On the Finite Groupoid $Z_n(t, u)$

L. Pourfaraj

Department of Mathematics
Central Tehran Branch
Islamic Azad University
Tehran, Iran
L.Pourfaraj@iauctb.ac.ir

Abstract

In this paper we study the existence of commuting regular elements in the groupoid $Z_n(t, u)$. We define the notion left (right) commuting regular elements and study its properties. Also we show that $Z_n(t, u)$ contains commuting regular subsemigroup and give a necessary and sufficient condition for the groupoid $Z_n(t, u)$ to be commuting regular.

Mathematics Subject Classification: 15A27, 20M16, 20L05

Keywords: commuting regular semigroup, semigroup, groupoid

1 Introduction

We use S and G to denote a semigroup and a groupoid, respectively. An element x of a semigroup S is called regular if there exists y in S such that, $x = xyx$ [3]. Two elements x and y of a semigroup S are commuting regular if for some $z \in S$, $xy = yzyx$ [2]. A semigroup S is called commuting regular if and only if for each $x, y \in S$ there exists an element z of S such that $xy = yzyx$ [1]. In [2] we show that the existence of commuting regular elements for the loop ring $Z_t[L_n(m)]$ when t is an even perfect number or t is the form of $2^i p$ or $3^i p$ (where p is an odd prime) or in general when $t = p_1^i p_2$ (p_1 and p_2 are distinct odd prime). Let $Z_n = \{0, 1, 2, \ldots, n-1\}$, $n \geq 3$, for $a, b \in Z_n$ define a binary operation $*$ on Z_n as follows $a * b = ta + ub (\text{ mod } n)$ where $t, u \in Z_n$. In [4, 5] the groupoid ($Z_n(t, u), *$) denote by $Z_n(t, u)$ and study their properties. The groupoid $Z_n(t, u)$ is a semigroup if and only if $t^2 \equiv t(\text{ mod } n)$ and $u^2 \equiv u(\text{ mod } n)$ where $t, u \in Z_n \setminus \{0\}$ and $(t, u) = 1$ [5, Theorem 3.1.1].
2 Commuting Regular Elements

In this section the notion of commuting regular elements of groupoid and commuting regular groupoid are defined. Also, some properties of commuting regular on the groupoid $Z_n(t, u)$ are discussed. The proofs are rather easy and one may use the definitions. However, the important examples are mentioned.

Definition 2.1 Two elements x and y of a groupoid G are said to be left commuting regular if for some $z \in G$, $xy = ((yx)z)(yx)$. Similarly right commuting regular if for some $z \in G$, $xy = (yx)(z(yx))$ is defined. Finally two elements x and y are commuting regular if they are both left and right commuting regular.

Definition 2.2 A groupoid G is said to be left commuting regular groupoid if for each $x, y \in G$ there exists $z \in G$ such that $xy = ((yx)z)(yx)$. Similarly, right commuting regular groupoid is defined. A groupoid G is said to be commuting regular groupoid if G is both a left and right commuting regular groupoid.

Example 2.3 Let $G = \{0, 1, 2\}$ be the groupoid given by the table,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

then 0 and 1 are left commuting regular,

$1=1*0=((0*1)*2)*(0*1)=(2*2)=0*2=1$

but, $(0*1)*(2*(0*1))=2*(2*2)=2*0=2$. Also 0 and 2 are right commuting regular,

$1=0*2=(2*0)*(0*(2*0))=2*(0*2)=2*1=1$

but, $((2*0)*0)*(2*0)=(2*0)*2=2*2=0$. Note that 1 and 1 are commuting regular.

Proposition 2.4 Let $(p_1, p_2) = 1$, p_1 and p_2 are prime integer. Then the groupoid $Z_{p_1 p_2}(1, p_1)$ have commuting regular elements.

Proof Suppose that $a = b = kp_2$ where $0 \leq k \leq p_1 p_2$. Therefore

$a^2 = a * a = kp_2 * kp_2 \equiv kp_2 (mod \ p_1 p_2) = a$.

So a is an idempotent element. Then $\{a\}$ is a commuting regular semigroup.

Corollary 2.5 The groupoid $Z_{p^2}(1, p)$ have commuting regular elements.
Proof Suppose that $a = p$ and $b = 0$, then $a * b = (b * a) * 1 * (b * a)$. Also $b * a = (a * b) * p(p - 1) * (a * b)$.

Proposition 2.6 The groupoid $Z_n(1, p)$ have commuting regular elements where $p|n$.

Proof Let $n = tp$. Then $t \in Z_n$ and $t * t = t + tp \equiv t (\text{mod } n)$. Thus $\{t\}$ is a commuting regular semigroup.

Example 2.7 The groupoid $Z_{10}(1, 5)$ is given by the following table,

<table>
<thead>
<tr>
<th></th>
<th>0 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 5 0 5 0 5 0 5 0 5</td>
</tr>
<tr>
<td>1</td>
<td>1 6 1 6 1 6 1 6 1 6</td>
</tr>
<tr>
<td>2</td>
<td>2 7 2 7 2 7 2 7 2 7</td>
</tr>
<tr>
<td>3</td>
<td>3 8 3 8 3 8 3 8 3 8</td>
</tr>
<tr>
<td>4</td>
<td>4 9 4 9 4 9 4 9 4 9</td>
</tr>
<tr>
<td>5</td>
<td>5 0 5 0 5 0 5 0 5 0 5</td>
</tr>
<tr>
<td>6</td>
<td>6 1 6 1 6 1 6 1 6 1</td>
</tr>
<tr>
<td>7</td>
<td>7 2 7 2 7 2 7 2 7 2</td>
</tr>
<tr>
<td>8</td>
<td>8 3 8 3 8 3 8 3 8 3 8</td>
</tr>
<tr>
<td>9</td>
<td>9 4 9 4 9 4 9 4 9 4 9</td>
</tr>
</tbody>
</table>

Clearly 2, 4, 6 and 8 are idempotent and so a and b are commuting regular elements if $a = b$ and $a \in \{2, 4, 6, 8\}$. Also $G_1 = \{0, 5\}$, $G_2 = \{1, 6\}$, $G_3 = \{2, 7\}$, $G_4 = \{3, 8\}$ and $G_5 = \{4, 9\}$ are commuting regular subsemigroup of $Z_{10}(1, 5)$.

Proposition 2.8 Let the groupoid $Z_{22p}(1, p)$. Then $\{a\}$ is a commuting regular semigroup where $a \in Z_{22p}$.

Proposition 2.9 Let the groupoid $Z_{2p}(2p - 2k, 2p - (2k - 1))$ where $0 < k < p$. Then $\{p\}$ is a commuting regular semigroup.

Proposition 2.10 Let the groupoid $Z_{2p}(2, 2p - 1)$. Then $\{a\}$ is a commuting regular semigroup for all $a \in Z_{2p}$.

Example 2.11 The groupoid $Z_6(4, 5)$ is given by the following table,

<table>
<thead>
<tr>
<th></th>
<th>0 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 5 4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>1 4 3 2 1 0 5</td>
</tr>
<tr>
<td>2</td>
<td>2 1 0 5 4 3</td>
</tr>
<tr>
<td>3</td>
<td>3 0 5 4 3 2 1</td>
</tr>
<tr>
<td>4</td>
<td>4 3 2 1 0 5</td>
</tr>
<tr>
<td>5</td>
<td>5 2 1 0 5 4 3</td>
</tr>
</tbody>
</table>
Clearly $G_3 = \{3\}$ is a commuting regular semigroup. Also $G_0 = \{0, 2, 4\}$ and $G_1 = \{1, 3, 5\}$ are left commuting regular sub groupoid of $Z_6(4, 5)$.

Proposition 2.12 Let the groupoid $Z_{2p}(2p - 2k, 2p + 1 - 2r)$ where $0 < k, r < p$. Then $\{p\}$ is a commuting regular semigroup.

Proposition 2.13 The gropoid $Z_n(t, u)$ contains a commuting regular subsemigroup, if $t + u \equiv 1 (\mod n)$ where $t, u \in Z_n \setminus \{0\}$ and $t < n$.

Example 2.14 The groupoid $Z_6(2, 5)$ is given by the following table,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Clearly, the subsemigroups $\{0\}, \{1\}, \{2\}, \{3\}, \{4\}$ and $\{5\}$ are commuting regular. Also $G_0 = \{0, 2, 4\}$ and $G_1 = \{1, 3, 5\}$ are commuting regular sub groupoid of $Z_6(2, 5)$.

Proposition 2.15 The gropoid $Z_n(t, u)$, where $t^2 = t, u^2 = u$ and $t, u \in Z_n \setminus \{0\}$ contain commuting regular elements.

Proof Suppose that $a = b = 1$ and $c = n - 2$. Then $a * b = (b * a) * c * (b * a)$.

Proposition 2.16 Let the groupoid $Z_{p_1 p_2}(p_1(p_2 - 1), p_1 + 1)$. Then $\{a\}$ is a commuting regular semigroup of $Z_{p_1 p_2}(p_1(p_2 - 1), p_1 + 1)$ for all $a \in Z_{p_1 p_2}$.

3 Commuting Regular Groupoids

Theorem 3.1 The groupoid $Z_{2p}(1, p)$ contains a commuting regular sub groupoid.

Proof The sub groupoid $G_i = \{i, p + i\}$ given by the following table,

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>(p + 1)i</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(p + 1)i$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

is a commuting regular (where $i = 0, 1, 2, \ldots, p$).
\[i \ast i = ((p+1)i \ast (p+1)i) \ast (p+1)i \equiv (p+1)i \ast (p+1)i \pmod{2p} \equiv (p+1)i \pmod{2p}. \]

\[i \ast i = (p+1)i \ast ((p+1)i \ast (p+1)i) \equiv (p+1)i \ast (p+1)i \pmod{2p} \equiv (p+1)i \pmod{2p}. \]

Then \[G \] clearly is a semigroup of \[G \].

\[(p+1)i \ast i = i = i \ast (p+1)i. \]

\[i = [(i \ast (p+1)i) \ast i] \ast (i \ast (p+1)i) = (i \ast i) \ast i = (p+1)i \ast i \equiv i \pmod{2p}. \]

In the finite groupoid \(Z \mathbb{Z} \) let the groupoid \(\ast \) be regular. Then there exists a commuting regular subgroupoid of \(G \).

\[a \ast b = ((-2b - a) \ast c) \ast (-2b - a) = (4b + 2a - c) \ast (-2b - a) = -8b - 4a + 2c + 2b + a. \]

Therefore \((-2a - b) \equiv (-6b - 3a + 2c) \pmod{2p} \). So \(2c \equiv (5b + a) \pmod{2p} \).

Example 3.2 The groupoid \(Z_0(1, 3) \) is given by the following table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Clearly \(G_0 = \{0, 3\} \), \(G_1 = \{1, 4\} \) and \(G_2 = \{2, 5\} \) are commuting regular semigroup of \(G \).

Theorem 3.3 Let the groupoid \(Z_2(2p - 2, 2p - 1) \). Then \(G_0 = \{0, 2, \ldots, 2p - 2\} \) and \(G_1 = \{1, 3, \ldots, 2p - 1\} \) are commuting regular groupoid.

Proof Suppose that \(a, b \in G_1 \). Then \(a \ast b \equiv -2a - b \pmod{2p} \) and \(b \ast a \equiv -2b - a \pmod{2p} \).

\[a \ast b = ((-2b - a) \ast c) \ast (-2b - a) = (4b + 2a - c) \ast (-2b - a) = -8b - 4a + 2c + b + a. \]

Therefore \((-2a - b) \equiv (-6b - 3a + 2c) \pmod{2p} \). So \(2c \equiv (5b + a) \pmod{2p} \).

Thus \(a \ast b = ((b \ast a) \ast c) \ast (b \ast a) \).

\[a \ast b = (c \ast (-2b - a)) \ast (-2b - a) = (c \ast (-2c + c + 2b + b)) \ast (b \ast a). \]

Thus \(a \ast b = (b \ast a) \ast (a \ast (b \ast a)) \).

Similarly, if \(a \ast b \in G_0 \), then \(a \ast b = (b \ast a) \ast c \ast (b \ast a) \).

Corollary 3.4 Let the groupoid \(Z_2(2p - 2k, 2p + 1 - 2k) \) where \(0 < k < p \). Then \(G_0 = \{0, 2, \ldots, 2p - 2\} \) and \(G_1 = \{1, 3, \ldots, 2p - 1\} \) are commuting regular groupoid.

Corollary 3.5 Let the groupoid \(Z_2(2p - 2k, 2p - 1 - 2r) \) where \(0 < k, r < p \). Then \(G_0 = \{0, 2, \ldots, 2p - 2\} \) and \(G_1 = \{1, 3, \ldots, 2p - 1\} \) are commuting regular groupoid.

Theorem 3.6 Let the groupoid \(Z_2(2, 2p - 1) \). Then there exists a commuting regular subgroupoid of \(Z_2(2, 2p - 1) \).
Proof Suppose that $G_0 = \{0, 2, \ldots, 2p - 2\}$ and $G_1 = \{1, 3, \ldots, 2p - 1\}$. Then G_0 and G_1 are commuting regular subgroupoid. Let $a, b \in G_0 \setminus \{0\}$ and $a > b$. Then $2b - a < a$. We consider two follows case:

1) $2b - a \geq 0$

2) $2b - a < 0$

Case 1. 1) If $2b - a \geq 0$ and $2a - b \leq 2p$, then we show that

$$a \ast b = (b \ast a) \ast c \ast (b \ast a)$$

or $2a - b = (2b - a) \ast c \ast (2b - a) = (4b - 2a - c) \ast (2b - a)$. If $0 \leq 4b - 2a - c \leq 2p$, then $2a - b = (8b - 4a - 2c) - (2b - a)$. Therefore

$$2c \equiv 7b - 5a \pmod{2p}, \text{ if } 0 \leq 6b - 3a - 2c \leq 2p,$$

$$2c \equiv 7b - 5a + 2p \pmod{2p}, \text{ if } 6b - 3a - 2c < 0,$$

$$2c \equiv 7b - 5a - 2p \pmod{2p}, \text{ if } 6b - 3a - 2c > 2p.$$

If $4b - 2a - c > 2p$, then $(2a - b) \equiv (4b - 2a - c - 2p) \ast (2b - a) = (6b - 3a - 2c - 4p).$ Therefore

$$2c \equiv 7b - 5a - 4p \pmod{2p}, \text{ if } 0 \leq 6b - 3a - 2c - 4p \leq 2p,$$

$$2c \equiv 7b - 5a - 2p \pmod{2p}, \text{ if } 6b - 3a - 2c - 4p < 0,$$

$$2c \equiv 7b - 5a - 6p \pmod{2p}, \text{ if } 6b - 3a - 2c - 4p > 2p.$$

If $4b - 2a - c < 0$, then $(2a - b) \equiv (4b - 2a - c + 2p) \ast (2b - a) = (6b - 3a - 2c + 4p).$ Therefore

$$2c \equiv 7b - 5a + 4p \pmod{2p}, \text{ if } 0 \leq 6b - 3a - 2c + 4p \leq 2p,$$

$$2c \equiv 7b - 5a + 6p \pmod{2p}, \text{ if } 6b - 3a - 2c + 4p < 0,$$

$$2c \equiv 7b - 5a + 2p \pmod{2p}, \text{ if } 6b - 3a - 2c + 4p > 2p.$$

Case 1. 2) If $2b - a \geq 0$ and $2a - b > 2p$, then we show that

$$a \ast b = (b \ast a) \ast c \ast (b \ast a)$$

or $a \ast b = 2a - b - 2p = (2b - a) \ast c \ast (2b - a)$. Therefore $2a - b - 2p = (4b - 2a - c) \ast (2b - a)$. If $0 \leq 4b - 2a - c \leq 2p$, then $2c \equiv 7b - 5a + 2p \pmod{2p}$. If $4b - 2a - c > 2p$, then

$$2c \equiv 7b - 5a - 2p \pmod{2p}, \text{ if } 0 \leq 6b - 3a - 2c - 4p \leq 2p.$$
Since $2c \equiv 7b - 5a (\text{mod } 2p)$, if $6b - 3a - 2c - 4p < 0$,
$2c \equiv 7b - 5a - 4p (\text{mod } 2p)$, if $6b - 3a - 2c - 4p > 2p$.

Case 2. 1) If $2b - a < 0$ and $2a - b \leq 2p$, then we show that
$$a \ast b = (b \ast a) \ast c \ast (b \ast a).$$

Since $2b - a \equiv 2b - a + 2p (\text{mod } 2p)$, $2b - a \equiv (2b - a + 2p) \ast c \ast (2b - a + 2p) (\text{mod } 2p)$. If $0 \leq 4p + 4b - 2a - c \leq 2p$, $2b - a \equiv 6p + 6b - 3a - 2a (\text{mod } 2p)$ and so
$$2c \equiv 7b - 5a + 6p (\text{mod } 2p), \text{ if } 0 \leq 6b - 3a - 2c + 6p \leq 2p,$$
$$2c \equiv 7b - 5a + 8p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 6p < 0,$$
$$2c \equiv 7b - 5a + 4p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 6p > 2p.$$

If $4p + 4b - 2a - c > 2p$, then $2b - a \equiv 2p + 6b - 3a - 2c (\text{mod } 2p)$. Therefore
$$2c \equiv 7b - 5a + 2p (\text{mod } 2p), \text{ if } 0 \leq 6b - 3a - 2c + 2p \leq 2p,$$
$$2c \equiv 7b - 5a + 4p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 2p < 0,$$
$$2c \equiv 7b - 5a (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 2p > 2p.$$

If $4p + 4b - 2a - c < 0$, then $2b - a \equiv 10p + 6b - 3a - 2c (\text{mod } 2p)$. Therefore
$$2c \equiv 7b - 5a + 10p (\text{mod } 2p), \text{ if } 0 \leq 10b - 3a - 2c + 2p \leq 2p,$$
$$2c \equiv 7b - 5a + 12p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 10p < 0,$$
$$2c \equiv 7b - 5a + 8p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 10p > 2p.$$

Case 2. 2) If $2b - a < 0$ and $2a - b > 2p$, then we show that
$$a \ast b = (b \ast a) \ast c \ast (b \ast a).$$

If $4p + 4b - 2a - c \leq 2p$, then $2a - b - 2p \equiv 6p + 6b - 3a - 2c (\text{mod } 2p)$ and so
$$2c \equiv 7b - 5a + 8p (\text{mod } 2p), \text{ if } 0 \leq 6b - 3a - 2c + 6p \leq 2p,$$
$$2c \equiv 7b - 5a + 10p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 6p < 0,$$
$$2c \equiv 7b - 5a + 6p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 6p > 2p.$$

If $4p + 4b - 2a - c > 2p$, then $2a - b - 2p \equiv 4p + 6b - 3a - 2c (\text{mod } 2p)$ and so
$$2c \equiv 7b - 5a + 6p (\text{mod } 2p), \text{ if } 0 \leq 6b - 3a - 2c + 4p \leq 2p,$$
$$2c \equiv 7b - 5a + 8p (\text{mod } 2p), \text{ if } 6b - 3a - 2c + 4p < 0,$$
2c ≡ 7b − 5a + 4p (mod 2p), if 6b − 3a − 2c + 4p > 2p.

If 4p + 4b − 2a − c < 0, then 2a − b − 2p ≡ 12p + 6b − 3a − 2c (mod 2p) and so

2c ≡ 7b − 5a + 14p (mod 2p), if 0 ≤ 6b − 3a − 2c + 12p ≤ 2p,

2c ≡ 7b − 5a + 16p (mod 2p), if 6b − 3a − 2c + 12 < 0,

2c ≡ 7b − 5a + 12p (mod 2p), if 6b − 3a − 2c + 12p > 2p.

Similarly, if a < b, then we have a * b = (b * a) * c * (b * a).

Finally, if a = b, then a * a = (a * a) * c * (a * a) where a = c.

Example 3.7 The groupoid $\mathbb{Z}_{10}(2, 9)$ is given by the following table,

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
1 & 2 & 1 & 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 \\
2 & 4 & 3 & 2 & 1 & 0 & 9 & 8 & 7 & 6 & 5 \\
3 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 9 & 8 & 7 \\
4 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 9 \\
5 & 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
6 & 2 & 1 & 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 \\
7 & 4 & 3 & 2 & 1 & 0 & 9 & 8 & 7 & 6 & 5 \\
8 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 9 & 8 & 7 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 9 \\
\end{array}
\]

then $G_0 = \{0, 2, 4, 6, 8\}$ and $G_1 = \{1, 3, 5, 7, 9\}$ are commuting regular sub groupoid.

Theorem 3.8 The groupoid $\mathbb{Z}_{n}(t, t)$ is a commuting regular groupoid where $t^2 \equiv t \ (mod \ n)$ and $t < n$.

Proof For $a, b \in \mathbb{Z}_n$, $a * b = b * a = ta + tb = t(a + b)$. So $\mathbb{Z}_n(t, t)$ is a commutative. Now, $a * b = (b * a) * c * (b * a) = t(a + b) * c * t(a + b) \equiv t(a + b + c) * t(a + b)(mod \ n) \equiv t(2a + 2b + c)(mod \ n)$. By $c = n - (a + b)$, $a * b = (b * a) * c * (b * a)$.

Example 3.9 The groupoid $\mathbb{Z}_6(3, 3)$ is given by the following table,

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 3 & 0 & 3 & 0 \\
1 & 3 & 0 & 3 & 0 & 3 \\
2 & 0 & 3 & 0 & 3 & 0 \\
3 & 3 & 0 & 3 & 0 & 3 \\
4 & 0 & 3 & 0 & 3 & 0 \\
5 & 3 & 0 & 3 & 0 & 3 \\
\end{array}
\]
is a commuting regular.

Theorem 3.10 The groupoid $Z_n(t, t)$ is a commuting regular semigroup where $t^2 \equiv t \pmod{n}$ and $t + t \equiv 0 \pmod{n}$.

Proof For $a, b \in Z_n$, $a \ast b = ta + tb = b \ast a$. Let $c = a + b$. Then $a \ast b = (b \ast a) \ast c = (b \ast a) = t(a + b) \ast c = t(a + b) = t((t + t)b + t)c \equiv [(t + t)a + (t + t)b + tc] \pmod{n}$.

Theorem 3.11 The groupoid $Z_n(t, t)$ is a commuting regular semigroup where $t^2 \equiv t \pmod{n}$ and $t + t \equiv 1 \pmod{n}$.

Proof For $a, b \in Z_n$, $a \ast b = ta + tb = b \ast a$. If $c = 0$, then $a \ast b = (b \ast a) \ast c = (b \ast a) = t(a + b) \ast c = t(a + b) = t((t + t)b + 0)c \equiv [(t + t)a + (t + t)b] \pmod{n}$.

Proposition 3.12 Let $n = kt$. Then $G = \{0, k\}$ is a commuting regular sub semigroup of the groupoid $Z_n(t, 0)$.

Proof The semigroup G given by following table,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

hence G is a commuting regular.

Corollary 3.13 Let $n = kt$. Then $G = \{0, k\}$ is a commuting regular sub semigroup of the groupoid $Z_n(0, t)$.

Theorem 3.14 Let $t^2 \equiv t \pmod{n}$, $u^2 \equiv u \pmod{n}$ and $(t, u) = 1$ for $t, u \in Z_n \setminus \{0\}$. Then the groupoid $Z_n(t, u)$ is a Van Neumman semigroup if $t + u \equiv 1 \pmod{n}$ and $\{a\}$ is commuting regular for $a \in Z_n(t, u)$.

Proof For all $a \in Z_n$, $a^2 = a \ast a = ta + ua = (t + u)a \equiv a \pmod{n}$. So $a^2 = a$ and $a^2 = a^2 \ast a \ast a^2$. Therefore $\{a\}$ is a commuting regular. Since $t + u \equiv 1 \pmod{n}$, $tu \equiv 0 \pmod{n}$ and so $(a \ast c) \ast a = (ta + uc) \ast a = t^2a + tuc + ua \equiv (ta + ua) \pmod{n} \equiv a \pmod{n}$. Thus $Z_n(t, u)$ is a Van Neumman semigroup.

Theorem 3.15 Let $t^2 \equiv t \pmod{n}$, $u^2 \equiv u \pmod{n}$, $(t, u) = 1$ and $t + u \equiv 1 \pmod{n}$ for $t, u \in Z_n \setminus \{0\}$. Then the groupoid $Z_n(t, u)$ is a commutative semigroup if and only if $Z_n(t, u)$ is a commuting regular semigroup.
Proof Suppose that $Z_n(t, u)$ be a commuting regular semigroup. Then for $a, b \in Z_n$ there exists $c \in Z_n$ such that $a * b = (b * a) * c * (b * a)$.

So $a * b = (tb + ua) * c * (tb + ua) = (t^2b + tua + uc) * (tb + ua) \equiv (tb + uc) * (tb + ua) \mod n \equiv t^2b + tua + uc * (tb + ua) \equiv tb + ua \mod n = b * a$. On the others hand, if $a * b = b * a$, then by the Proposition 3.10 there exists $c \in Z_n$ such that $a * b = (b * a) * c * (b * a)$.

ACKNOWLEDGEMENTS. This research is supported by Islamic Azad University, Central Tehran Branch in Iran. The author would like to express his gratitude to the referee for many valuable comments which improve the presentation of this paper.

References

Received: October, 2011