,n}) = 2$.

Proof. Let $B_{m,n}$ be a bistar with Bi-DPU set $M = \{u, v\}$, where u and v are central vertices of $B_{m,n}$. That is, $\varsigma_B(B_{m,n}) \leq 2$. But, $B_{m,n}$ has no full degree vertex, $\varsigma_B(B_{m,n}) \neq 1$. Therefore, $\varsigma_B(B_{m,n}) = 2$. \hfill \square

Theorem 1.8. $\varsigma_B(K_{m,n}) = 2$, $m, n \geq 2$.

Proof. Let \(\{X,Y\} \) be the bipartition of the vertex set of \(K_{m,n} \). Choose \(M = \{u,v\} \) where \(u \in X \) and \(v \in Y \). Then, \(f_M(u) = f_M(v) = \{0,1\} \) and \(f_M(w) = \{1,2\} \) \(\forall w \in V - M \). Hence, \(\zeta_B(K_{m,n}) \leq 2 \). Also, \(K_{m,n} \) contains no full degree vertex, \(\zeta_B(K_{m,n}) \neq 1 \). Hence, \(\zeta_B(K_{m,n}) = 2 \). \(\square \)

Theorem 1.9. \(\zeta_B(C_n) = \begin{cases} \frac{n}{3}, & \text{if } n \text{ is a multiple of 3} \\ \frac{n}{2}, & \text{if } n \text{ is even and not a multiple of 3} \\ n - 1, & \text{if } n \text{ is odd and not a multiple of 3} \end{cases} \)

Proof. Let \(C_n \) be a cycle on \(n \) vertices and \(V(C_n) = \{v_1, v_2, \ldots, v_n\} \).

Case 1: \(n \) is a multiple of 3. Choose \(M = \{v_1, v_4, \ldots, v_{n-2}\} \). Then, for all \(v_i \in M \), \(f_M(v_i) = \{0,3,6,\ldots,\frac{n}{2}\} \) if \(n \) is even and \(\{0,3,6,\ldots,\frac{n}{2}-1\} \) if \(n \) is odd are identical sets.

Also, for all \(v_j \in V-M \), \(f_M(v_j) = \{1,2,4,5,7,8,\ldots,\frac{n-2}{2}\} \) if \(n \) is even and \(\{1,2,4,5,7,8,\ldots,\frac{n-1}{2}\} \) if \(n \) is odd are identical sets. Hence, \(\zeta_B(C_n) \leq \frac{n}{3} \) if \(n \) is a multiple of 3.

Now, we prove that \(\zeta_B(C_n) = \frac{n}{3} \). If possible, choose \(M' \subset V(C_n) \) with \(|M'| < |M| \). Let \(M' = \{u_1, u_2, \ldots, u_l\} \), where \(l < \frac{n}{3} \) and each \(u_j \) is some \(v_i \in V(C_n) \). Then, there exists at least one vertex \(u_j \in M' \) such that \(d(u_j, u_{j+1}) > 3 \). Assume \(d(u_j, u_{j+1}) = 4 \). Let the shortest \(u_j - u_{j+1} \)-path in \(C_n \) be \(u_j v_k v_{k+1} v_{k+2} u_{j+1} \). Then, \(1 \in f_M(v_k) \) and \(1 \notin f_M(v_{k+1}) \), \(M' \) can not be a Bi-DPU set for \(C_n \). Therefore, \(\zeta_B(C_n) = \frac{n}{3} \) whenever \(n \) is a multiple of 3.

Case 2: \(n \) is even and not a multiple of 3. Choose \(M = \{v_2, v_4, \ldots, v_n\} \), the set of all alternate vertices of \(C_n \).

Then, for all \(v_i \in M \),
\[
f_M(v_i) = \begin{cases} \{0,2,4,\ldots,\frac{n}{2}\}, & \text{if } n \text{ is even and } m \text{ is even} \\ \{0,2,4,\ldots,\frac{n-2}{2}\}, & \text{if } n \text{ is even and } m \text{ is odd} \end{cases}
\]

Therefore, \(f_M(v_i) \) are identical sets.

Also, for all \(v_j \in V-M \),
\[
f_M(v_j) = \begin{cases} \{1,3,5,\ldots,\frac{n-2}{2}\}, & \text{if } n \text{ is even and } m \text{ is even} \\ \{1,3,5,\ldots,\frac{n}{2}\}, & \text{if } n \text{ is even and } m \text{ is odd} \end{cases}
\]

Therefore, \(f_M(v_j) \) are identical sets. Hence, \(\zeta_B(C_n) \leq \frac{n}{2} \). Choose \(M' \subset V(C_n) \) with \(|M'| < \frac{n}{2} \) and if possible \(|M'| = \frac{n}{2} - 1 \). Let \(M' = \{u_1, u_2, \ldots, u_l\} \), where each \(u_j \) is some \(v_i \in V(C_n) \). Then, there exists at least one \(u_j \in M' \) such that \(d(u_j, u_{j+1}) \geq 3 \). In this case, let \(d(u_j, u_{j+1}) = 3 \), so that \(3 \in f_{M'}(u_j) \), \(3 \notin f_{M'}(u_{j-1}) \) and hence \(M' \) is not a Bi-DPU set. Now, when \(d(u_j, u_{j+1}) = 4 \), the shortest \(u_j - u_{j+1} \)-path in \(C_n \) is \(u_j v_k v_{k+1} v_{k+2} u_{j+1} \), so that \(1 \notin f_{M'}(v_k) \), \(1 \notin f_{M'}(v_{k+1}) \), \(M' \) is not a Bi-DPU set for \(C_n \). A similar argument follows when \(d(u_j, u_{j+1}) = 5, 6, \ldots, \frac{n}{2} \). Therefore, in all the cases \(|M'| \) is not a Bi-DPU set for \(C_n \). Hence, we conclude that \(\zeta_B(C_n) = \frac{n}{2} \) if \(n \) is even and not a multiple of 3.

Case 3: \(n \) is odd and not a multiple of 3. Choose \(M \) as the set of \(n-1 \)
vertices of C_n. Then, $f_M(v_i) = \{0, 1, 2, \ldots, \frac{n-1}{2}\}$, $\forall v_i \in M$ and $f_M(v_j) = \{1, 2, \ldots, \frac{n-1}{2}\}$, $\forall v_j \in V - M$. Hence, $\varsigma_B(C_n) \leq n - 1$. Choose $M' \subset V(C_n)$ with $|M'| < n - 1$. If M' is a Bi-DPU set for C_n then there are two possibilities. Either the elements of M' are alternate vertices of $V(C_n)$ or there are two elements of $V - M'$ lies between the any two elements of M'. If the elements of M' are alternate vertices of $V(C_n)$ then $|M'| = |V - M'|$, $|V(C_n)|$ is even, which is not possible. If there are two elements of $V - M'$ lies between the two elements of $|M'|$ then, $|V - M'| = 2|M'|$, $|V(C_n)|$ is a multiple of three, which is not possible. Hence, M' is not a Bi-DPU set for C_n. Therefore, $\varsigma_B(C_n) = n - 1$ whenever n is odd and not a multiple of 3.

The shadow graph $S(G)$ of a graph G is obtained from G by adding, for each vertex v of G, a new vertex v', called the shadow vertex of v, and joining v' to the neighbors of v in G.

Theorem 1.10. For the shadow graph $S(K_n)$ of complete graph, $\varsigma_B(S(K_n)) = n$.

Proof. Let the vertices of K_n be $\{v_1, v_2, \ldots, v_n\}$ and the corresponding shadow vertices be $\{v_1', v_2', \ldots, v_n'\}$. Choose $M = \{v_1, v_2, \ldots, v_n\}$. Then, $f_M(v_i) = \{0, 1\}$, $\forall v_i \in M$ and $f_M(v_i') = \{1, 2\}$, $\forall v_i' \in V - M$. Hence, $\varsigma_B(S(K_n)) \leq n$. Choose $M' \subset V(S(K_n))$ such that $|M'| < |M|$.

Case 1: $M' \subset V(K_n)$

Then, there exists at least one $v_i \in V(K_n)$ which does not belong to M' and for $v_i, v_i' \in V - M'$, $f_{M'}(v_i) = \{1\}$ and $f_{M'}(v_i') = \{1, 2\}$. Hence, M' is not a Bi-DPU set.

Case 2: $M' \subset V(S(K_n)) - V(K_n)$

Then, there exists at least one $v_i' \in V(S(K_n)) - V(K_n)$ which does not belong to M' and for $v_i, v_i' \in V - M'$, $f_{M'}(v_i) = \{1\}$ and $f_{M'}(v_i') = \{2\}$. Hence, M' is not a Bi-DPU set.

Case 3: M' consists of vertices of K_n, shadow vertices and $|M'| < n$.

Then, there exists $v_i, v_i' \in V - M'$ and since, v_i is adjacent to all vertices of $V(S(K_n))$ except v_i', $f_{M'}(v_i) = \{1\}$ and $2 \in f_{M'}(v_i')$. Hence, M' is not a Bi-DPU set. Therefore, $\varsigma_B(S(K_n)) = n$.

Theorem 1.11. $\varsigma_B(P_m + P_n) = \begin{cases} 4 & \text{if } m, n \geq 4 \\ 1 & \text{otherwise.} \end{cases}$

Proof. Let $G \cong P_m + P_n$; $V(P_m) = \{u_1, u_2, \ldots, u_n\}$ and $V(P_m) = \{v_1, v_2, \ldots, v_m\}$

Case 1: m or $n < 4$

If m or n less than 4 then G has at least one full degree vertex. Therefore, $\varsigma_B(P_m + P_n) = 1$.

Case 2: $m, n \geq 4$
Let $M = \{u_i, u_{i+1}, v_j, v_{j+1}\}, u_i \in V(P_n), v_j \in V(P_m)$. Then, $f_M(u) = \{0, 1\}$ for all $u \in M$ and $f_M(v) = \{1, 2\}$ for all $v \in V - M$. Then, $\varsigma_B(G) \leq 4$. Next, we prove that $\varsigma_B(G) \neq 4$. Since, G has no full degree vertex, $\varsigma_B(G) \neq 1$. Also, $\varsigma_B(G) \neq 2$. For,

Subcase 2.1.1: Choose $M = \{u_i, v_j\}$ where $u_i \in V(P_n)$ and $v_j \in V(P_m)$. Then, $f_M(u_{i+1}) = f_M(u_{i-1}) = f_M(v_{j-1}) = f_M(v_{j+1}) = \{1\}$ and for all other vertices in $V - M$, $f_M(v) = \{1, 2\}$. Hence, M is not a Bi-DPU set.

Subcase 2.1.2: Choose $M = \{u_i, u_j\}$. Then, $f_M(v_k) = \{1\}$ for all v_k, $f_M(u_i) = \{1, 2\}$ where u_i is adjacent to u_i or u_j and $f_M(u_r) = \{2\}$ where u_r is not adjacent to both u_i and u_j. Hence, M is not a Bi-DPU set. Now, $\varsigma_B(G) \neq 3$. For,

Subcase 2.2.1: Choose $M = \{u_i, u_j, v_k\}$. Then, $f_M(v_{k+1}) = f_M(v_{k-1}) = \{1\}$ and $f_M(v_s) = \{1, 2\}$ for all $v_s \in V - M$. Hence, M is not a Bi-DPU set.

Subcase 2.2.2: Choose $M = \{u_i, u_j, v_k\}$. Then, $f_M(v_i) = \{1\}$ for all v_i and $f_M(u_k) = \{1, 2\}$ for some $u_k \in V - M$. Hence, M is not a Bi-DPU set. Therefore, we conclude that $\varsigma_B(P_m + P_n) = 4$.

Theorem 1.12. The ladder $L_n \cong P_n \times P_2$ is a Bi-DPU graph if and only if $n \leq 4$ and $\varsigma_B(L_n) = \begin{cases} n & \text{if } n = 1, 2, 4 \\ 2 & \text{if } n = 3 \end{cases}$

Proof. First we prove that L_n is a Bi-DPU graph for $n \leq 4$.

Case 1: When $n = 1$, $L_1 \cong K_2$, by theorem 1.4, L_1 is a Bi-DPU graph, $\varsigma_B(L_1) = 1$.

Case 2: When $n = 2$, $L_2 \cong C_4$, by theorem 1.9, L_2 is a Bi-DPU graph, $\varsigma_B(L_2) = 2$.

Case 3: $n = 3$. Let v_1, v_2, v_3 and v_4 be the vertices of L_3 corresponding to the eccentricity 3 and u_1 and u_2 be the vertices of L_3 corresponding to the eccentricity 2. Choose $M = \{u_1, u_2\}$. Then, $f_M(u_1) = f_M(u_2) = \{0, 1\}$ and $f_M(v) = \{1, 2\}$ for all $v \in V - M$. Hence, M is a Bi-DPU set for L_3 and $\varsigma_B(L_3) \leq 2$. Since, L_3 has no full degree vertex, $\varsigma_B(L_3) \neq 1$. Therefore, $\varsigma_B(L_3) = 2$.

Case 4: $n = 4$. Let v_1, v_2, v_3 and v_4 be the vertices of L_4 corresponding to the eccentricity 4 and u_1, u_2, u_3 and u_4 be the vertices of L_4 corresponding to the eccentricity 3. Choose $M = \{u_1, u_2, u_3, u_4\}$. Then, $f_M(u_i) = \{0, 1, 2\}$ for $i = 1, 2, 3, 4$ and $f_M(v_j) = \{1, 2, 3\}$ for $j = 1, 2, 3, 4$. Therefore, M is a Bi-DPU set for L_4 and $\varsigma_B(L_4) \leq 4$. We prove $\varsigma_B(L_4) \neq 4$. Since, L_4 contains no full degree vertex, $\varsigma_B(L_4) \neq 1$. Also, $\varsigma_B(L_4) \neq 2$. For,

Subcase 4.1.1: Choose $M = \{v_j, u_i\}$. Then, there exists $v_k \in V - M$ such that $4 \in f_M(v_k)$ and $4 \notin f_M(v)$ for all $v \in (V - M) - \{v_k\}$. Hence, M is not a Bi-DPU set for L_4.

Subcase 4.1.2: Choose $M = \{v_i, v_j\}$. If $d(v_i, v_j) = 1$ or 3 then $4 \in f_M(v_k)$ for all $v_k \in V - M$ and $4 \notin f_M(u_i)$ for all $u_i \in V - M$. If $d(v_i, v_j) = 4$ then
\[f_M(u_1) = f_M(u_3) = \{1, 3\} \text{ and } f_M(u_2) = f_M(u_4) = \{2\}. \] Hence, \(M \) is not a Bi-DPU set for \(L_4 \).

Subcase 4.1.3: Choose \(M = \{u_i, u_j\} \). Then, there are two vertices \(v_l, v_k \in V - M \) such that \(3 \in f_M(v_l), f_M(v_k) \) and \(3 \not\in f_M(v) \) for all \(v \in (V - M) - \{v_l, v_k\} \). Hence, \(M \) is not a Bi-DPU set for \(L_4 \).

Now, \(\varsigma_B(L_4) \neq 3 \). For,

Subcase 4.2.1: Choose \(M = \{u_i, u_j, v_k\} \). If any two vertices in \(M \) are adjacent then \(f_M(u) \) is not identical for all \(u \in M \). If all the vertices in \(M \) are non-adjacent then there exists a vertex \(v_s \in V - M \) such that \(4 \in f_M(v_s) \) and \(4 \not\in f_M(v) \) for all \(v \in (V - M) - \{v_s\} \). Hence, \(M \) is not a Bi-DPU set for \(L_4 \).

Subcase 4.2.2: Choose \(M = \{v_i, v_j, u_k\} \). If \(v_i \) is adjacent to both \(u_j \) and \(v_k \) then \(f_M(v_i) = \{0, 1\} \) and \(f_M(v_j) = f_M(u_k) = \{0, 1, 2\} \). If any two vertices in \(M \) are adjacent then \(f_M(v_i) \neq f_M(v_j) \neq f_M(u_k) \). If no two elements in \(M \) are adjacent and \(d(v_i, v_j) = 3 \) then \(4 \in f_M(v_s), f_M(v_k) \) and \(4 \not\in f_M(v) \) for all \(v \in (V - M) - \{v_s, v_k\} \). If no two elements in \(M \) are adjacent and \(d(v_i, v_j) = 4 \) then \(4 \in f_M(v_i), f_M(v_j) \) and \(4 \not\in f_M(u_k) \). Hence, \(M \) is not a Bi-DPU set for \(L_4 \).

Therefore, we conclude that \(\varsigma_B(L_4) = 4 \).

Conversely, assume that \(L_n \) is a Bi-DPU graph. We have to prove that \(L_n \) is a Bi-DPU graph only for \(n \leq 4 \). If possible suppose \(n \geq 5 \). Then, \(L_n \) has more than two eccentricities. Hence, by theorem 1.4, \(L_n \) is not a Bi-DPU graph. Therefore, \(L_n \) is a Bi-DPU graph for \(n \leq 4 \). \(\square \)

Acknowledgements

The second author is indebted to the University Grants Commission for granting her Teacher Fellowship under its Faculty Development Programme during XI plan.

References

Received: December, 2011