Generalized \mathcal{N}-Fuzzy Ideals in Semigroups

S. Lekkoksung

Rajamangala University of Technology Isan
Khon Kaen Campus, Thailand
Lekkoksung_somsak@hotmail.com

Abstract

In this paper, the concepts of (λ, μ)-\mathcal{N}-fuzzy bi-ideal and (λ, μ)-\mathcal{N}-fuzzy quasi-ideal were introduced which can be regarded as a generalization of common correspondence concepts, and some properties of (λ, μ)-\mathcal{N}-fuzzy bi-ideal and (λ, μ)-\mathcal{N}-fuzzy quasi-ideal were discussed.

Mathematics Subject Classification: 06F35, 08A72

Keywords: (λ, μ)-\mathcal{N}-fuzzy bi-ideal, (λ, μ)-\mathcal{N}-fuzzy quasi-ideal, cut set

1 Introduction

The concept of fuzzy set, introduced by Zadeh [7], was applied to the theory of groups by Rosenfeld [6]. Since then, many scholars have studied the theorems of fuzzy subring and various fuzzy ideals. Kuroki studied fuzzy semigroup and fuzzy bi-ideal in a semigroup [1-5]. In this paper, the concepts of (λ, μ)-\mathcal{N}-fuzzy bi-ideal and (λ, μ)-\mathcal{N}-fuzzy quasi-ideal were introduced which can be regarded as a generalization of common correspondence concepts, and some properties of (λ, μ)-\mathcal{N}-fuzzy bi-ideal and (λ, μ)-\mathcal{N}-fuzzy quasi-ideal were discussed.

2 Preliminary Notes

A semigroup is more general algebraic system than the groups, and is widely applied in computer sciences. In the following statement, S will stand for a semigroup and λ and μ denote two constants such that $0 \leq \mu < \lambda \leq 1$.

By a subsemigroup T of S we mean a nonempty subset of S such that $TT \subseteq T$. A nonempty subset T of S is called a left ideal (right ideal) of S if $ST \subseteq T$ ($TS \subseteq T$). A nonempty subset T of S is called an ideal of S if it is both a left ideal and a right ideal of S. A nonempty subset T of S is called a generalized bi-ideal of S if $TST \subseteq T$. If the subset T of S is both a generalized bi-ideal and a subsemigroup of S, then T is called a bi-ideal of S.
A subsemigroup T of S is called an inner ideal if $STS \subseteq T$. A nonempty subset Q of S is called a quasi-ideal of S if $QS \cap SQ \subseteq Q$.

Let X be a nonempty set. By an \mathcal{N}-fuzzy subset A of X we mean a mapping from X to the closed interval $[-1,0]$. If A is an \mathcal{N}-fuzzy subset of X, then the cut set A_t and open cut set $A_{<t}$ were defined as:

$$A_t := \{ x \in X \mid A(x) \leq t \}, \quad A_{<t} := \{ x \in X \mid A(x) < t \}.$$

Definition 2.1 Let A be an \mathcal{N}-fuzzy subset of S. Then A is called a (λ, μ)-\mathcal{N}-fuzzy subsemigroup of S if for all $x, y \in S$,

$$A(xy) \land \lambda \leq A(x) \lor A(y) \lor \mu.$$

Definition 2.2 Let A be an \mathcal{N}-fuzzy subset of S. Then A is called a (λ, μ)-generalized \mathcal{N}-fuzzy bi-ideal of S if for all $x, y, z \in S$,

$$A(xyz) \land \lambda \leq A(x) \lor A(z) \lor \mu.$$

If A is both a (λ, μ)-generalized \mathcal{N}-fuzzy bi-ideal and an anti (λ, μ)-\mathcal{N}-fuzzy subsemigroup of S, then A is called a (λ, μ)-\mathcal{N}-fuzzy bi-ideal of S.

Definition 2.3 Let A be a (λ, μ)-\mathcal{N}-fuzzy subsemigroup of S. Then A is called a (λ, μ)-\mathcal{N}-fuzzy inner ideal is for all $x, y, z \in S$,

$$A(xyz) \land \lambda \leq A(y) \lor \mu.$$

Let A and B two \mathcal{N}-fuzzy subsets of S. Then the \mathcal{N}-fuzzy subset AB is defined as follows: if $x \in S$ can be expressed as $x = x_1x_2$, then $AB(x) := \inf \{ A(x_1) \lor B(x_2) \mid x_1, x_2 \in S \}$. Otherwise $AB(x) = 0$.

Definition 2.4 Let A be a \mathcal{N}-fuzzy subset of S. If for all $x \in S$, $A(x) \land \lambda \leq (A1_S)(x) \lor (1_SA)(x) \lor \mu$, then A is called a (λ, μ)-\mathcal{N}-fuzzy quasi-ideal of S, where $1_S : S \to \{-1,0\}$ is the characteristic \mathcal{N}-function of S defined by

$$1_S(x) := \begin{cases} -1 & \text{if } x \in S, \\ 0 & \text{if } x \notin S. \end{cases}$$

3 Main Results

Theorem 3.1 Let A be a (λ, μ)-\mathcal{N}-fuzzy quasi-ideal of S. Then A is both a (λ, μ)-\mathcal{N}-fuzzy subsemigroup and a (λ, μ)-generalized \mathcal{N}-fuzzy bi-ideal of S and hence A is a (λ, μ)-\mathcal{N}-fuzzy bi-ideal of S.

Proof. For all $x, y, z \in S$, we have

$$A(xy) \land \lambda \leq (A_1S)(xy) \lor (1SA)(xy) \lor \mu$$
$$\leq A(x) \lor 1S(y) \lor 1S(x) \lor A(y) \lor \mu$$
$$= A(x) \lor A(y) \lor \mu.$$

$$A(xyz) \land \lambda \leq (A_1S)(xyz) \lor (1SA)(xyz) \lor \mu$$
$$\leq A(x) \lor 1S(yz) \lor 1S(xy) \lor A(z) \lor \mu$$
$$= A(x) \lor A(z) \lor \mu.$$

Hence A is both a (λ, μ)-\mathcal{N}-fuzzy subsemigroup and a (λ, μ)-generalized \mathcal{N}-fuzzy bi-ideal of S and hence A is a (λ, μ)-\mathcal{N}-fuzzy bi-ideal bi-ideal of S. ■

Theorem 3.2 Let T be a nonempty subset of S and let A be an \mathcal{N}-fuzzy subset of S such that

$$A(x) \begin{cases} \geq \lambda & \text{if } x \notin T, \\ \leq \mu & \text{if } x \in T, \end{cases}$$

for all $x \in S$. Then

1. A is a (λ, μ)-\mathcal{N}-fuzzy subsemigroup of S if T is a subsemigroup of S.
2. A is a (λ, μ)-\mathcal{N}-fuzzy bi-ideal of S if T is a bi-ideal of S.
3. A is a (λ, μ)-\mathcal{N}-fuzzy inner ideal of S if T is an inner ideal of S.
4. A is a (λ, μ)-\mathcal{N}-fuzzy quasi-ideal of S if T is a quasi-ideal of S.

Proof. We only prove (1) and (4).

1. Let T be a subsemigroup of S. For all $x, y \in S$, if $x, y \in T$, then $xy \in T$. So we have $A(xy) \leq \mu$ and $A(xy) \land \lambda \leq \mu = A(x) \lor A(y) \lor \mu$. If $x \notin T$ or $y \notin T$, then $A(x) \lor A(y) \lor \mu \geq \lambda$. It follows that $A(xy) \land \lambda \leq \lambda \leq A(x) \lor A(y) \lor \mu$. So A is a (λ, μ)-\mathcal{N}-fuzzy subsemigroup of S.

4. Let T be a quasi-ideal of S. For all $x \in S$, if $x \in TS \cap ST$, then $x \in T$. So $A(x) \leq \mu$. It follows that $A(x) \land \lambda \leq \mu \leq (A_1S)(x) \lor (1SA)(x) \lor \mu$. If $x \notin TS \cap ST$, then $x \notin TS$ or $x \notin ST$. It can be obtained that $(A_1S)(x) \geq \lambda$ or $(1SA)(x) \geq \lambda$. That is, $(A_1S)(x) \lor (1SA)(x) \geq \lambda$. Hence $A(x) \land \lambda \leq \lambda \leq (A_1S)(x) \lor (1SA)(x) \lor \mu$. It means that A is a (λ, μ)-\mathcal{N}-fuzzy quasi-ideal of S. ■

A (λ, μ)-\mathcal{N}-fuzzy subsemigroup $(\mathcal{N}$-fuzzy bi-ideal, \mathcal{N}-fuzzy inner ideal, \mathcal{N}-fuzzy quasi-ideal) of S can be characterised by its cut set and open cut set.

Theorem 3.3 Let A be an \mathcal{N}-fuzzy subset of S. Then A is a (λ, μ)-\mathcal{N}-fuzzy subsemigroup $(\mathcal{N}$-fuzzy bi-ideal, \mathcal{N}-fuzzy inner ideal, \mathcal{N}-fuzzy quasi-ideal) of S if and only if for all $t \in (\mu, \lambda]$, A_t is a subsemigroup $(\mathcal{N}$-fuzzy bi-ideal, \mathcal{N}-fuzzy inner ideal, \mathcal{N}-fuzzy quasi-ideal) of S whenever $A_t \neq \emptyset$.

Proof. We only prove the cases of (λ, μ)-\mathcal{N}-fuzzy subsemigroup and (λ, μ)-\mathcal{N}-fuzzy quasi-ideal of S.
(1) Let \(A \) be a \((\lambda, \mu)-N\)-fuzzy subsemigroup of \(S \). Then for all \(t \in (\mu, \lambda] \) and \(x, y \in A_t \), we have \(A(xy) \wedge \lambda \leq A(x) \vee A(y) \vee \mu \leq t \vee \mu = t \). It implies that \(A(xy) \leq t \) considering \(\lambda > t \). So \(xy \in A_t \). This indicates that \(A_t \) is a subsemigroup of \(S \).

Conversely, let \(A_t \) be a subsemigroup of \(S \) for all \(t \in (\mu, \lambda] \). If possible, let \(A(x_0y_0) \wedge \lambda > A(x_0) \vee A(y_0) \vee \mu \) for some \(x_0, y_0 \in S \). Put \(t = A(x_0) \vee A(y_0) \vee \mu \), then \(t \in (\mu, \lambda] \) and \(x_0y_0 \notin A_t \), \(x_0, y_0 \in A_t \). This is a contradiction. Hence for all \(x, y \in S \), \(A(xy) \wedge \lambda \leq A(x) \vee A(y) \vee \mu \). It means that \(A \) is a \((\lambda, \mu)-N\)-fuzzy subsemigroup of \(S \).

(2) Let \(A \) be a \((\lambda, mu)-N\)-fuzzy quasi-ideal of \(S \) and let \(x \in AS \cap SA \), where \(t \in (\mu, \lambda] \). Then there exist \(a, b \in A_t \) and \(s, t \in S \), such that \(x = as = tb \). So we have

\[
A(x) \wedge \lambda \leq (A1_S)(x) \vee (1_S A)(x) \vee \mu \\
\leq A(a) \vee 1_S(s) \vee 1_S(t) \vee A(b) \vee \mu \\
= A(a) \vee A(b) \vee \mu \leq t \vee \mu \\
= t < \lambda,
\]

and hence \(A(x) \leq t \). So \(x \in A \) and \(AS \cap SA \subseteq A \). This indicates that \(A_t \) is a quasi-ideal of \(S \).

Conversely, let \(A_t \) be a quasi-ideal of \(S \) for all \(t \in (\mu, \lambda] \). If possible, let \(A(x_0) \wedge \lambda > (A1_S)(x_0) \vee (1_S A)(x_0) \vee \mu \) for some \(x_0 \in S \). Put \(t = \frac{1}{2}[(A(x_0) \wedge \lambda) + ((A1_S)(x_0) \vee (1_S A)(x_0) \vee \mu)] \), then \(t \in (\mu, \lambda] \), \(x_0 \notin \bigcap A_t \) and \((A1_S)(x_0) \vee (1_S A)(x_0) < t \). So there exist \(a, b, s, t \in S \), such that \(x_0 = as = tb \) and \(A(a) \vee A(b) < t \). It implies \(x_0 \in AS \cap SA \). This is a contradiction. Hence for all \(x \in S \), we have \(A(x) \wedge \lambda \leq (A1_S)(x) \vee (1_S A)(x) \vee \mu \). It means that \(A \) is a \((\lambda, \mu)-N\)-fuzzy quasi-ideal of \(S \). This completes the proof.

Similarly we have the following theorem.

Theorem 3.4 Let \(A \) be an \(N \)-fuzzy subset of \(S \). Then \(A \) is a \((\lambda, \mu)-N\)-fuzzy subsemigroup (\(N \)-fuzzy bi-ideal, \(N \)-fuzzy inner ideal, \(N \)-fuzzy quasi-ideal) of \(S \) if and only if for all \(t \in (\mu, \lambda] \), \(A_{<t>} \) is a subsemigroup (\(N \)-fuzzy bi-ideal, \(N \)-fuzzy inner ideal, \(N \)-fuzzy quasi-ideal) of \(S \) whenever \(A_{<t>} \neq \emptyset \).

References

Received: September, 2011