Multigrid Method for Solving 2D-Helmholtz Equation with Sixth Order Accurate Compact Finite Difference Method

Bouthina S. Ahmed¹ and S. J. Monaquel²

1) Mathematics Department, Faculty of Girls
 Ain Shams University, Cairo-Egypt
 Ahmed_Bouthina@live.com

2) Mathematics Department, Faculty of Science
 King Abdul Aziz University Jeddah, Saudi Arabia
 Smoqaquel@hotmail.com

Abstract

In this paper we develop a sixth order finite difference discretization strategy to solve the two dimensional Helmholtz equation. We use multigrid V-cycle procedure to build multiscale multigrid method which is similar to the full multigrid method. Numerical result is given to illustrate this method.

1-Introduction

Poisson equation is a partial differential equation (PDF) with broad applications in mechanical engineering, theoretical physics and other fields. The two dimensional (2D) Poisson equation can be written in the form:
\[u_{xx}(x, y) + u_{yy}(x, y) + k^2 u(x, y) = f(x, y), \quad (x, y) \in \Omega \tag{1} \]

Where \(\Omega \) is a rectangular domain, or union of rectangular domains, with suitable boundary conditions defined on \(\partial \Omega \). The solution \(u(x, y) \) and forcing function \(f(x, y) \) are assumed to be sufficiently smooth and have the necessary derivatives up to certain orders.

A second order accurate solution can be computed by applying standard second order central difference operators \(u_{xx}(x, y) \) and \(u_{yy}(x, y) \) in Eq. (1). Higher order (more than two) accurate discretization methods need more complex procedure than the second order accurate discretization method to compute the coefficient matrix, but they usually generate linear systems of much smaller size, compared with that from the lower order accurate discretization method [1,4]. There has been growing interest in developing higher order accurate discretization methods, especially the high order compact difference scheme to solve partial differential equations (PDEs) [6, 8, 9, and 10].

2-Sixth Order Compact Approximation

This method is similar to a sixth-order accurate approximation to the derivatives calculated from Helmholtz equation [5]. We take the scheme for the uniform Cartesian grids with grid spacing \(\Delta x = \Delta y = h \). The mesh points are \((x_i, y_j) \) with \(x_i = ah \) and \(y_j = b jh \), \(0 \leq i \leq N, \ 0 \leq j \leq N \) where \(N \) is the number of uniform intervals in the \(x \) and \(y \) directions.

We write the second order central difference operators as

\[
\delta^2_x u_{i,j} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}, \quad \delta^2_y u_{i,j} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2},
\]

(2)

Using Taylor series expansions at the grid point \((x_i, y_j) \), we have

\[
\delta^2_x u_{i,j} = \frac{\partial^2 u}{\partial x^2} + \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4} + \frac{h^6}{360} \frac{\partial^6 u}{\partial x^6} + O(h^6)
\]

(3)

\[
\delta^2_y u_{i,j} = \frac{\partial^2 u}{\partial y^2} + \frac{h^2}{12} \frac{\partial^4 u}{\partial y^4} + \frac{h^6}{360} \frac{\partial^6 u}{\partial y^6} + O(h^6)
\]

(4)

The central finite difference for Eq. (1) can be written as
Multigrid method for solving 2D-Helmholtz equation

\[\delta_x^2 u_{i,j} + \delta_y^2 u_{i,j} + k^2 u_{i,j} + T_{i,j} = f_{i,j} \]

(5)

Where

\[u_{i,j} = u(x_i, y_j), \quad f_{i,j} = f(x_i, y_j) \]

and

\[T_{i,j} = \frac{h^2}{12} \left(\frac{\partial^4 u}{\partial x^4} + \frac{\partial^4 u}{\partial y^4} \right) - \frac{h^4}{360} \left(\frac{\partial^6 u}{\partial x^6} + \frac{\partial^6 u}{\partial y^6} \right) + O(h^6) \]

(6)

Using the following appropriate derivatives of Eq. (1)

\[\frac{\partial^4 u}{\partial x^4} = \frac{\partial^2 f}{\partial x^2} - k^2 \frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2}, \quad \frac{\partial^4 u}{\partial y^4} = \frac{\partial^2 f}{\partial y^2} - k^2 \frac{\partial^2 u}{\partial y^2} \frac{\partial^2 u}{\partial x^2} \]

(7)

In Eq. (6) we get

\[T_{i,j} = -\frac{h^2}{12} \left(\nabla^2 f_{i,j} - 2 \left[\frac{\partial^4 u}{\partial x^2 \partial y^2} \right]_{i,j} - k^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]_{i,j} \right) - \frac{h^4}{360} \left[\frac{\partial^6 u}{\partial x^6} + \frac{\partial^6 u}{\partial y^6} \right]_{i,j} + O(h^6) \]

(8)

The fourth order approximation of \(\frac{\partial^4 u}{\partial x^2 \partial y^2} \) in Eq. (8) can be written as

\[\left[\frac{\partial^4 u}{\partial x^2 \partial y^2} \right]_{i,j} = \delta_x^2 \delta_y^2 u_{i,j} - \frac{h^2}{12} \left[\frac{\partial^6 u}{\partial x^4 \partial y^2} + \frac{\partial^6 u}{\partial y^4 \partial x^2} \right]_{i,j} + O(h^4) \]

(9)

Substituting Eq. (9) into Eq. (8), we get
\[T_{i,j} = \frac{h^2}{12} \left(\nabla^2 f_{i,j} + 2 \frac{\partial^2 f_{i,j}}{\partial x^2} + k^2 f_{i,j} \right) \]
\[- \frac{h^4}{360} \left(\frac{\partial^6 u}{\partial x^6} + 5 \frac{\partial^6 u}{\partial x^2 \partial y^4} + 5 \frac{\partial^6 u}{\partial x^4 \partial y^2} + \frac{\partial^6 u}{\partial y^6} \right)_{i,j} + O(h^6) \]

Clearly, getting a compact sixth-order approximation requires compact expressions of the four derivatives of order six in Eq. (1) which can be done by further differentiating Eq. (10) that is

\[\frac{\partial^4 f}{\partial x^2 \partial y^2} = \frac{\partial^6 u}{\partial x^4 \partial y^2} + \frac{\partial^6 u}{\partial x^2 \partial y^4} + k^2 \frac{\partial^4 u}{\partial x^2 \partial y^2} \]

\[\frac{\partial^6 u}{\partial x^6} + \frac{\partial^6 u}{\partial y^6} = \nabla^4 f - k^2 \left(\frac{\partial^4 u}{\partial x^4 \partial y^2} + \frac{\partial^4 u}{\partial x^2 \partial y^4} \right) \]

Substituting Eq. (7), (11) into Eq. (13) gives

\[\frac{\partial^6 u}{\partial x^6} + \frac{\partial^6 u}{\partial y^6} = \nabla^4 f - \frac{\partial^4 f}{\partial x^2 \partial y^2} - k^2 \nabla^2 f + k^4 (-k^2 u + f) + 3k^2 \frac{\partial^4 f}{\partial x^2 \partial y^2} \]

Using Eq. (11), (13) we can eliminate all derivatives of u in Eq. (10) that is

\[T_{i,j} = \frac{h^2}{12} \left(\nabla^2 f_{i,j} + 2 \frac{\partial^2 f_{i,j}}{\partial x^2} + k^2 f_{i,j} \right) \]
\[- \frac{h^4}{360} \left(\nabla^4 f_{i,j} + 4 \left[\frac{\partial^4 u}{\partial x^2 \partial y^2} \right]_{i,j} - k^2 \nabla^2 f_{i,j} + k^4 f_{i,j} - k^2 u_{i,j} - 2k^2 \frac{\partial^2 u}{\partial x^2 \partial y^2} \right)_{i,j} + O(h^6) \]

The compact sixth-order approximation of two dimensional can be written as
\[
\frac{h^2}{6} \left(1 + \frac{k^2 h^2}{30} \right) \delta^2 u_{i,j} + \left(\delta_x^2 + \delta_y^2 \right) u_{i,j} + k^2 \left(1 - \frac{k^2 h^2}{12} + \frac{k^4 h^4}{360} \right) u_{i,j}
\]
\[
= \left(1 - \frac{k^2 h^2}{12} + \frac{k^4 h^4}{360} \right) f_{i,j} + \left(\frac{h^2}{12} \left(1 - \frac{k^2 h^2}{30} \right) \right) \nabla^2 f_{i,j} + \frac{h^4}{360} \nabla^4 f_{i,j} + \frac{h^4}{90} \left[\frac{\partial^4 f}{\partial x^2 \partial y^2} \right]
\]
(15)

We can express Eq. (16) in the form
\[
d_{20} u_{i,j} + d_{21} \left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} \right)
\]
\[
+ d_{22} \left(u_{i+1,j+1} + u_{i-1,j-1} + u_{i,j+1} + u_{i,j-1} \right)
\]
\[
= b_{20} f_{i,j} + b_{21} \left(f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1} \right)
\]
\[
+ b_{22} \left(f_{i+1,j+1} + f_{i-1,j-1} + f_{i,j+1} + f_{i,j-1} \right) + \frac{h^6}{90} \left[\frac{\partial^4 f}{\partial x^2 \partial y^2} \right]
\]
(16)

Where
\[
d_{20} = -\frac{10}{3} + k^2 h^2 \left(\frac{46}{45} - \frac{k^2 h^2}{12} + \frac{k^4 h^4}{360} \right), \quad d_{21} = \frac{2}{3} - \frac{k^2 h^2}{90}, \quad d_{22} = \frac{1}{6} + \frac{k^2 h^2}{180}
\]
\[
b_{20} = h^2 \left(1 - \frac{k^2 h^2}{12} + \frac{k^4 h^4}{360} \right), \quad b_{21} = h^4 \left(1 - \frac{k^2 h^2}{30} \right), \quad b_{22} = \frac{h^6}{360}, \quad b_{23} = \frac{h^6}{90}
\]
(17)

3- Multigrid Method V-Cycle

Algorithm

1. Let \(u_{2h} \) be the solution on the coarse grid \(\Omega_{2h} \)
2. Use some high order interpolation schemes here we use Newton difference interpolation, to interpolate \(\Omega_{2h}, u_{2h} = \frac{h}{2} \) to the coarse grid Update every (odd-odd) grid point on
From Eq. (16) for each point \((imp)\) the updated solution is

\[
\begin{align*}
 u^{k + 1}_{i, j} &= \left[F_{i, j} - d_{21} \left(u_{i + 1, j} + u_{i, j + 1} + u_{i, j - 1} + u_{i - 1, j} \right) \right] / d_{20} \\
 &\quad - d_{22} \left(u^k_{i + 1, j + 1} + u^k_{i, j + 1} + u^k_{i + 1, j - 1} + u^k_{i - 1, j} \right)
\end{align*}
\]

(18)

Here, \(F_{i, j}\) represents the right-hand side of Eq. (16)

3- Update every (odd, even) grid point on \(\Omega_h\) from Eq. (16)

4- Update every (even, odd) grid point on \(\Omega_h\) from Eq. (16)

5- Compute the \(L^2\) norm \(\Omega_{2h} R = \left\| u^{h, k+1} - u^{h, k} \right\|_2\) if not converged go back to step 3.

6- Compute residual on the fine grid \(\Omega_h\) from \(L_h - f_h = d_h\) and use full weighting scheme to project residual from fine grid to the coarse grid.

7- Use interpolation to transfer corrections from the coarse grid to the fine grid.

8- Relax \(1\) times on \(L_h u_h = f_h\).

9- Use from the previous step as the initial guess to run the multigrid algorithm until it converges.

4- Numerical Results

Problem A Consider Helmholtz equation

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + k^2 u = (k^2 - 2\pi^2) \sin(\pi x) \sin(\pi y) \quad 0 \leq x \leq 1 \text{ And } 0 \leq y \leq 1
\]

With Dirichlet boundary conditions on all sides f unit square, that is

\[u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0\]

The exact solution is \(u(x, y) = \sin \pi x \sin \pi y\)

In order to compare the numerical solution to the exact solution we use two performance metrics namely \(e\) is defined as
Multigrid method for solving 2D-Helmholtz equation

\[\|e\|_2 = \frac{1}{N} \sqrt{\sum_{i,j=0}^{N} e_{i,j}^2} \]

(19)

Where \(e_{i,j} \) = numerical solution-exact solution

The metric order is defined as

\[\text{Order}(n, n+1) = \log_2 \frac{\|e\|_\infty(n)}{\|e\|_\infty(n+1)} \]

(20)

And measures the order of numerical \(\|e\|_\infty \) in Eq. (18) is called \(l_\infty \) - norm of the error vector and is defined as

\[\|e\|_\infty = \max_{0 \leq i, j \leq N} e_{i,j} \]

(21)

The \(l_2 \) - norm of the error and the order of accuracy, for different values of N are presented in Table 1.

<table>
<thead>
<tr>
<th>(N)</th>
<th>(|e|_\infty)</th>
<th>(|e|_2)</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.21850903e-1</td>
<td>0.72836343e-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.27610356e-3</td>
<td>0.11044145e-3</td>
<td>6.04</td>
</tr>
<tr>
<td>8</td>
<td>0.40788436e-5</td>
<td>0.18128598e-5</td>
<td>5.9289</td>
</tr>
<tr>
<td>16</td>
<td>0.6299437e-7</td>
<td>0.29689777e-7</td>
<td>5.9322</td>
</tr>
<tr>
<td>32</td>
<td>0.11497659e-8</td>
<td>0.61250031e-8</td>
<td>5.5991</td>
</tr>
<tr>
<td>64</td>
<td>0.39523036e-9</td>
<td>0.18549957e-9</td>
<td>5.0452</td>
</tr>
<tr>
<td>128</td>
<td>0.40222975e-10</td>
<td>0.13368717e-10</td>
<td>3.7945</td>
</tr>
<tr>
<td>256</td>
<td>not converges</td>
<td>not converges</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

6- Conclusion

A sixth-order accurate compact finite difference scheme with multigrid method for solving Helmoltz equation was developed. Numerical computation showing the efficiency of this method.

References

Received: September, 2011